Magnetized plasma : About the Braginskii s 1 macroscopic model 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Magnetized plasma : About the Braginskii s 1 macroscopic model 2"

Transcript

1 Magnetzed plasma : About the Bragnsk s 1 macroscopc model 2 B. Nkonga JAD Unv. Nce/INRIA Sopha-Antpols 1 S. I. Bragnsk, n Revews of Plasma Physcs, edted by M. A. Leontovch Consultants Bureau, New York, 1965, Vol. I, p Talk H. Gullard, 1st summer school of the Large Scale Intatve FUSION : September 15-18, 2009 n Strasbourg. fuson/ B. Nkonga. Flud Theory 1 / 56

2 Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 2 / 56

3 State of the matter : Plasma Temperature versus Number of charged partcles/m 3 B. Nkonga. Flud Theory 3 / 56

4 Models + Maxwell s Equatons for E and B 1 N-body : x k t : R R 3, k = O /m 3 800m 3 Newton Equaton for each charged partcle dx k dt = v k and m k dv k dt = q k m k E + v k B + l C kl 2 Knetc : f k t, x, v : R 7 R, k = O10 t f k + v x f k + q k m k E + v B v f k = l C kl 3 Flud :ω k t, x : R 4 R N k, k = O10 t ω k + L, ω k, B, E = S k B. Nkonga. Flud Theory 4 / 56

5 Knetc equaton for Smple plasma D v t f e + qe m e L v v f e = C ee f e, f e + C e f e, f D v t f + q m L v v f = C e f, f e + C f, f where for electrons k = e and ons k = Moreover f k f k t, x, v s the dstrbuton functon. m k s the mass q k s the charge C kl are collsons operators. D v t = t + v x s the materal dervatve at the velocty v, D v t s the materal dervatve at the velocty v, L v = E + v B s the Lorenz force E and B are govern by Maxwell equatons. B. Nkonga. Flud Theory 5 / 56

6 Coulomb bnary scatterng law The Landau form of the Coulomb collson s Eq. 4.3 of Bragnsk: C kl f k, f l = Γ kl 2 [ ] v O kl f k, f l where, wth a = v v we have [ O kl f k, f l = dv mk B a f k v f l v R 3 m l v f l v ] f k v v where, for rgd spheres approxmaton, Cut-offs estmaton gves Γ kl = 4πq2 k q2 l ln Λ m 2 k and for any vector a B a = a 2 I a a a 3 ln Λ s the Coulomb logarthm. B. Nkonga. Flud Theory 6 / 56

7 Propertes of the scatterng tensor B = a 2 I a a a 3 a 1 B a s symmetrc B a T = B a and even B a = B a a 1 2 B a derve from a potental B a = a = a a a a 3 a t s n the kernel of B a B a a = a B a = a = 2a 2 and Tr [B a ] = a a 3 a 5 v B a = 2a a 3 = v B a [Tr a a B] = a 2 I 3a a a 5 7 In sphercal coordnatesvelocty space a B a 2 a 3 B θ, φ B θ, φ = 1 1 sn θ sn θ θ θ sn 2 θ θ 2 = 1 1 µ µ µ s the angular part of a 2 and s often wrtten n terms of the ptch angle varable : µ = cos θ µ 2 θ 2 B. Nkonga. Flud Theory 7 / 56

8 Other formulatons of Coulomb bnary scatterng law O kl f k, f l = dv R 3 [ mk B a f k v f l v m l v 1 Fokker-Planck form, wth D l v = O kl f k, f l = f l v ] f k v v [ dv fl v ] B a and P5 R 3 f k v D l v 1 + m k f k v m l v D l v v 2 Rosenbluth57-Trubnkov58 form : O kl f k, f l = m k m k f k v H l v v v f k v v v G l v Rosenbluth potentals H l v and G l v: H l v = dv f l v wth G l v = dv a f l v R 3 a R 3 B. Nkonga. Flud Theory 8 / 56

9 Other formulatons of Coulomb bnary scatterng law [ 1 Fokker-Planck form, wth D l v = dv fl v ] B a and P5 R 3 O kl f k, f l = 1 + m k f k v m l v D l v v f k v D l v O kl f k, f l = D l v f k v v 2 Rosenbluth57-Trubnkov58 form : O kl f k, f l = 1 + m k m k f k v H l v v v + m k m l f k v v D l v f k v H l v v D l v = H l v v D l v s the dffuson tensor and H l v = 1 2 v v G l v B. Nkonga. Flud Theory 8 / 56

10 Macroscopc equatons : D u t = t + u x D u k t n k + n k x u k = 0 m k n k D u k t u k + x p k q k n k E + u k B = x π k + R k n k D u k t p k γ k p k x u k γ k 1 = x q k π k : x u k + Q k t B + x E = 0 q k and γ k 5 3 are constants parameters. T k = n k p k Statc constrant : t x B s constant. Addtonal relaton to defne E V V = x B = µ 0 J = µ 0 q k n k u k k n k u k p k B B. Nkonga. Flud Theory 9 / 56

11 Macroscopc equatons : Transport π k = q k = R k = Q k = dv [m k f k v u k v u k v u k 2 ] I R 3 3 v u k dv [m 2 ] k f k v R 3 2 [ dv m k v u k ] C kl R 3 l [ ] v u k 2 dv m k C kl R 3 2 l Scalng and asymptotc expansons of knetc equatons : Defne π k, R k, q k and Q k as functons of V B. Nkonga. Flud Theory 10 / 56

12 Knetc Transport theory : Strategy 1 Defne an approprate frame and scalng. 2 Evaluate non-dmensonal coeffcent n term of a small parameter. 3 Proceed to an expansons accordng to these terms 4 Obtaned approxmatons of probablty densty functons. 5 Use these approxmatons to evaluate transport terms. B. Nkonga. Flud Theory 11 / 56

