Magnetized plasma : About the Braginskii s 1 macroscopic model 2
|
|
- Ευφρανωρ Καζαντζής
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Magnetzed plasma : About the Bragnsk s 1 macroscopc model 2 B. Nkonga JAD Unv. Nce/INRIA Sopha-Antpols 1 S. I. Bragnsk, n Revews of Plasma Physcs, edted by M. A. Leontovch Consultants Bureau, New York, 1965, Vol. I, p Talk H. Gullard, 1st summer school of the Large Scale Intatve FUSION : September 15-18, 2009 n Strasbourg. fuson/ B. Nkonga. Flud Theory 1 / 56
2 Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 2 / 56
3 State of the matter : Plasma Temperature versus Number of charged partcles/m 3 B. Nkonga. Flud Theory 3 / 56
4 Models + Maxwell s Equatons for E and B 1 N-body : x k t : R R 3, k = O /m 3 800m 3 Newton Equaton for each charged partcle dx k dt = v k and m k dv k dt = q k m k E + v k B + l C kl 2 Knetc : f k t, x, v : R 7 R, k = O10 t f k + v x f k + q k m k E + v B v f k = l C kl 3 Flud :ω k t, x : R 4 R N k, k = O10 t ω k + L, ω k, B, E = S k B. Nkonga. Flud Theory 4 / 56
5 Knetc equaton for Smple plasma D v t f e + qe m e L v v f e = C ee f e, f e + C e f e, f D v t f + q m L v v f = C e f, f e + C f, f where for electrons k = e and ons k = Moreover f k f k t, x, v s the dstrbuton functon. m k s the mass q k s the charge C kl are collsons operators. D v t = t + v x s the materal dervatve at the velocty v, D v t s the materal dervatve at the velocty v, L v = E + v B s the Lorenz force E and B are govern by Maxwell equatons. B. Nkonga. Flud Theory 5 / 56
6 Coulomb bnary scatterng law The Landau form of the Coulomb collson s Eq. 4.3 of Bragnsk: C kl f k, f l = Γ kl 2 [ ] v O kl f k, f l where, wth a = v v we have [ O kl f k, f l = dv mk B a f k v f l v R 3 m l v f l v ] f k v v where, for rgd spheres approxmaton, Cut-offs estmaton gves Γ kl = 4πq2 k q2 l ln Λ m 2 k and for any vector a B a = a 2 I a a a 3 ln Λ s the Coulomb logarthm. B. Nkonga. Flud Theory 6 / 56
7 Propertes of the scatterng tensor B = a 2 I a a a 3 a 1 B a s symmetrc B a T = B a and even B a = B a a 1 2 B a derve from a potental B a = a = a a a a 3 a t s n the kernel of B a B a a = a B a = a = 2a 2 and Tr [B a ] = a a 3 a 5 v B a = 2a a 3 = v B a [Tr a a B] = a 2 I 3a a a 5 7 In sphercal coordnatesvelocty space a B a 2 a 3 B θ, φ B θ, φ = 1 1 sn θ sn θ θ θ sn 2 θ θ 2 = 1 1 µ µ µ s the angular part of a 2 and s often wrtten n terms of the ptch angle varable : µ = cos θ µ 2 θ 2 B. Nkonga. Flud Theory 7 / 56
8 Other formulatons of Coulomb bnary scatterng law O kl f k, f l = dv R 3 [ mk B a f k v f l v m l v 1 Fokker-Planck form, wth D l v = O kl f k, f l = f l v ] f k v v [ dv fl v ] B a and P5 R 3 f k v D l v 1 + m k f k v m l v D l v v 2 Rosenbluth57-Trubnkov58 form : O kl f k, f l = m k m k f k v H l v v v f k v v v G l v Rosenbluth potentals H l v and G l v: H l v = dv f l v wth G l v = dv a f l v R 3 a R 3 B. Nkonga. Flud Theory 8 / 56
9 Other formulatons of Coulomb bnary scatterng law [ 1 Fokker-Planck form, wth D l v = dv fl v ] B a and P5 R 3 O kl f k, f l = 1 + m k f k v m l v D l v v f k v D l v O kl f k, f l = D l v f k v v 2 Rosenbluth57-Trubnkov58 form : O kl f k, f l = 1 + m k m k f k v H l v v v + m k m l f k v v D l v f k v H l v v D l v = H l v v D l v s the dffuson tensor and H l v = 1 2 v v G l v B. Nkonga. Flud Theory 8 / 56
10 Macroscopc equatons : D u t = t + u x D u k t n k + n k x u k = 0 m k n k D u k t u k + x p k q k n k E + u k B = x π k + R k n k D u k t p k γ k p k x u k γ k 1 = x q k π k : x u k + Q k t B + x E = 0 q k and γ k 5 3 are constants parameters. T k = n k p k Statc constrant : t x B s constant. Addtonal relaton to defne E V V = x B = µ 0 J = µ 0 q k n k u k k n k u k p k B B. Nkonga. Flud Theory 9 / 56
11 Macroscopc equatons : Transport π k = q k = R k = Q k = dv [m k f k v u k v u k v u k 2 ] I R 3 3 v u k dv [m 2 ] k f k v R 3 2 [ dv m k v u k ] C kl R 3 l [ ] v u k 2 dv m k C kl R 3 2 l Scalng and asymptotc expansons of knetc equatons : Defne π k, R k, q k and Q k as functons of V B. Nkonga. Flud Theory 10 / 56