13 Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 12 / 56

14 Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n mean electrons velocty frame [ ] D u t g e + κ x g e + qe m e E + u + κ B D u t u κ x u κ g e = C ee g e, g e + C e g e, g [ ] D u t g + κ x g + q m E + u + κ B D u t u κ x u κ g = C e g, g e + C g, g The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56

15 Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n the opposte mean velocty frame D u t fe + κ f [ ] x e + qe m e E + u + κ B D u t u κ x u f κ e = C ee fe, f e + C e fe, f [ ] D u t g + κ x g + q m E + u + κ B D u t u κ x u κ g = C e g, g e + C g, g The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56

16 Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n ther mean velocty frame Bragnsk... [ ] D u t g e + κ x g e + qe m e E + u + κ B D u t u κ x u κ g e = C ee g e, g e + C e g e, g D u t f + κ f [ ] x + q m E + u + κ B D u t u κ x u f κ = C e f, f e + C f, f The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56

17 Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n mean ons velocty frame Gralle... D u t fe + κ f [ ] x e + qe m e E + u + κ B D u t u κ x u f κ e = C ee fe, f e + C e fe, f D u t f + κ f [ ] x + q m E + u + κ B D u t u κ x u f κ = C e f, f e + C f, f The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56

18 Dmensonless equatons D u t fe + κ f [ ] x e + qe m e E + u + κ B D u t u κ x u f κ e = C ee fe, f e + C e fe, f Dmensonless where D u t fk + [t 0] [κ k ] κ x [x 0 ] f k [u k ] [κ k ] + q k [t 0 ] [E 0 ] m k [κ k ] E + [B 0 ] [u k ] [E 0 ] = [t 0] [C kk ] C kk fk, [f k ] f k D u t u + [t 0] [κ k ] [x 0 ] u + [κ k ] [u k ] κ D u t = t + [t 0] [u k ] u x [x 0 ] κ x u f κ k B f κ k + [t 0] [C kl ] C kl fk, [f k ] f l B. Nkonga. Flud Theory 14 / 56

19 Scalng Hypotheses [ρ] s the on Larmor radus, [r] s characterstc short length ɛ = [ρ] [r] me m Ions and electrons are of the same scale for 1 Denstes n 0 2 Temperatures T 0 3 Cross-sectons σ 0 4 Macroscopc veloctes u 0 [κ k ] = k B [T 0 ] m k = [κ ] [κ e ] = ɛ [l k ] [τ k ] [κ k ] = 1 [σ 0 ] [n 0 ] = [τ e] [τ ] = ɛ [u k ] [u 0 ] = [u e ] [u ] = ɛ0 1 Note that u e u 3 P. Degond, B. Lucqun-Desreux, Transport coeffcents of plasmas and dsparate mass bnary gases. Transp. Theory and Stat. Phys. 25 pp , J.J. Ramos, Flud Theory of Magnetzed Plasma Dynamcs at Low Collsonalty. Physcs of plasmas vol MIT Report PSFC/JA B. Gralle, T. Mangn, and M. Massot. Knetc theory of plasmas: translatonal energy. Math. Models Methods Appl. Sc. M3AS , B. Nkonga. Flud Theory 15 / 56

20 Scalng Hypotheses Other mportant parameters are : 1 The collsonalty [ν ] = [R] [l k ] 2 The pressure rato [β] = 2µ 0 [p] [B B] For ITER we have [T 0 ] 10keV, [n 0 ] m 3 and [l k ] 100m a. a R.V. Budny, Fuson alpha parameters n tokamak wth hgh DT fuson rates Nucl. Fuson Therefore [κ e ] ms 1, [κ ] ms 1 [τ e ] 10 4 s, [τ ] s B. Nkonga. Flud Theory 16 / 56

21 Scalng Hypotheses :: ɛ me m [τ e] [τ ] 1 1 Collsons scales [C ee ] [C e ] [f e] [τ e ], [C e] m e [f ] m [τ e ] [f ] [τ ] ɛ3 and [C ] [f ] [τ ] Indeed m e m = ɛ 2 and [τ e ] [τ ] = ɛ B. Nkonga. Flud Theory 17 / 56

22 Veloctes dstrbutons for onsred and electrons blue. [u ] [κ ] [u e ] [κ e ] 1 [u e ] = [u 0 ] 2 [u ] = [u 0 ] 3 M = [u ] [κ ] 1 Therefore M e = [u e ] [κ e ] = [u ] [κ ] wth ε = ɛm Indeed [κ ] [κ e ] = ε [κ e ] = 1 ɛ [κ ] 1 ɛ [u 0 ] B. Nkonga. Flud Theory 18 / 56

23 Veloctes dstrbutons for onsred and electrons blue. 1 [u e ] = [u 0 ] [u ] [κ ] [u e ] [κ e ] 2 [u ] = [u 0 ] 3 M = [u ] [κ ] ɛ < 1 Therefore M e = [u e ] [κ e ] = [u ] [κ ] [κ ] [κ e ] = ε wth ε = ɛm Indeed [κ e ] = 1 ɛ [κ ] 1 ɛ [u 0 ] B. Nkonga. Flud Theory 18 / 56

24 Scalng Hypotheses :: ɛ = me m 1, ε = ɛm 2 Large observaton tme and space length scales : Hydrodynamc [t 0 ] = [τ ] ε = M [τ e ] ε 2 and [x 0 ] = [l ] ε = [l e] ε = [l 0] ε = [t 0] [x 0 ] = 1 [κ ] Electrcal and thermal energes are of the same scale q e [x 0 ] [E 0 ] = m [κ ] 2 = m e [κ e ] 2 Strongly magnetzed plasma [B 0 ] [u ] [E 0 ] = 1 B. Nkonga. Flud Theory 19 / 56

25 Electrons : ε = ɛm, u u e, κ κ e D u t = t + [t 0] [u e ] u x, [x 0 ] [t 0 ] [u e ] [x 0 ] = 1, D u t g e + [t 0] [κ e ] κ x g e [u e ] [x 0 ] [κ e ] + q e [t 0 ] [E 0 ] m e [κ e ] E + [B 0 ] [u e ] [E 0 ] = [t 0] [C ee ] [f e ] D u t u + [t 0] [κ e ] [x 0 ] u + [κ e ] [u e ] κ κ x u κ g e B κ g e C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56