12 Knetc Transport theory : Strategy 1 Defne an approprate frame and scalng. 2 Evaluate non-dmensonal coeffcent n term of a small parameter. 3 Proceed to an expansons accordng to these terms 4 Obtaned approxmatons of probablty densty functons. 5 Use these approxmatons to evaluate transport terms. B. Nkonga. Flud Theory 11 / 56
13 Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 12 / 56
14 Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n mean electrons velocty frame [ ] D u t g e + κ x g e + qe m e E + u + κ B D u t u κ x u κ g e = C ee g e, g e + C e g e, g [ ] D u t g + κ x g + q m E + u + κ B D u t u κ x u κ g = C e g, g e + C g, g The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56
15 Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n the opposte mean velocty frame D u t fe + κ f [ ] x e + qe m e E + u + κ B D u t u κ x u f κ e = C ee fe, f e + C e fe, f [ ] D u t g + κ x g + q m E + u + κ B D u t u κ x u κ g = C e g, g e + C g, g The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56
16 Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n ther mean velocty frame Bragnsk... [ ] D u t g e + κ x g e + qe m e E + u + κ B D u t u κ x u κ g e = C ee g e, g e + C e g e, g D u t f + κ f [ ] x + q m E + u + κ B D u t u κ x u f κ = C e f, f e + C f, f The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56
17 Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n mean ons velocty frame Gralle... D u t fe + κ f [ ] x e + qe m e E + u + κ B D u t u κ x u f κ e = C ee fe, f e + C e fe, f D u t f + κ f [ ] x + q m E + u + κ B D u t u κ x u f κ = C e f, f e + C f, f The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56
18 Dmensonless equatons D u t fe + κ f [ ] x e + qe m e E + u + κ B D u t u κ x u f κ e = C ee fe, f e + C e fe, f Dmensonless where D u t fk + [t 0] [κ k ] κ x [x 0 ] f k [u k ] [κ k ] + q k [t 0 ] [E 0 ] m k [κ k ] E + [B 0 ] [u k ] [E 0 ] = [t 0] [C kk ] C kk fk, [f k ] f k D u t u + [t 0] [κ k ] [x 0 ] u + [κ k ] [u k ] κ D u t = t + [t 0] [u k ] u x [x 0 ] κ x u f κ k B f κ k + [t 0] [C kl ] C kl fk, [f k ] f l B. Nkonga. Flud Theory 14 / 56
19 Scalng Hypotheses [ρ] s the on Larmor radus, [r] s characterstc short length ɛ = [ρ] [r] me m Ions and electrons are of the same scale for 1 Denstes n 0 2 Temperatures T 0 3 Cross-sectons σ 0 4 Macroscopc veloctes u 0 [κ k ] = k B [T 0 ] m k = [κ ] [κ e ] = ɛ [l k ] [τ k ] [κ k ] = 1 [σ 0 ] [n 0 ] = [τ e] [τ ] = ɛ [u k ] [u 0 ] = [u e ] [u ] = ɛ0 1 Note that u e u 3 P. Degond, B. Lucqun-Desreux, Transport coeffcents of plasmas and dsparate mass bnary gases. Transp. Theory and Stat. Phys. 25 pp , J.J. Ramos, Flud Theory of Magnetzed Plasma Dynamcs at Low Collsonalty. Physcs of plasmas vol MIT Report PSFC/JA B. Gralle, T. Mangn, and M. Massot. Knetc theory of plasmas: translatonal energy. Math. Models Methods Appl. Sc. M3AS , B. Nkonga. Flud Theory 15 / 56
20 Scalng Hypotheses Other mportant parameters are : 1 The collsonalty [ν ] = [R] [l k ] 2 The pressure rato [β] = 2µ 0 [p] [B B] For ITER we have [T 0 ] 10keV, [n 0 ] m 3 and [l k ] 100m a. a R.V. Budny, Fuson alpha parameters n tokamak wth hgh DT fuson rates Nucl. Fuson Therefore [κ e ] ms 1, [κ ] ms 1 [τ e ] 10 4 s, [τ ] s B. Nkonga. Flud Theory 16 / 56
21 Scalng Hypotheses :: ɛ me m [τ e] [τ ] 1 1 Collsons scales [C ee ] [C e ] [f e] [τ e ], [C e] m e [f ] m [τ e ] [f ] [τ ] ɛ3 and [C ] [f ] [τ ] Indeed m e m = ɛ 2 and [τ e ] [τ ] = ɛ B. Nkonga. Flud Theory 17 / 56
22 Veloctes dstrbutons for onsred and electrons blue. [u ] [κ ] [u e ] [κ e ] 1 [u e ] = [u 0 ] 2 [u ] = [u 0 ] 3 M = [u ] [κ ] 1 Therefore M e = [u e ] [κ e ] = [u ] [κ ] wth ε = ɛm Indeed [κ ] [κ e ] = ε [κ e ] = 1 ɛ [κ ] 1 ɛ [u 0 ] B. Nkonga. Flud Theory 18 / 56
23 Veloctes dstrbutons for onsred and electrons blue. 1 [u e ] = [u 0 ] [u ] [κ ] [u e ] [κ e ] 2 [u ] = [u 0 ] 3 M = [u ] [κ ] ɛ < 1 Therefore M e = [u e ] [κ e ] = [u ] [κ ] [κ ] [κ e ] = ε wth ε = ɛm Indeed [κ e ] = 1 ɛ [κ ] 1 ɛ [u 0 ] B. Nkonga. Flud Theory 18 / 56
24 Scalng Hypotheses :: ɛ = me m 1, ε = ɛm 2 Large observaton tme and space length scales : Hydrodynamc [t 0 ] = [τ ] ε = M [τ e ] ε 2 and [x 0 ] = [l ] ε = [l e] ε = [l 0] ε = [t 0] [x 0 ] = 1 [κ ] Electrcal and thermal energes are of the same scale q e [x 0 ] [E 0 ] = m [κ ] 2 = m e [κ e ] 2 Strongly magnetzed plasma [B 0 ] [u ] [E 0 ] = 1 B. Nkonga. Flud Theory 19 / 56