26 Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, [t 0 ] [κ e ] [x 0 ] = [κ e ] [u e ] = 1 ɛm D u t g e + [t 0] [κ e ] κ x g e [u e ] [x 0 ] [κ e ] + q e [t 0 ] [E 0 ] m e [κ e ] E + [B 0 ] [u e ] [E 0 ] = [t 0] [C ee ] [f e ] D u t u + [t 0] [κ e ] [x 0 ] u + [κ e ] [u e ] κ κ x u κ g e B κ g e C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56

27 Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, D u t g e + 1 ε κ x g e ε q e [t 0 ] [E 0 ] m e [κ e ] q e [t 0 ] [E 0 ] = [t 0] [κ e ] = 1 m e [κ e ] [x 0 ] ɛm D u t u + 1 ε κ x u κ g e E + [B 0 ] [u e ] u + 1 [E 0 ] ε κ B κ g e = [t 0] [C ee ] [f e ] C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56

28 Electrons : ε = ɛm, u u e, κ κ e D u [B 0 ] [u e ] t = t + u x, = [B 0 ] [u ] = 1 [E 0 ] [E 0 ] D u t g e + 1 ε κ x g e ε D u t u + 1 ε κ x u κ g e 1 E + [B 0 ] [u e ] u + 1 ε [E 0 ] ε κ B κ g e = [t 0] [C ee ] [f e ] C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56

29 Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, D u t g e + 1 ε κ x g e ε 1 ε = [t 0] [C ee ] [f e ] [t 0 ] [C ee ] [ g e ] = [t 0] [C e ] [ g e ] D u t u + 1 ε κ x u = [t 0] [τ e ] = M ε 2 κ g e E + u + 1 ε κ B κ g e C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56

30 Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, D u t g e + 1 ε κ x g e ε D u t u + 1 ε κ x u κ g e 1 E + u + 1 ε ε κ B κ g e = M ε 2 C ee g e, g e + M ε 2 C e g e, g B. Nkonga. Flud Theory 20 / 56

31 Ions : ε = ɛm D u t = t + [t 0] [u ] u x, [x 0 ] D u t f + [t 0] [κ ] κ x [x 0 ] f [u ] [κ ] + q [t 0 ] [E 0 ] m [κ ] E + [B 0 ] [u ] [E 0 ] [t 0 ] [u ] [x 0 ] = 1, D u t u + [t 0] [κ ] [x 0 ] u + [κ ] [u ] κ = [t 0] [C e ] C e f, [f ] f e κ x u f κ B f κ + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56

32 Ions : ε = ɛm D u [t 0 ] [κ ] t = t + u x, = [κ ] [x 0 ] [u ] = 1 M D u t f + [t 0] [κ ] κ x [x 0 ] f [u ] D u [κ ] t u + [t 0] [κ ] κ x u κ [x 0 ] f + q [t 0 ] [E 0 ] E + [B 0 ] [u ] u + [κ ] m [κ ] [E 0 ] [u ] κ B f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56

33 Ions : ε = ɛm + q [t 0 ] [E 0 ] m [κ ] q [t 0 ] [E 0 ] Z m [κ ] = [t 0] [κ ] [x 0 ] = Z M D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ E + [B 0 ] [u ] u + 1 κ B [E 0 ] M f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56

34 Ions : ε = ɛm [B 0 ] [u ] [E 0 ] = [B 0 ] [u ] [E 0 ] = 1 D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ + Z E + [B 0 ] [u ] u + 1 κ B M [E 0 ] M f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56

35 Ions : ε = ɛm [t 0 ] [C e ] = [t 0] m e = 1 [t 0 ] [C ] and = [t 0] [f ] [τ e ] m M [f ] [τ ] = 1 ε D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ + Z E + u + 1 κ B M M f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56

36 Ions : ε = ɛm D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ + Z E + u + 1 κ B M M f κ = 1 C e f, M f e + 1 ε C f, f B. Nkonga. Flud Theory 21 / 56

37 Dmensonless smple plasma system M < 1 Electrons : u u e, κ κ e ε2 M [ t u + u x u κ g e ] + ε M [ t g e + u x g e κ x u κ g e ] + 1 M [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ [ M t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + 1 [ C e f, M f e + κ f x + Z E + u B f ] κ + Z M 2 κ B κ f = 1 ε [C f, f ] B. Nkonga. Flud Theory 22 / 56

38 Fast dynamcs M 1 and ε = ɛ : Sonc Electrons : u u e, κ κ e ε 2 [ t u + u x u κ g e ] + ε [ t g e + u x g e κ x u κ g e ] + [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ [ t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + [ C e f, f e + κ f x + Z E + u B f ] κ + Z κ B f κ = 1 [C f, ε f ] B. Nkonga. Flud Theory 22 / 56

39 Slow dynamcs M ɛ and ε = ɛ 2 : Drft Electrons : u u e, κ κ e ε ε [ t u + u x u κ g e ] + ε [ t g e + u x g e κ x u κ g e ] + 1 ε [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ ε [ t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + 1 [ C e f, f e + κ f x + Z E + u B f ] κ ε = 1 ε [ Z κ B κ f + C f, f ] B. Nkonga. Flud Theory 22 / 56

40 Slow dynamcs of Bragnsk. Electrons : u u e, κ κ e [ t u + u x u κ g e ] + [ t g e + u x g e κ x u κ g e ] + [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ [ t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + [ C e f, f e + κ f x + Z E + u B f ] κ = 1 [ Z κ B κ ε f + C f, f ] B. Nkonga. Flud Theory 22 / 56

41 Relatons δu = u e u g e κ = f e κ + u e = f e κ + u + u e u = f e κ + δu g κ = f κ + u e = f κ + u + u e u = f κ + δu B. Nkonga. Flud Theory 23 / 56

42 Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 24 / 56

43 Taylor s and Hlbert s expansons : ε = ɛm B κ ɛκ B κ ɛκ κ B κ + ɛ2 2 κ κ : κ κ B κ + ɛ 3 Then, wth σ = n T I τ n T I. In the ons frame we have : [ D κ = dκ f κ B κ ɛκ ] R 3 and = n B κ ɛ 0 + ɛ 2 n T 3κ κ κ 2 I κ 5 + ɛ 3 O e fe, f = D κ f e κ + ɛ 2 m e fe κ κ m κ D κ = n B κ f e κ 0 ɛ m e 2κ ɛ2 m κ f 3κ κ κ 2 I fe 3 e κ + n T κ 5 + ɛ 3 κ B. Nkonga. Flud Theory 25 / 56

44 m 2 e Note that we have Γ e = Γ e m 2 B. Nkonga. Flud Theory 26 / 56 Taylor s and Hlbert s expansons : ε = ɛm B κ e ɛκ B κ e ɛκ κ B κ ɛ e e κ κ : κ e κ e B κ e +ɛ 3 κ κ B κ e e = κ κ e κ κ e 5 e 2 I 3κ e κ κ κ e e + κ e κ κ e 3 In the electrons frame we have D e ɛκ = dκ e [ ge κ e B κ e ɛκ ] R 3 = dκ e [ ge κ e B κ ] e + ɛ dκ e [ ge κ e κ κ B κ ] R 3 R 3 e e + ɛ 2 Case of g e κ e M e κ e O e g, g e 4n e 3 me 2πT e g κ κ + m κ g κ T e

45 Taylor s and Hlbert s expansons : ε = ɛm g e = g e 0 + ε g e 1 + ε2 M M 2 g e 2 + f = f 0 + ε f 1 M + ε2 f 2 + M 2 B e = B 0 e + ε B 1 e + ε2 M M 2 B 2 e + B e = B 0 e + ε B 1 e + ε2 M M 2 B 2 e + C e = Ce 0 + ε Ce 1 + ε2 Ce 2 + M M 2 C e = C 0 e + ε M C 1 e + B. Nkonga. Flud Theory 27 / 56

46 Expanson of electron-on collsons wth C e fe, f = Γ e 2 κ O e = Ce 0 fe, f + ε Ce 1 fe, M f + ε2 M 2 O e = D κ κ f e + m e m fe κ κ D Wtchng the ons frame we have [ D κ = dκ f κ B κ κ ] = n B κ ɛ 2 R 3 Therefore C 0 e fe, f = n Γ e 2 v B κ f κ e B. Nkonga. Flud Theory 28 / 56

47 Thermalzaton of dstrbutons functons { κ B κ g e C ee g e, g e 0 + C 0 0 e g e, g 0 = 0 κ B f 0 κ + C f 0, f 0 = 0 g e 0 0 = M e κ and f = M κ where M e κ = M e,0 exp m e κ 2 and M κ = M,0 exp m κ 2 2T e 2T For any change of varable κ = κ ± ɛδu :: g e 0 κ M e κ ± ɛδu κ B κ g0 0 e + C ee g e, g e 0 + C 0 0 e g e, g 0 ε = 0 + M 1 Whch thermalzaton s consstent wth physcal applcatons? 2 What s the defnton of g 0? Is g0 κ = f 0 κ + δu? B. Nkonga. Flud Theory 29 / 56

48 Frst order correcton : ε = M ɛ g e κ = M e κ 1 + Φ 1 e κ + ɛ 2 f κ = M e κ 1 + Φ 1 κ + ɛ 2 Expanson of the collsons C e = Γ e 2 v O e wth n ons frame O e = D κ f κ e + m e fe κ κ D = n B κ m f κ e + ɛ 2 where, wth σ = [ n T I + τ, D κ = dκ f κ B κ κ ] 1 = n B κ + R 3 2 [σ : κ κ B κ ] Then, as δu = v e v ɛ, we have the followng estmaton f e κ = f e κ + v = f e κ δu + v e = g e κ δu = M e κ δu 1 + Φ 1 e κ δu + ɛ 2 = M e κ 1 + m e δu κ + T Φ 1 e κ + ɛ 2 e B. Nkonga. Flud Theory 30 / 56

49 Frst order correcton : ε = M ɛ g e κ = M e κ f e κ = M e κ 1 + Φ 1 e κ 1 + m e δu κ + T Φ 1 e κ e + ɛ 2, f κ = M e κ + ɛ Φ 1 κ + ɛ 2, O e = n B κ f κ e + ɛ 2 Expanson of the collsons B κ [ κ M e κ ] = βb κ κ = 0 C e = Γ e 2 κ O e = n Γ e 2 κ B κ f κ k + ɛ 2 = n Γ e 2 me κ M e κ B κ δu + B κ T Φ 1 κ e κ e [ me + ɛ 2 B κ κ Φ 1 e κ ] + ɛ 2 = n Γ e 2 M e κ κ B κ δu + κ T e = n [ Γ e 2 M e κ 2m e T e κ 3 κ δu + κ B κ Φ ] 1 κ e κ + ɛ 2 = 0 + M e κ C e Φ1 e, f 0 2n Γ e m e 2T e κ 3 κ δu + ɛ 2 B. Nkonga. Flud Theory 30 / 56

50 Frst order correcton : ε = M ɛ g e κ = M e κ f e κ = M e κ Expanson of the collsons 1 + Φ 1 e κ 1 + m e δu κ + T Φ 1 e κ e + ɛ 2, f κ = M e κ + ɛ Φ 1 κ + ɛ 2, O e = n B κ f κ e + ɛ 2 C e = 0 ɛ 0 +C e g e 0 Φ 1 e, f 0 g e 0 2n Γ e m e 2T e κ 3 κ δu +ɛ 2 0 C ee = C ee g e, g e 0 +C ee g e 0 Φ 1 e, g e 0 + C ee g e, 0 g e 0 Φ 1 e +ɛ 2 C = C f 0, f 0 +C f 0 Φ1, f 0 + C f 0, f 0 Φ 1 +ɛ 2 C e = 0 ɛ 0 +ɛ B. Nkonga. Flud Theory 30 / 56