25 Electrons : ε = ɛm, u u e, κ κ e D u t = t + [t 0] [u e ] u x, [x 0 ] [t 0 ] [u e ] [x 0 ] = 1, D u t g e + [t 0] [κ e ] κ x g e [u e ] [x 0 ] [κ e ] + q e [t 0 ] [E 0 ] m e [κ e ] E + [B 0 ] [u e ] [E 0 ] = [t 0] [C ee ] [f e ] D u t u + [t 0] [κ e ] [x 0 ] u + [κ e ] [u e ] κ κ x u κ g e B κ g e C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56
26 Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, [t 0 ] [κ e ] [x 0 ] = [κ e ] [u e ] = 1 ɛm D u t g e + [t 0] [κ e ] κ x g e [u e ] [x 0 ] [κ e ] + q e [t 0 ] [E 0 ] m e [κ e ] E + [B 0 ] [u e ] [E 0 ] = [t 0] [C ee ] [f e ] D u t u + [t 0] [κ e ] [x 0 ] u + [κ e ] [u e ] κ κ x u κ g e B κ g e C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56
27 Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, D u t g e + 1 ε κ x g e ε q e [t 0 ] [E 0 ] m e [κ e ] q e [t 0 ] [E 0 ] = [t 0] [κ e ] = 1 m e [κ e ] [x 0 ] ɛm D u t u + 1 ε κ x u κ g e E + [B 0 ] [u e ] u + 1 [E 0 ] ε κ B κ g e = [t 0] [C ee ] [f e ] C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56
28 Electrons : ε = ɛm, u u e, κ κ e D u [B 0 ] [u e ] t = t + u x, = [B 0 ] [u ] = 1 [E 0 ] [E 0 ] D u t g e + 1 ε κ x g e ε D u t u + 1 ε κ x u κ g e 1 E + [B 0 ] [u e ] u + 1 ε [E 0 ] ε κ B κ g e = [t 0] [C ee ] [f e ] C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56
29 Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, D u t g e + 1 ε κ x g e ε 1 ε = [t 0] [C ee ] [f e ] [t 0 ] [C ee ] [ g e ] = [t 0] [C e ] [ g e ] D u t u + 1 ε κ x u = [t 0] [τ e ] = M ε 2 κ g e E + u + 1 ε κ B κ g e C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56
30 Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, D u t g e + 1 ε κ x g e ε D u t u + 1 ε κ x u κ g e 1 E + u + 1 ε ε κ B κ g e = M ε 2 C ee g e, g e + M ε 2 C e g e, g B. Nkonga. Flud Theory 20 / 56
31 Ions : ε = ɛm D u t = t + [t 0] [u ] u x, [x 0 ] D u t f + [t 0] [κ ] κ x [x 0 ] f [u ] [κ ] + q [t 0 ] [E 0 ] m [κ ] E + [B 0 ] [u ] [E 0 ] [t 0 ] [u ] [x 0 ] = 1, D u t u + [t 0] [κ ] [x 0 ] u + [κ ] [u ] κ = [t 0] [C e ] C e f, [f ] f e κ x u f κ B f κ + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56
32 Ions : ε = ɛm D u [t 0 ] [κ ] t = t + u x, = [κ ] [x 0 ] [u ] = 1 M D u t f + [t 0] [κ ] κ x [x 0 ] f [u ] D u [κ ] t u + [t 0] [κ ] κ x u κ [x 0 ] f + q [t 0 ] [E 0 ] E + [B 0 ] [u ] u + [κ ] m [κ ] [E 0 ] [u ] κ B f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56
33 Ions : ε = ɛm + q [t 0 ] [E 0 ] m [κ ] q [t 0 ] [E 0 ] Z m [κ ] = [t 0] [κ ] [x 0 ] = Z M D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ E + [B 0 ] [u ] u + 1 κ B [E 0 ] M f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56
34 Ions : ε = ɛm [B 0 ] [u ] [E 0 ] = [B 0 ] [u ] [E 0 ] = 1 D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ + Z E + [B 0 ] [u ] u + 1 κ B M [E 0 ] M f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56
35 Ions : ε = ɛm [t 0 ] [C e ] = [t 0] m e = 1 [t 0 ] [C ] and = [t 0] [f ] [τ e ] m M [f ] [τ ] = 1 ε D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ + Z E + u + 1 κ B M M f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56
36 Ions : ε = ɛm D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ + Z E + u + 1 κ B M M f κ = 1 C e f, M f e + 1 ε C f, f B. Nkonga. Flud Theory 21 / 56
37 Dmensonless smple plasma system M < 1 Electrons : u u e, κ κ e ε2 M [ t u + u x u κ g e ] + ε M [ t g e + u x g e κ x u κ g e ] + 1 M [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ [ M t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + 1 [ C e f, M f e + κ f x + Z E + u B f ] κ + Z M 2 κ B κ f = 1 ε [C f, f ] B. Nkonga. Flud Theory 22 / 56
38 Fast dynamcs M 1 and ε = ɛ : Sonc Electrons : u u e, κ κ e ε 2 [ t u + u x u κ g e ] + ε [ t g e + u x g e κ x u κ g e ] + [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ [ t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + [ C e f, f e + κ f x + Z E + u B f ] κ + Z κ B f κ = 1 [C f, ε f ] B. Nkonga. Flud Theory 22 / 56
39 Slow dynamcs M ɛ and ε = ɛ 2 : Drft Electrons : u u e, κ κ e ε ε [ t u + u x u κ g e ] + ε [ t g e + u x g e κ x u κ g e ] + 1 ε [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ ε [ t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + 1 [ C e f, f e + κ f x + Z E + u B f ] κ ε = 1 ε [ Z κ B κ f + C f, f ] B. Nkonga. Flud Theory 22 / 56
40 Slow dynamcs of Bragnsk. Electrons : u u e, κ κ e [ t u + u x u κ g e ] + [ t g e + u x g e κ x u κ g e ] + [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ [ t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + [ C e f, f e + κ f x + Z E + u B f ] κ = 1 [ Z κ B κ ε f + C f, f ] B. Nkonga. Flud Theory 22 / 56
41 Relatons δu = u e u g e κ = f e κ + u e = f e κ + u + u e u = f e κ + δu g κ = f κ + u e = f κ + u + u e u = f κ + δu B. Nkonga. Flud Theory 23 / 56
42 Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 24 / 56
43 Taylor s and Hlbert s expansons : ε = ɛm B κ ɛκ B κ ɛκ κ B κ + ɛ2 2 κ κ : κ κ B κ + ɛ 3 Then, wth σ = n T I τ n T I. In the ons frame we have : [ D κ = dκ f κ B κ ɛκ ] R 3 and = n B κ ɛ 0 + ɛ 2 n T 3κ κ κ 2 I κ 5 + ɛ 3 O e fe, f = D κ f e κ + ɛ 2 m e fe κ κ m κ D κ = n B κ f e κ 0 ɛ m e 2κ ɛ2 m κ f 3κ κ κ 2 I fe 3 e κ + n T κ 5 + ɛ 3 κ B. Nkonga. Flud Theory 25 / 56
44 m 2 e Note that we have Γ e = Γ e m 2 B. Nkonga. Flud Theory 26 / 56 Taylor s and Hlbert s expansons : ε = ɛm B κ e ɛκ B κ e ɛκ κ B κ ɛ e e κ κ : κ e κ e B κ e +ɛ 3 κ κ B κ e e = κ κ e κ κ e 5 e 2 I 3κ e κ κ κ e e + κ e κ κ e 3 In the electrons frame we have D e ɛκ = dκ e [ ge κ e B κ e ɛκ ] R 3 = dκ e [ ge κ e B κ ] e + ɛ dκ e [ ge κ e κ κ B κ ] R 3 R 3 e e + ɛ 2 Case of g e κ e M e κ e O e g, g e 4n e 3 me 2πT e g κ κ + m κ g κ T e
45 Taylor s and Hlbert s expansons : ε = ɛm g e = g e 0 + ε g e 1 + ε2 M M 2 g e 2 + f = f 0 + ε f 1 M + ε2 f 2 + M 2 B e = B 0 e + ε B 1 e + ε2 M M 2 B 2 e + B e = B 0 e + ε B 1 e + ε2 M M 2 B 2 e + C e = Ce 0 + ε Ce 1 + ε2 Ce 2 + M M 2 C e = C 0 e + ε M C 1 e + B. Nkonga. Flud Theory 27 / 56
46 Expanson of electron-on collsons wth C e fe, f = Γ e 2 κ O e = Ce 0 fe, f + ε Ce 1 fe, M f + ε2 M 2 O e = D κ κ f e + m e m fe κ κ D Wtchng the ons frame we have [ D κ = dκ f κ B κ κ ] = n B κ ɛ 2 R 3 Therefore C 0 e fe, f = n Γ e 2 v B κ f κ e B. Nkonga. Flud Theory 28 / 56
47 Thermalzaton of dstrbutons functons { κ B κ g e C ee g e, g e 0 + C 0 0 e g e, g 0 = 0 κ B f 0 κ + C f 0, f 0 = 0 g e 0 0 = M e κ and f = M κ where M e κ = M e,0 exp m e κ 2 and M κ = M,0 exp m κ 2 2T e 2T For any change of varable κ = κ ± ɛδu :: g e 0 κ M e κ ± ɛδu κ B κ g0 0 e + C ee g e, g e 0 + C 0 0 e g e, g 0 ε = 0 + M 1 Whch thermalzaton s consstent wth physcal applcatons? 2 What s the defnton of g 0? Is g0 κ = f 0 κ + δu? B. Nkonga. Flud Theory 29 / 56
48 Frst order correcton : ε = M ɛ g e κ = M e κ 1 + Φ 1 e κ + ɛ 2 f κ = M e κ 1 + Φ 1 κ + ɛ 2 Expanson of the collsons C e = Γ e 2 v O e wth n ons frame O e = D κ f κ e + m e fe κ κ D = n B κ m f κ e + ɛ 2 where, wth σ = [ n T I + τ, D κ = dκ f κ B κ κ ] 1 = n B κ + R 3 2 [σ : κ κ B κ ] Then, as δu = v e v ɛ, we have the followng estmaton f e κ = f e κ + v = f e κ δu + v e = g e κ δu = M e κ δu 1 + Φ 1 e κ δu + ɛ 2 = M e κ 1 + m e δu κ + T Φ 1 e κ + ɛ 2 e B. Nkonga. Flud Theory 30 / 56
49 Frst order correcton : ε = M ɛ g e κ = M e κ f e κ = M e κ 1 + Φ 1 e κ 1 + m e δu κ + T Φ 1 e κ e + ɛ 2, f κ = M e κ + ɛ Φ 1 κ + ɛ 2, O e = n B κ f κ e + ɛ 2 Expanson of the collsons B κ [ κ M e κ ] = βb κ κ = 0 C e = Γ e 2 κ O e = n Γ e 2 κ B κ f κ k + ɛ 2 = n Γ e 2 me κ M e κ B κ δu + B κ T Φ 1 κ e κ e [ me + ɛ 2 B κ κ Φ 1 e κ ] + ɛ 2 = n Γ e 2 M e κ κ B κ δu + κ T e = n [ Γ e 2 M e κ 2m e T e κ 3 κ δu + κ B κ Φ ] 1 κ e κ + ɛ 2 = 0 + M e κ C e Φ1 e, f 0 2n Γ e m e 2T e κ 3 κ δu + ɛ 2 B. Nkonga. Flud Theory 30 / 56
50 Frst order correcton : ε = M ɛ g e κ = M e κ f e κ = M e κ Expanson of the collsons 1 + Φ 1 e κ 1 + m e δu κ + T Φ 1 e κ e + ɛ 2, f κ = M e κ + ɛ Φ 1 κ + ɛ 2, O e = n B κ f κ e + ɛ 2 C e = 0 ɛ 0 +C e g e 0 Φ 1 e, f 0 g e 0 2n Γ e m e 2T e κ 3 κ δu +ɛ 2 0 C ee = C ee g e, g e 0 +C ee g e 0 Φ 1 e, g e 0 + C ee g e, 0 g e 0 Φ 1 e +ɛ 2 C = C f 0, f 0 +C f 0 Φ1, f 0 + C f 0, f 0 Φ 1 +ɛ 2 C e = 0 ɛ 0 +ɛ B. Nkonga. Flud Theory 30 / 56
51 Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 31 / 56