51 Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 31 / 56

52 Frst order correcton for Slow dynamcs of Bragnsk. Electrons : u u e, κ κ e and g 1 e g 1 e κ = Φ 1 e κ M e κ t u + u x u κ g e 0 + t g e 0 + u x g e 0 κ x u κ g e 0 +κ x g e 0 E + u B κ g e 0 = κ B κ g 1 e + C ee g 1 e, g e 0 + Cee g 0 e, g 1 e +C e g 1 e, f 0 2n Γ e m e 2T e κ 3 κ δum e κ Ions: u u, κ κ and f 1 f 1 κ = Φ 1 κ M κ t u + u x u f 0 κ + t f 0 + u f 0 x κ x u f 0 κ C e f 0, f e 0 + κ f 0 x + Z E + u B f 0 κ = Z κ B f 1 κ + C f 1, f 0 + C f 0, f 1 B. Nkonga. Flud Theory 32 / 56

53 Transport contrbuton for frst order approxmaton C e = Γ e 2 κ O 1 e + ɛ 2 where O 1 me e κ = n M e κ B κ δu + B κ κ T Φ 1 e κ e Frcton contrbuton s R 1 e = Γ e m e κ δu κ O 1 Γ e e dκ = m e O 1 2 R 3 2 edκ R 3 Accordng to ntegraton formulas of polynomals functons over balls 6 R 1 e = m en e τ e δu + R e where τ e = 3 m e T 3 2 e 4n 2πq 2 e q 2 ln Λ and R e R e Φ1 e = n Γ e M e κ B κ 2 Φ 1 κ e κdκ R 3 6 John A. Baker. Integraton Over Spheres and the Dvergence Theorem for Balls. The Amercan Mathematcal Monthly, Vol. 104, No. 1. Jan., 1997, pp B. Nkonga. Flud Theory 33 / 56

54 Transport contrbuton for frst order approxmaton Frcton contrbuton s R 1 e = m en e δu + R e Heat τ e Q 1 e = Γ R3 e κ δu 2 m e κ O e dκ = Γ e m e κ δu O 1 2 edκ R 3 Γ e = m e B 2 T κ κ ÕO 1 e dκ δu R 1 e R 3 = 0 + Q 2δu e = ɛ 2 B. Nkonga. Flud Theory 33 / 56

55 Transport : second order contrbutons There s also an other second order term assocated to O 2 e κ = n m e m g 0 e κ κ B κ 1 2m [σ : κ κ B κ ] κ g 0 e κ where σ = n T I τ n T I Indeed, we have R 2 e = Γ e 2 R 3 m e O 2 edκ = 0 κ B = 2κ κ 3, 1 2 [ κ κ B] = κ 2 I 3κ κ κ 5 and S 2 [ σ : s s s s ] 3 I sds = 0 B. Nkonga. Flud Theory 34 / 56

56 Transport contrbuton for frst order approxmaton Q 2δT e Q 2δT e = m eγ e 2 = m eγ e 2 = m eγ e 2 = m eγ e 2 m eγ e 2 κ δu 2 κ O 2 e κ dκ = m eγ e dκ κ δu O 2 e κ dκ 2 2 R 3 R3 κ δu 2 κ O 2 2 edκ = m eγ e κ δu O 2 2 edκ [ R 3 n m e κ g R m e 0 κ B 1 ] [σ : κ κ B] κ g e 0 dκ 3 2m [ 2 κ 2 n m e R κ 3 g e 0 1 ] κ [σ : κ κ B] κ g e 0 dκ m 3 [ 2m 2 n m e + 2n ] m e T g edκ 0 m2 en Γ e T R3 dκ R 3 m2 en Γ e m 3m en e m τ e κ 1 T T e m m T e κ 4πTe m e n e T e T = 3m en e δt m τ e Q 2 e = Q 2δT e + Q 2δu e π 2T e m e 3 1 m T e 2 as g 0 e = n e π 2T e m e = δu R 1 e 3m en e m τ e δt 3 g e 0 R 3 2 e x κ dκ B. Nkonga. Flud Theory 35 / 56

57 Transport frst and second order contrbutons 1 Frcton 2 Heat R e R 1 e + R 2 e = m en e τ e δu + R e and R e = R e Q e Q 1 e + Q 2 e = δu R 1 e 3m en e m τ e δt = m en e δu δu δu R e 3m en e δt τ e m τ e and Q e = 3m en e m τ e δt Where δu = u e u and δt = T e T B. Nkonga. Flud Theory 36 / 56

58 Solublty condtons for L k, Φ 1 k = b k For example, wth f 1 = M κ Φ 1 κ = g 0 f 1, we have L, Φ = κ B f 1 κ + C f 1, f 0 + C f 0, f 1 Note that γ 0 + γ 2 κ 2 s always n the kernel of L. The requrement that correcton must not change macroscopc parameters : 1 κ M k κ Φ 1 k κ dκ = 0 R 3 κ 2 contans also the assumed requrement for exstence and unqueness of the soluton B. Nkonga. Flud Theory 37 / 56

59 Therefore D u k t n k = n k x u k m e n e D u e t u e = x p e E + u e B + R e x π k = x p + Z E + u B R e D u k t T k = 2 3 T k x u k x q k π k : x u k + Q kl m n D u t u Dervatves wth respect to tme and space of the Maxwellan are [ g e 0 ne 3 = n e 2 m ] eκ κ Te g e 0 2T e T e Then the left hand sde of electrons correcton equaton can be estmated [ me κ 2 2T e 5 2 x T e κ T e [ = D u e t u e κ g e 0 + t g e 0 + u e x g e 0 κ x u e κ g e 0 +κ x g e 0 E + u e B κ g e 0 = + R1 e κ + m e m e T e T e L e κ κ + R e κ L e m e T e ] κ [ x u e ] T κ κ 2 3 x u e + L e κ : κ κ κ 2 3 g 0 e ] g 0 e B. Nkonga. Flud Theory 38 / 56