52 Frst order correcton for Slow dynamcs of Bragnsk. Electrons : u u e, κ κ e and g 1 e g 1 e κ = Φ 1 e κ M e κ t u + u x u κ g e 0 + t g e 0 + u x g e 0 κ x u κ g e 0 +κ x g e 0 E + u B κ g e 0 = κ B κ g 1 e + C ee g 1 e, g e 0 + Cee g 0 e, g 1 e +C e g 1 e, f 0 2n Γ e m e 2T e κ 3 κ δum e κ Ions: u u, κ κ and f 1 f 1 κ = Φ 1 κ M κ t u + u x u f 0 κ + t f 0 + u f 0 x κ x u f 0 κ C e f 0, f e 0 + κ f 0 x + Z E + u B f 0 κ = Z κ B f 1 κ + C f 1, f 0 + C f 0, f 1 B. Nkonga. Flud Theory 32 / 56
53 Transport contrbuton for frst order approxmaton C e = Γ e 2 κ O 1 e + ɛ 2 where O 1 me e κ = n M e κ B κ δu + B κ κ T Φ 1 e κ e Frcton contrbuton s R 1 e = Γ e m e κ δu κ O 1 Γ e e dκ = m e O 1 2 R 3 2 edκ R 3 Accordng to ntegraton formulas of polynomals functons over balls 6 R 1 e = m en e τ e δu + R e where τ e = 3 m e T 3 2 e 4n 2πq 2 e q 2 ln Λ and R e R e Φ1 e = n Γ e M e κ B κ 2 Φ 1 κ e κdκ R 3 6 John A. Baker. Integraton Over Spheres and the Dvergence Theorem for Balls. The Amercan Mathematcal Monthly, Vol. 104, No. 1. Jan., 1997, pp B. Nkonga. Flud Theory 33 / 56
54 Transport contrbuton for frst order approxmaton Frcton contrbuton s R 1 e = m en e δu + R e Heat τ e Q 1 e = Γ R3 e κ δu 2 m e κ O e dκ = Γ e m e κ δu O 1 2 edκ R 3 Γ e = m e B 2 T κ κ ÕO 1 e dκ δu R 1 e R 3 = 0 + Q 2δu e = ɛ 2 B. Nkonga. Flud Theory 33 / 56
55 Transport : second order contrbutons There s also an other second order term assocated to O 2 e κ = n m e m g 0 e κ κ B κ 1 2m [σ : κ κ B κ ] κ g 0 e κ where σ = n T I τ n T I Indeed, we have R 2 e = Γ e 2 R 3 m e O 2 edκ = 0 κ B = 2κ κ 3, 1 2 [ κ κ B] = κ 2 I 3κ κ κ 5 and S 2 [ σ : s s s s ] 3 I sds = 0 B. Nkonga. Flud Theory 34 / 56
56 Transport contrbuton for frst order approxmaton Q 2δT e Q 2δT e = m eγ e 2 = m eγ e 2 = m eγ e 2 = m eγ e 2 m eγ e 2 κ δu 2 κ O 2 e κ dκ = m eγ e dκ κ δu O 2 e κ dκ 2 2 R 3 R3 κ δu 2 κ O 2 2 edκ = m eγ e κ δu O 2 2 edκ [ R 3 n m e κ g R m e 0 κ B 1 ] [σ : κ κ B] κ g e 0 dκ 3 2m [ 2 κ 2 n m e R κ 3 g e 0 1 ] κ [σ : κ κ B] κ g e 0 dκ m 3 [ 2m 2 n m e + 2n ] m e T g edκ 0 m2 en Γ e T R3 dκ R 3 m2 en Γ e m 3m en e m τ e κ 1 T T e m m T e κ 4πTe m e n e T e T = 3m en e δt m τ e Q 2 e = Q 2δT e + Q 2δu e π 2T e m e 3 1 m T e 2 as g 0 e = n e π 2T e m e = δu R 1 e 3m en e m τ e δt 3 g e 0 R 3 2 e x κ dκ B. Nkonga. Flud Theory 35 / 56
57 Transport frst and second order contrbutons 1 Frcton 2 Heat R e R 1 e + R 2 e = m en e τ e δu + R e and R e = R e Q e Q 1 e + Q 2 e = δu R 1 e 3m en e m τ e δt = m en e δu δu δu R e 3m en e δt τ e m τ e and Q e = 3m en e m τ e δt Where δu = u e u and δt = T e T B. Nkonga. Flud Theory 36 / 56
58 Solublty condtons for L k, Φ 1 k = b k For example, wth f 1 = M κ Φ 1 κ = g 0 f 1, we have L, Φ = κ B f 1 κ + C f 1, f 0 + C f 0, f 1 Note that γ 0 + γ 2 κ 2 s always n the kernel of L. The requrement that correcton must not change macroscopc parameters : 1 κ M k κ Φ 1 k κ dκ = 0 R 3 κ 2 contans also the assumed requrement for exstence and unqueness of the soluton B. Nkonga. Flud Theory 37 / 56
59 Therefore D u k t n k = n k x u k m e n e D u e t u e = x p e E + u e B + R e x π k = x p + Z E + u B R e D u k t T k = 2 3 T k x u k x q k π k : x u k + Q kl m n D u t u Dervatves wth respect to tme and space of the Maxwellan are [ g e 0 ne 3 = n e 2 m ] eκ κ Te g e 0 2T e T e Then the left hand sde of electrons correcton equaton can be estmated [ me κ 2 2T e 5 2 x T e κ T e [ = D u e t u e κ g e 0 + t g e 0 + u e x g e 0 κ x u e κ g e 0 +κ x g e 0 E + u e B κ g e 0 = + R1 e κ + m e m e T e T e L e κ κ + R e κ L e m e T e ] κ [ x u e ] T κ κ 2 3 x u e + L e κ : κ κ κ 2 3 g 0 e ] g 0 e B. Nkonga. Flud Theory 38 / 56
60 Equaton for frst order correctons g 1 e Φ 1 e κ M e κ and f 1 Φ 1 κ M κ [ meκ κ 2T e 5 2 xt e κ T e + R 1 e ] κ + me ] T κ [ κ 2 xu e κ m et e T e 3 x u e M e κ = κ B κ g 1 e g + Cee 1 e, g0 e + C ee g e 0, g1 e + C e g 1 e, f 0 2n Γ e m e 2T e κ 3 κ δum e κ Integro-dfferental lnear equaton for Φ 1 e usng L e κ B κ g 1 e + C ee g 1 e, g e 0 + Cee g 0 e, g 1 e + C e = g el 0 L e κ κ + g el 0 L e Lnear partal dfferental equaton for Φ 1 κ B f 1 κ + C f 1, f 0 + C f 0, f 1 L e = L e + 2n Γ e me δu: 2Te κ 3 L e κ : g 1 e, f 0 = f 0 L κ κ + f 0 L κ : g e 0 R e κ m e T e κ κ κ 2 3 κ κ κ 2 3 B. Nkonga. Flud Theory 39 / 56
61 Resoluton of frst order correctons equatons Accordng to symmetres of the RHS, Φ 1 e κ and Φ 1 κ are found under the followng form : Φ 1 k κ = P k κ κ + P k κ : κ κ κ 2 3 Moreover, RHS operators L k κ and L k κ can be expanded wth Laguerre-Sonne polynomals. For example, let us denote by x = m e κ 2 me κ 2 L e κ = 5 x T e + 2n Γ e m e 2T e 2 T e [ 2T e κ 3 δu ] = xt e Y δt T e,1l x + δu Y δu e,l L 3 2 l x e L 3 2 l x functons gves very smple expanson for the frst term : Y δt e,1 = 1. B. Nkonga. Flud Theory 40 / 56 l>0 2T e
62 Vector splttng n strongly magnetzed plasma In strongly magnetzed plasma, macroscopc vectors are often splt nto parallel, perpendcular and components. For example : x T e = M x T e + M x T e + M x T e = xt e + x T e + x T e where M = b b, M = I b b, M x T e = b x T e 0 b z b y M = b z 0 b x b y b x 0 These matrces are lnearly ndependent when b 0 stable under multplcaton. What about tensors? B. Nkonga. Flud Theory 41 / 56
63 Tensor splttng n strongly magnetzed plasma We have L k κ L k = m k [ x u k ] + [ x u k ] T 2 2T k 3 x u k I For ths symmetrc tensor, Bragnsk propose the followng splttng: 4 L k = Π l b : L k l=0 Π 0 = M 1 2 M 2 3 M 1 3 M Π 1 = M M 1 2 M M Π 2 = M M M M Π 3 = 1 2 M M [M ] T M Π 4 = M M + [M ] T M [A B : W ] j = A j B kl W kl k l [A B : W ] j = A k B jl W kl k l B. Nkonga. Flud Theory 42 / 56
64 Splttng of the frst order approxmaton Accordng to prevous splttng n strongly magnetzed plasma 1 The vector P k κ s found under the form [ ] P k κ = L 3 2 l x X δt k,l M + X δt k,l M + X δt k,l M x T k T k l>0[ ] + L 3 2 l x X δu k,l M + X k,l δu M + X δu k,l M δu l>0 wth the constran that 1 R 3 κ κ 2 M k κ Φ 1 k κ dκ = 0 = l > 0 2 and P k κ under the form P k κ = 4 L 3 2 l x X δτζ Π l u k, b : L k l>0 ζ=0 k,l Π l B. Nkonga. Flud Theory 43 / 56
65 Systems to be solved Φ 1 k κ = P k κ κ + We have κ B Φ 1 κ e = κ B P k κ + x = B B 2 B x x = x x B x = x B, and κ B x = 0 κ B x = B κ x κ B x = B κ x ndeed κ B B x = κ B B x B B κ x. We have P k κ = L 3 2 l x X δt xt e k,l + X δt x T e k,l + X δt x T e T k T k,l + k T k l>0 and therefore, as κ B Φ 1 κ e = κ BPP k κ + κ B Φ 1 κ e = B L 3 2 l x X δt k,l κ x T e X δt T k,l κ x T e + k T k l>0 Systems for X δt k,l and X δt k,l are coupled B. Nkonga. Flud Theory 44 / 56 P k,
66 Systems to be solved :: Φ 1 k κ = P k κ κ + L e κ κ = Y δt 3 e,1 L 21 x x κ Te Y δt 3 e,1 T L 21 x x κ Te k T k κ B Φ 1 κ e = 3 L 2 l l>0 x X δt k,l B κ x Te 3 L 2 l T k l>0 x B X δt k,l κ x Te + T k Compacted form. Usng dot product wth κ and the relaton κ κ = x 2T e m e l>0 where xe x L 3 2 l x X δt e,l X θ k,l = X θ θ k,l + ıx k,l Y θ k,l = Yθ k,l + ıyθ k,l ı B + C x : [s s] xc C x s a tensor assocated to lnearzed collsons. = Y δt e,1xe x L x + B. Nkonga. Flud Theory 45 / 56
67 Systems to be solved :: Φ 1 k κ = P k κ κ + Compacted form. Usng dot product wth κ and the relaton κ κ = x 2T e m e l>0 xe x L 3 2 l x X δt e,l ı B + C x : [s s] = Y δt e,1xe x L x + Varatonal prncples Onsager symmetry formulated as L 2 -projecton for any q > 0. + [ X δt e,l x 3 2 e x L 3 2 q x L 3 2 l x ı B + C x : s s ds ] 8dx l>0 0 S 2 4π 15 π + [ ] = Y δt e,1 x 3 2 e x L 3 2 q x L 3 2 8dx 1 x 15 π + 15 π 8 = ! = ! = 5 3 π B. Nkonga. Flud Theory 45 / 56
68 Systems to be solved :: Φ 1 k κ = P k κ κ + Compacted form. Usng dot product wth κ and the relaton κ κ = x 2T e m e l>0 xe x L 3 2 l x X δt e,l ı B + C x : [s s] = Y δt e,1xe x L x + Varatonal prncples as L 2 -projecton for any q > 0. + [ X δt e,l x 3 2 e x L 3 2 q x L 3 2 l x ı B + 23 ] Tr 8dx C x 15 π = YδT e,1δ q,1 + l>0 0 X are solutons of a lnear system of the followng form : A θ ex θ e = C θ ey θ e and A θ X θ = C θ Y θ B. Nkonga. Flud Theory 45 / 56
69 Fnal When prevous systems are solved, we obtan analytcal formula for g e κ M e κ 1 + P e κ κ + P e κ : κ κ κ 2 3 f κ M e κ 1 + P κ κ + P κ : κ κ κ 2 3 Then they are used to compute transport contrbutons. B. Nkonga. Flud Theory 46 / 56
70 Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 47 / 56