60 Equaton for frst order correctons g 1 e Φ 1 e κ M e κ and f 1 Φ 1 κ M κ [ meκ κ 2T e 5 2 xt e κ T e + R 1 e ] κ + me ] T κ [ κ 2 xu e κ m et e T e 3 x u e M e κ = κ B κ g 1 e g + Cee 1 e, g0 e + C ee g e 0, g1 e + C e g 1 e, f 0 2n Γ e m e 2T e κ 3 κ δum e κ Integro-dfferental lnear equaton for Φ 1 e usng L e κ B κ g 1 e + C ee g 1 e, g e 0 + Cee g 0 e, g 1 e + C e = g el 0 L e κ κ + g el 0 L e Lnear partal dfferental equaton for Φ 1 κ B f 1 κ + C f 1, f 0 + C f 0, f 1 L e = L e + 2n Γ e me δu: 2Te κ 3 L e κ : g 1 e, f 0 = f 0 L κ κ + f 0 L κ : g e 0 R e κ m e T e κ κ κ 2 3 κ κ κ 2 3 B. Nkonga. Flud Theory 39 / 56

61 Resoluton of frst order correctons equatons Accordng to symmetres of the RHS, Φ 1 e κ and Φ 1 κ are found under the followng form : Φ 1 k κ = P k κ κ + P k κ : κ κ κ 2 3 Moreover, RHS operators L k κ and L k κ can be expanded wth Laguerre-Sonne polynomals. For example, let us denote by x = m e κ 2 me κ 2 L e κ = 5 x T e + 2n Γ e m e 2T e 2 T e [ 2T e κ 3 δu ] = xt e Y δt T e,1l x + δu Y δu e,l L 3 2 l x e L 3 2 l x functons gves very smple expanson for the frst term : Y δt e,1 = 1. B. Nkonga. Flud Theory 40 / 56 l>0 2T e

62 Vector splttng n strongly magnetzed plasma In strongly magnetzed plasma, macroscopc vectors are often splt nto parallel, perpendcular and components. For example : x T e = M x T e + M x T e + M x T e = xt e + x T e + x T e where M = b b, M = I b b, M x T e = b x T e 0 b z b y M = b z 0 b x b y b x 0 These matrces are lnearly ndependent when b 0 stable under multplcaton. What about tensors? B. Nkonga. Flud Theory 41 / 56

63 Tensor splttng n strongly magnetzed plasma We have L k κ L k = m k [ x u k ] + [ x u k ] T 2 2T k 3 x u k I For ths symmetrc tensor, Bragnsk propose the followng splttng: 4 L k = Π l b : L k l=0 Π 0 = M 1 2 M 2 3 M 1 3 M Π 1 = M M 1 2 M M Π 2 = M M M M Π 3 = 1 2 M M [M ] T M Π 4 = M M + [M ] T M [A B : W ] j = A j B kl W kl k l [A B : W ] j = A k B jl W kl k l B. Nkonga. Flud Theory 42 / 56

64 Splttng of the frst order approxmaton Accordng to prevous splttng n strongly magnetzed plasma 1 The vector P k κ s found under the form [ ] P k κ = L 3 2 l x X δt k,l M + X δt k,l M + X δt k,l M x T k T k l>0[ ] + L 3 2 l x X δu k,l M + X k,l δu M + X δu k,l M δu l>0 wth the constran that 1 R 3 κ κ 2 M k κ Φ 1 k κ dκ = 0 = l > 0 2 and P k κ under the form P k κ = 4 L 3 2 l x X δτζ Π l u k, b : L k l>0 ζ=0 k,l Π l B. Nkonga. Flud Theory 43 / 56

65 Systems to be solved Φ 1 k κ = P k κ κ + We have κ B Φ 1 κ e = κ B P k κ + x = B B 2 B x x = x x B x = x B, and κ B x = 0 κ B x = B κ x κ B x = B κ x ndeed κ B B x = κ B B x B B κ x. We have P k κ = L 3 2 l x X δt xt e k,l + X δt x T e k,l + X δt x T e T k T k,l + k T k l>0 and therefore, as κ B Φ 1 κ e = κ BPP k κ + κ B Φ 1 κ e = B L 3 2 l x X δt k,l κ x T e X δt T k,l κ x T e + k T k l>0 Systems for X δt k,l and X δt k,l are coupled B. Nkonga. Flud Theory 44 / 56 P k,

66 Systems to be solved :: Φ 1 k κ = P k κ κ + L e κ κ = Y δt 3 e,1 L 21 x x κ Te Y δt 3 e,1 T L 21 x x κ Te k T k κ B Φ 1 κ e = 3 L 2 l l>0 x X δt k,l B κ x Te 3 L 2 l T k l>0 x B X δt k,l κ x Te + T k Compacted form. Usng dot product wth κ and the relaton κ κ = x 2T e m e l>0 where xe x L 3 2 l x X δt e,l X θ k,l = X θ θ k,l + ıx k,l Y θ k,l = Yθ k,l + ıyθ k,l ı B + C x : [s s] xc C x s a tensor assocated to lnearzed collsons. = Y δt e,1xe x L x + B. Nkonga. Flud Theory 45 / 56

67 Systems to be solved :: Φ 1 k κ = P k κ κ + Compacted form. Usng dot product wth κ and the relaton κ κ = x 2T e m e l>0 xe x L 3 2 l x X δt e,l ı B + C x : [s s] = Y δt e,1xe x L x + Varatonal prncples Onsager symmetry formulated as L 2 -projecton for any q > 0. + [ X δt e,l x 3 2 e x L 3 2 q x L 3 2 l x ı B + C x : s s ds ] 8dx l>0 0 S 2 4π 15 π + [ ] = Y δt e,1 x 3 2 e x L 3 2 q x L 3 2 8dx 1 x 15 π + 15 π 8 = ! = ! = 5 3 π B. Nkonga. Flud Theory 45 / 56

68 Systems to be solved :: Φ 1 k κ = P k κ κ + Compacted form. Usng dot product wth κ and the relaton κ κ = x 2T e m e l>0 xe x L 3 2 l x X δt e,l ı B + C x : [s s] = Y δt e,1xe x L x + Varatonal prncples as L 2 -projecton for any q > 0. + [ X δt e,l x 3 2 e x L 3 2 q x L 3 2 l x ı B + 23 ] Tr 8dx C x 15 π = YδT e,1δ q,1 + l>0 0 X are solutons of a lnear system of the followng form : A θ ex θ e = C θ ey θ e and A θ X θ = C θ Y θ B. Nkonga. Flud Theory 45 / 56

69 Fnal When prevous systems are solved, we obtan analytcal formula for g e κ M e κ 1 + P e κ κ + P e κ : κ κ κ 2 3 f κ M e κ 1 + P κ κ + P κ : κ κ κ 2 3 Then they are used to compute transport contrbutons. B. Nkonga. Flud Theory 46 / 56

70 Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 47 / 56

71 Bragnsk Transport Coeffcents : An example R 1 e = m en e τ e P k κ = Therefore α m en e τ e δu n Γ e R 3 2 M e κ B κ Φ 1 κ e κdκ = m en e n Γ e δu τ e R 3 2 M e κ B κ κ [P P k κ κ] = m en e n Γ e δu τ e R 3 2 M e κ B κp P k κ dκ [ ] L 3 2 l x X δt k,l M + X δt k,l M + X δt k,l M x T k T k l>0[ ] + L 3 2 l x X δu k,l M + X k,l δu M + X δu k,l M δu l>0 + n Γ e 2 N l l=1 X δu e,l dκ R 3 [M e κ L 3 2l me κ 2 2T e ] B κ B. Nkonga. Flud Theory 48 / 56

72 Bragnsk Transport Coeffcents : An example α m en e τ e + n Γ e 2 N l l=1 X δu e,l dκ R 3 B κ = 1 κ B s where r = κ, s = r κ The ntegral part of α can be computed as R 3 dκ [G r B κ ] = + 0 l=1 [M e κ L 3 2l me κ 2 and [ r 2 G r 1 ] dr B s ds = 8π r S T e ] B κ S 2 B s ds = 8π 3 I + Therefore α s equvalent to a scalar. α m en e + n Γ e 8π N l + X δu τ e 2 3 e,l r [M e r L 3 me r 2l 2 ] dr 2T e 0 rg rdr B. Nkonga. Flud Theory 49 / 56

73 Bragnsk transport closure : quas neutral plasma n = n e Electrons β t R e = en e αj β t x T e Q e = Q + J R e n e e Q e = κ e x T e + en e β j ej 4 η el Π l u e, b π e where l=0 Ions R = R Q = 3m en e T e T m τ e Q = κ e x T + en e β j J 4 η l Π l u, b α = α M +α M α M κ k = κ k M +κ k M +κ k M β t = β t M +βt M +β M t β j k = β j k M +βj k M +β j k M See [Bragnsk, 1965] for numercal values of theses parameters. Some numercal examples α = β j π m e e 2 n e τ e, α = 1.96α, β t = l=0 3 2ω coll e τ e, β t = 0.71 B. Nkonga. Flud Theory 50 / 56

74 Appendx κ κ = r 2 = x 2T e m e α m en e τ e m en e τ e m en e τ e and rdr = T e m e dx + n Γ e 2 + n Γ e 2 + m en e τ e 8π 3 8π 3 N l l=1 X δu e,l T e M e 0 m e T e N l m 2 e l=1 X δu e,l r [M e r L 2l 3 me r 2 ] dr 0 2T e N l + [ exp x L 3 2 l x + l=1 + [ 0 X δu e,l 0 exp x L 3 2 l x ] dx ] dx Γ kl = 4πq2 k q2 l ln Λ m 2 k and τ e = 3 m e T 3 2 e 4n 2πq 2 e q 2 ln Λ τ e = 3π m e T 3 2 e = n 2πm 2 e Γ e 3 4πn Γ e 2πTe m e 3 2 = 3n e 4πn Γ e M e 0 B. Nkonga. Flud Theory 51 / 56

75 Appendx As s 2 k s homogeneous of degree two. Then corollary 1 page 39 6 S 2 s 2 k 1 ds = x 2 k dx k dx l dx p = = 10π 3 1 = 10π = 4π 3 Therefore, as B s = I s s, we have B s ds = 4π 4π S 2 3 and S I = 8π 3 I s s s s 3 I ds = 0 x 2 k π1 x2 k dx k 6 John A. Baker. Integraton Over Spheres and the Dvergence Theorem for Balls. The Amercan Mathematcal Monthly, Vol. 104, No. 1. Jan., 1997, pp B. Nkonga. Flud Theory 52 / 56

76 Appendx :: fk κ M k κ 1 + P e κ κ r = x 2T 1 2 k T k, rdr = dx, m k m k M k r = n k π 2T 3 2 k e x m k [ v u k 2 ] [ κ q k = m k v f k v 2 ] dv = m k R 3 2 R 3 2 κ f k κ dκ [ κ 2 [ ] κ ] 0 + m k R 3 2 M k κ κ κ P k dκ + + r 2 r [m 2 [ k 0 2 M k r r 2 ] r ] + r 6 4π r s s dsp P k dr m k [M k r ] S P k dr + 4πm kn k + x 2T 5 k 2 π 2T 3 k 2 x e Pk P k x T k dx m k m k m k 4n k 3 T 2 + [ k x 2 3 xe x P k x ] dx 4n k π m k 0 3 T 2 [ + k x π m k 0 2 L 20 + L 2 1 x e x x ] P k dx + 4n k 3 T 2 k 15 π X δt xt e + X δt x Te k,1 k,1 + X δt x Te k,1 π m k 8 T k T k T k 4n k 3 T 2 k 15 π X δu k,1 π m k 8 xδu + X δu k,1 δu x δu + X k,1 x δu + 5n ktk 2 X δt xt e + X δt x Te k,1 k,1 + X δt x Te k,1 + X δu k,1 2m k T k T k T δu xδu + X k,1 δu x δu + X k,1 x δu + k B. Nkonga. Flud Theory 53 / 56