71 Bragnsk Transport Coeffcents : An example R 1 e = m en e τ e P k κ = Therefore α m en e τ e δu n Γ e R 3 2 M e κ B κ Φ 1 κ e κdκ = m en e n Γ e δu τ e R 3 2 M e κ B κ κ [P P k κ κ] = m en e n Γ e δu τ e R 3 2 M e κ B κp P k κ dκ [ ] L 3 2 l x X δt k,l M + X δt k,l M + X δt k,l M x T k T k l>0[ ] + L 3 2 l x X δu k,l M + X k,l δu M + X δu k,l M δu l>0 + n Γ e 2 N l l=1 X δu e,l dκ R 3 [M e κ L 3 2l me κ 2 2T e ] B κ B. Nkonga. Flud Theory 48 / 56
72 Bragnsk Transport Coeffcents : An example α m en e τ e + n Γ e 2 N l l=1 X δu e,l dκ R 3 B κ = 1 κ B s where r = κ, s = r κ The ntegral part of α can be computed as R 3 dκ [G r B κ ] = + 0 l=1 [M e κ L 3 2l me κ 2 and [ r 2 G r 1 ] dr B s ds = 8π r S T e ] B κ S 2 B s ds = 8π 3 I + Therefore α s equvalent to a scalar. α m en e + n Γ e 8π N l + X δu τ e 2 3 e,l r [M e r L 3 me r 2l 2 ] dr 2T e 0 rg rdr B. Nkonga. Flud Theory 49 / 56
73 Bragnsk transport closure : quas neutral plasma n = n e Electrons β t R e = en e αj β t x T e Q e = Q + J R e n e e Q e = κ e x T e + en e β j ej 4 η el Π l u e, b π e where l=0 Ions R = R Q = 3m en e T e T m τ e Q = κ e x T + en e β j J 4 η l Π l u, b α = α M +α M α M κ k = κ k M +κ k M +κ k M β t = β t M +βt M +β M t β j k = β j k M +βj k M +β j k M See [Bragnsk, 1965] for numercal values of theses parameters. Some numercal examples α = β j π m e e 2 n e τ e, α = 1.96α, β t = l=0 3 2ω coll e τ e, β t = 0.71 B. Nkonga. Flud Theory 50 / 56
74 Appendx κ κ = r 2 = x 2T e m e α m en e τ e m en e τ e m en e τ e and rdr = T e m e dx + n Γ e 2 + n Γ e 2 + m en e τ e 8π 3 8π 3 N l l=1 X δu e,l T e M e 0 m e T e N l m 2 e l=1 X δu e,l r [M e r L 2l 3 me r 2 ] dr 0 2T e N l + [ exp x L 3 2 l x + l=1 + [ 0 X δu e,l 0 exp x L 3 2 l x ] dx ] dx Γ kl = 4πq2 k q2 l ln Λ m 2 k and τ e = 3 m e T 3 2 e 4n 2πq 2 e q 2 ln Λ τ e = 3π m e T 3 2 e = n 2πm 2 e Γ e 3 4πn Γ e 2πTe m e 3 2 = 3n e 4πn Γ e M e 0 B. Nkonga. Flud Theory 51 / 56
75 Appendx As s 2 k s homogeneous of degree two. Then corollary 1 page 39 6 S 2 s 2 k 1 ds = x 2 k dx k dx l dx p = = 10π 3 1 = 10π = 4π 3 Therefore, as B s = I s s, we have B s ds = 4π 4π S 2 3 and S I = 8π 3 I s s s s 3 I ds = 0 x 2 k π1 x2 k dx k 6 John A. Baker. Integraton Over Spheres and the Dvergence Theorem for Balls. The Amercan Mathematcal Monthly, Vol. 104, No. 1. Jan., 1997, pp B. Nkonga. Flud Theory 52 / 56
76 Appendx :: fk κ M k κ 1 + P e κ κ r = x 2T 1 2 k T k, rdr = dx, m k m k M k r = n k π 2T 3 2 k e x m k [ v u k 2 ] [ κ q k = m k v f k v 2 ] dv = m k R 3 2 R 3 2 κ f k κ dκ [ κ 2 [ ] κ ] 0 + m k R 3 2 M k κ κ κ P k dκ + + r 2 r [m 2 [ k 0 2 M k r r 2 ] r ] + r 6 4π r s s dsp P k dr m k [M k r ] S P k dr + 4πm kn k + x 2T 5 k 2 π 2T 3 k 2 x e Pk P k x T k dx m k m k m k 4n k 3 T 2 + [ k x 2 3 xe x P k x ] dx 4n k π m k 0 3 T 2 [ + k x π m k 0 2 L 20 + L 2 1 x e x x ] P k dx + 4n k 3 T 2 k 15 π X δt xt e + X δt x Te k,1 k,1 + X δt x Te k,1 π m k 8 T k T k T k 4n k 3 T 2 k 15 π X δu k,1 π m k 8 xδu + X δu k,1 δu x δu + X k,1 x δu + 5n ktk 2 X δt xt e + X δt x Te k,1 k,1 + X δt x Te k,1 + X δu k,1 2m k T k T k T δu xδu + X k,1 δu x δu + X k,1 x δu + k B. Nkonga. Flud Theory 53 / 56
77 Appendx :: fk κ M k κ 1 + P e κ κ We have + [ [κ κ]p P k κ M k κ = r 2 [ P k r M k r r 2 s s ] ] ds dr R 3 0 S 2 = 4π + r 3 P k r M k r rdr = 4π 3 2Tk 2 T + k x 3 2 e x P k x dx m k m k 0 = 4π 3 2Tk 2 T k + P kl x 3 2 e x L m k m 0 x L 3 2 l x dx k l 0 1 Therefore the constran κ M k κ Φ 1 k κ dκ = 0 s acheved when R 3 κ 2 l > 0, accordng to orthogonalty of Laguerre-Sonne polynomals and zero ntegral on sphere for monomal wth an odd component of the mult-ndex : 1 + κ M k κ Φ rs 1 R 3 r 2 k κ dκ = r 2 M k rp P k r r 2 s s ds dr 0 S 2 r 2 rs + + r 2 M k rp P k r : 1 rs r 2 s s s s 3 I ds dr = 0 0 S 2 r 2 B. Nkonga. Flud Theory 54 / 56
78 Appendx :: D e ɛκ = [ = dκ e fe κ e B κ e ɛκ ] R[ 3 dκ e fe κ e B κ ] e + ɛ R 3 Case of f e κ e = g 0 e κ e R 3 dκ e [ fe κ e κ κ B κ ] e e + ɛ 2 D e ɛκ [ = dκ e fe κ e B κ e ɛκ ] = 8π R r g 0 e r dr + ɛ Case of f e κ e = δu κ e g 0 e κ e D e ɛκ [ = dκ e fe κ e B κ e ɛκ ] = 8π R r g 0 e r dr + ɛ 2 B. Nkonga. Flud Theory 55 / 56
79 Appendx :: [ D e ɛκ = dκ e fe κ e B κ e ɛκ ] R[ 3 = dκ e fe κ e B κ ] [ e + ɛ dκ e fe κ e κ κ B κ ] R 3 R 3 e e + ɛ 2 Case of f e κ e = δu κ e g 0 e κ e D e ɛκ = ɛ dκ [ e δu κ e g 0 e κ e κ κ B κ ] 8π R 3 e e = r g 0 e r dr + B. Nkonga. Flud Theory 56 / 56
Solutions for Mathematical Physics 1 (Dated: April 19, 2015)
Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
8.324 Relativistic Quantum Field Theory II
Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
1 Complete Set of Grassmann States
Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ
V. Finite Element Method. 5.1 Introduction to Finite Element Method
V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4
2 Lagrangian and Green functions in d dimensions
Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Quantum ElectroDynamics II
Quantum ElectroDynamcs II Dr.arda Tahr Physcs department CIIT, Islamabad Photon Coned by Glbert Lews n 1926. In Greek Language Phos meanng lght The Photons A What do you know about Photon? Photon Dscrete
8.323 Relativistic Quantum Field Theory I
MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture
Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion
Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Classical Theory (3): Thermostatics of Continuous Systems with External Forces
Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
LECTURE 4 : ARMA PROCESSES
LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Theory of the Lattice Boltzmann Method
Theory of the Lattce Boltzmann Method Burkhard Dünweg Max Planck Insttute for Polymer Research Ackermannweg 10 55128 Manz B. D. and A. J. C. Ladd, arxv:0803.2826v2, Advances n Polymer Scence 221, 89 (2009)
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
A domain decomposition method for the Oseen-viscoelastic flow equations
A doman decomposton method for the Oseen-vscoelastc flow equatons Eleanor Jenkns Hyesuk Lee Abstract We study a non-overlappng doman decomposton method for the Oseen-vscoelastc flow problem. The data on
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Phasor Diagram of an RC Circuit V R
ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet
Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Journal of Theoretics Vol.4-5
Journal of Theoretcs Vol.4- A Unfed Feld Theory Peter Hckman peter.hckman@ntlworld.com Abstract: In ths paper, the extenson of Remann geometry to nclude an asymmetrc metrc tensor s presented. A new co-varant
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Neutralino contributions to Dark Matter, LHC and future Linear Collider searches
Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές
8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
A Two Sample Test for Mean Vectors with Unequal Covariance Matrices
A Two Sample Test for Mean Vectors wth Unequal Covarance Matrces Tamae Kawasak 1 and Takash Seo 2 1 Department of Mathematcal Informaton Scence Graduate School of Scence, Tokyo Unversty of Scence, Tokyo,
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment
1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor
Non polynomial spline solutions for special linear tenth-order boundary value problems
ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan
THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey
THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Stochastic Finite Element Analysis for Composite Pressure Vessel
* ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
LIGHT UNFLAVORED MESONS (S = C = B = 0)
LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
A Lie Symmetry Analysis of the Black-Scholes Merton Finance Model through modified Local one-parameter transformations
A Le Symmetry Analyss of the Black-Scholes Merton Fnance Model through modfed Local one-parameter transformatons by Tshdso Phanuel Masebe Submtted n accordance wth the requrements for the degree of Doctor
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Pricing of Options on two Currencies Libor Rates
Prcng o Optons on two Currences Lbor Rates Fabo Mercuro Fnancal Models, Banca IMI Abstract In ths document we show how to prce optons on two Lbor rates belongng to two derent currences the ormer s domestc,
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One