77 Appendx :: fk κ M k κ 1 + P e κ κ We have + [ [κ κ]p P k κ M k κ = r 2 [ P k r M k r r 2 s s ] ] ds dr R 3 0 S 2 = 4π + r 3 P k r M k r rdr = 4π 3 2Tk 2 T + k x 3 2 e x P k x dx m k m k 0 = 4π 3 2Tk 2 T k + P kl x 3 2 e x L m k m 0 x L 3 2 l x dx k l 0 1 Therefore the constran κ M k κ Φ 1 k κ dκ = 0 s acheved when R 3 κ 2 l > 0, accordng to orthogonalty of Laguerre-Sonne polynomals and zero ntegral on sphere for monomal wth an odd component of the mult-ndex : 1 + κ M k κ Φ rs 1 R 3 r 2 k κ dκ = r 2 M k rp P k r r 2 s s ds dr 0 S 2 r 2 rs + + r 2 M k rp P k r : 1 rs r 2 s s s s 3 I ds dr = 0 0 S 2 r 2 B. Nkonga. Flud Theory 54 / 56

78 Appendx :: D e ɛκ = [ = dκ e fe κ e B κ e ɛκ ] R[ 3 dκ e fe κ e B κ ] e + ɛ R 3 Case of f e κ e = g 0 e κ e R 3 dκ e [ fe κ e κ κ B κ ] e e + ɛ 2 D e ɛκ [ = dκ e fe κ e B κ e ɛκ ] = 8π R r g 0 e r dr + ɛ Case of f e κ e = δu κ e g 0 e κ e D e ɛκ [ = dκ e fe κ e B κ e ɛκ ] = 8π R r g 0 e r dr + ɛ 2 B. Nkonga. Flud Theory 55 / 56

79 Appendx :: [ D e ɛκ = dκ e fe κ e B κ e ɛκ ] R[ 3 = dκ e fe κ e B κ ] [ e + ɛ dκ e fe κ e κ κ B κ ] R 3 R 3 e e + ɛ 2 Case of f e κ e = δu κ e g 0 e κ e D e ɛκ = ɛ dκ [ e δu κ e g 0 e κ e κ κ B κ ] 8π R 3 e e = r g 0 e r dr + B. Nkonga. Flud Theory 56 / 56

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

V. Finite Element Method. 5.1 Introduction to Finite Element Method

V. Finite Element Method. 5.1 Introduction to Finite Element Method V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Quantum ElectroDynamics II

Quantum ElectroDynamics II Quantum ElectroDynamcs II Dr.arda Tahr Physcs department CIIT, Islamabad Photon Coned by Glbert Lews n 1926. In Greek Language Phos meanng lght The Photons A What do you know about Photon? Photon Dscrete

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Classical Theory (3): Thermostatics of Continuous Systems with External Forces Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Theory of the Lattice Boltzmann Method

Theory of the Lattice Boltzmann Method Theory of the Lattce Boltzmann Method Burkhard Dünweg Max Planck Insttute for Polymer Research Ackermannweg 10 55128 Manz B. D. and A. J. C. Ladd, arxv:0803.2826v2, Advances n Polymer Scence 221, 89 (2009)

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

A domain decomposition method for the Oseen-viscoelastic flow equations

A domain decomposition method for the Oseen-viscoelastic flow equations A doman decomposton method for the Oseen-vscoelastc flow equatons Eleanor Jenkns Hyesuk Lee Abstract We study a non-overlappng doman decomposton method for the Oseen-vscoelastc flow problem. The data on

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Journal of Theoretics Vol.4-5

Journal of Theoretics Vol.4-5 Journal of Theoretcs Vol.4- A Unfed Feld Theory Peter Hckman peter.hckman@ntlworld.com Abstract: In ths paper, the extenson of Remann geometry to nclude an asymmetrc metrc tensor s presented. A new co-varant

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές 8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ). Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,

Διαβάστε περισσότερα

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices A Two Sample Test for Mean Vectors wth Unequal Covarance Matrces Tamae Kawasak 1 and Takash Seo 2 1 Department of Mathematcal Informaton Scence Graduate School of Scence, Tokyo Unversty of Scence, Tokyo,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment 1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor

Διαβάστε περισσότερα

Non polynomial spline solutions for special linear tenth-order boundary value problems

Non polynomial spline solutions for special linear tenth-order boundary value problems ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Stochastic Finite Element Analysis for Composite Pressure Vessel

Stochastic Finite Element Analysis for Composite Pressure Vessel * ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

A Lie Symmetry Analysis of the Black-Scholes Merton Finance Model through modified Local one-parameter transformations

A Lie Symmetry Analysis of the Black-Scholes Merton Finance Model through modified Local one-parameter transformations A Le Symmetry Analyss of the Black-Scholes Merton Fnance Model through modfed Local one-parameter transformatons by Tshdso Phanuel Masebe Submtted n accordance wth the requrements for the degree of Doctor

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Pricing of Options on two Currencies Libor Rates

Pricing of Options on two Currencies Libor Rates Prcng o Optons on two Currences Lbor Rates Fabo Mercuro Fnancal Models, Banca IMI Abstract In ths document we show how to prce optons on two Lbor rates belongng to two derent currences the ormer s domestc,

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα