BODI FIZIČARKA! BODI FIZIK! študij na Oddelku za fiziko Fakultete za matematiko in fiziko Univerze v Ljubljani

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "BODI FIZIČARKA! BODI FIZIK! študij na Oddelku za fiziko Fakultete za matematiko in fiziko Univerze v Ljubljani"

Transcript

1 BODI FIZIČARKA! BODI FIZIK! študij na Oddelku za fiziko Fakultete za matematiko in fiziko Univerze v Ljubljani

2 VSEBINA kaj je fizika? Oddelek za fiziko FMF dva programa I. stopnje FIZIKA FIZIKALNA MERILNA TEHNIKA študijsko okolje Študentski svet, Študentska organizacija raziskovalno delo nadaljevanje študija zaposlitev

3 FIZIKA φύσις (fisis) = narava osnovna znanost o naravi empirična veda: eksperiment hipoteza teorija temelj mnogih tehnologij in vej tehnike (strojništva, elektrotehnike, elektronike, radiotehnike, jedrske tehnike ) Isaac Newton dva primera: www Evropski laboratorij za fiziko delcev, CERN; 1989 fuzijski reaktor ITER; v gradnji

4 ODDELEK ZA FIZIKO univerzalni študijski program teoretična in eksperimentalna fizika klasične in moderne vsebine merske metode in tehnike široka izobrazba za pestre možnosti zaposlitve osrednja tovrstna ustanova v Sloveniji 60 let izkušenj kvantni točkovni stik raziskovalno središče sodelovanje z Institutom Jožef Stefan tesna povezanost s tujino laserska pinceta

5 MEJNIKI IN ŠTEVILKE 1919 začetek študija fizike (Filozofska,Tehniška, Medicinska fakulteta) 1949 Oddelek za fiziko na Fakulteti za kemijo 1960 Fakulteta za naravoslovje in tehnologijo 1995 Fakulteta za matematiko in fiziko 2008 bolonjski programi doslej 1940 diplomantov 406 magistrov 453 doktorjev znanosti FMF: okoli 30% vseh znanstvenih del UL letno okoli 400 člankov v mednarodnih revijah 21 najvišjih državnih nagrad za raziskovalno delo srečanje diplomantov

6 fizika BOLONJSKI SISTEM ECTS = European Credit Transfer and Accumulation System tristopenjski študij I. stopnja (3 leta) II. stopnja (2 leti) III. stopnja (3 leta) I. stopnja II. stopnja III. stopnja biologija kemija mikrobiologija kemija fizika kombinirani študij fizika elektrotehnika materiali elektrotehnika računalništvo/informatika študentska izmenjava v EU: Avstrija, Francija, Italija, Nemčija, Španija... računalništvo strojništvo ekonomija strojništvo geologija mehanika poslovna logistika

7 PROGRAMI I. STOPNJE univerzitetni programa (matura/poklicna matura, 3 leta) FIZIKA diplomirani fizik, diplomirana fizičarka visokošolski strokovni program (srednja šola, zaključni izpit, 3 leta) CERN FIZIKALNA MERILNA TEHNIKA diplomirani inženir fizike, diplomirana inženirka fizike

8 FIZIKA univerzitetni program 3 leta, 180 ECTS točk temeljna fizikalna izobrazba izbirni predmeti 24% točk 4 smeri fizika astronomska smer meteorološka smer izobraževalna smer diplomirani fizik, diplomirana fizičarka

9 SMER FIZIKA 1. letnik: trdna fizikalna in matematična osnova obvezni predmeti Klasična fizika, Matematika I in II, Proseminar A ali B, Fizikalni praktikum I in II, Računalniški praktikum, Kemija I izbirni predmeti Kemija II, Astronomska opazovanja, Projektno delo I, Tehnično projektiranje, Računalniška orodja v fiziki, Kako stvari delujejo?, dodatni izbirni predmet 2. letnik: sodobne vsebine, računalniki v fiziki, elektronika obvezni predmeti Moderna fizika I in II, Matematika III in IV, Fizikalni praktikum III in IV, Verjetnost v fiziki, Statistična termodinamika, Klasična mehanika izbirni predmeti Matematična fizika I, Astronomija I in II, Osnove meteorologije, Geofizika, Projektno delo II, Elektronika I, Elektronski praktikum, Računalništvo, Numerične metode, Naše in druga osončja, dodatni izbirni predmet

10 SMER FIZIKA 3. letnik: podrobnejši vpogled v fiziko obvezni predmeti Elektromagnetno polje, Kvantna mehanika, Fizikalni praktikum V, Fizikalna merjenja I, Fizika trdne snovi, Seminar obvezni % ECTS točk izbirni izbirni predmeti Fizikalni praktikum VI, Fizikalna merjenja II, Fizika jedra in osnovnih delcev, Optika, Mehanika kontinuov, Matematična fizika II, Matematično-fizikalni praktikum, Opazovalna astrofizika, Teoretična astrofizika, Fizikalna kemija, Jedrska tehnika in energetika, Radiacijska in reaktorska fizika, Industrijska fizika, Zajemanje in obdelava podatkov, Posredovanje fizike, Didaktika fizike I, predmeti Meteorološke smeri, dodatni izbirni predmet 0 1. letnik 2. letnik 3. letnik

11 ASTRONOMSKA SMER Fizik ve, kaj je lahko res in kaj ne. Tudi kadar se v Holywoodu zmotijo. Tomaž Zwitter

12 ASTRONOMSKA SMER astronomija astrofizika veliki teleskopi, merilni instrumenti (CCD kamere, spektrografi) Ves elektromagnetni spekter, nevtrini, kozmični delci, gravitacijski valovi evropski teleskop VLT Čile Tomaž Zwitter

13 NAŠA GALAKSIJA v vesolju GAIA ESA, 2013 premeriti 10 9 = 1% zvezd nastanek in razvoj Galaksije na Zemlji RAVE (Evropa-Avstralija) GALAH (Avstralija) Gaia-ESO (Evropa-Čile) Tomaž Zwitter

14 ČASOVNI STROJ NASA Swift Tomaž Zwitter

15 POSEBNOSTI ŠTUDIJA teorija in opazovanja; astronomski predmeti: Astronomska opazovanja, Naše in druga osončja, Astronomija 1 in 2, Opazovalna astrofizika, Teoretična astrofizika; ogled observatorija na Golovcu. Tomaž Zwitter

16 IZOBRAŽEVALNA SMER Aleš Mohorič

17 ZAKAJ METEOROLOGIJA? Študij meteorologije na FMF izobražuje meteorologe, ki razumejo nastanek in potek dogajanj v ozračju in oceanih opišejo procese v matematični obliki prevedejo matematične izraze v računalniške modele uporabijo rezultate izračunov v praksi Kdaj? Kje? Zakaj? Koliko? Kako? Nedjeljka Žagar

18 SMER METEOROLOGIJA 1. letnik: trdna fizikalna in matematična osnova enak smeri Fizika 2. letnik: sodobne vsebine fizike, osnove fizike atmosfere obvezni predmeti Osnove meteorologije, Meteorološka opazovanja in inštrumenti, Meteorološki praktikum I, Praktično usposabljanje ter izbrani obvezni predmeti na smeri Fizika 3. letnik: dinamika atmosfere in oceanov, meteorološki praktikumi obvezni predmeti Dinamična meteorologija I, Fizikalna oceanografija, Geofizika, Meteorološki praktikum II, Klimatologija, Praktikum sinoptične meteorologije ter izbrani obvezni predmeti na smeri Fizika izbirni predmeti kot na smeri Fizika izbirni predmeti Ozračje in njegova onesnaženost, Izbrana poglavja iz hidromehanike, hidrologije in hidravlike ter drugi kot na smeri Fizika Nedjeljka Žagar

19 RAZVOJNI CIKEL METEOROLOGA ZAČETEK F = m Dv Dt DW = Q+ A 4. IN 5. LETNIK 2. LETNIK dv dt C p dt dt 1 2 sin( ) k V p -a dp dt = Q 0 Nedjeljka Žagar

20 KATEDRA ZA METEOROLOGIJO Oceanografija (MBP) Klimatologija (UL BF) ARSO (praktično delo) meteorologija kot kombinacija fizike, kemije, matematike in računalništva sodelovanje z vodilnimi inštituti s področja raziskav atmosfere razširjanje onesnaženosti v atmosferi (raziskovalno delo Žiga Zaplotnika) NCAR, NCAR Nedjeljka Žagar

21 ZAPOSLITVENE MOŽNOSTI AGENCIJA ZA OKOLJE spremljanje, modeliranje in napovedovanje vremena opozarjanje pred ekstremnim vremenom napovedovanje stanja morja letalska meteorologija napovedovanje kakovosti zraka DRUGI DELODAJALCI energetika promet zavarovalnice varstvo okolja šolstvo raziskovalni inštituti in univerze MEDNARODNI INŠTITUTI ESA Evropska vesoljska agencija EUMETSAT Evropska organizacija za upravljanje z meteorološkimi sateliti ECMWF Evropski center za srednjeročne napovedi vremena Nedjeljka Žagar

22 FIZIKALNA MERILNA TEHNIKA visokošolski strokovni program 3 leta, 180 ECTS točk praktične naloge v industriji: delo v raziskovalno-razvojnih laboratorijih meritve v industriji, medicini, okolju upravljanje z visokotehnološko opremo organizacija proizvodnih procesov trženje visoke tehnologije izbirni predmeti 14% točk diplomirani inženir fizike, diplomirana inženirka fizike valovi za ladjo

23 ZNAČILNOSTI ŠTUDIJA poglobljeno znanje klasične fizike in sodobne merilne tehnologije spoznavanje fizikalnih procesov, merilne tehnike, prenosa v tehnologijo, krmiljenja procesov in meritev reševanje fizikalno-tehniških inženirskih problemov praktično delo: obiski laboratorijev, delovna praksa, zaključna naloga optične meritve industrijski laboratorij

24 PREDMETNIK 1. letnik obvezni predmeti Fizika I, Matematika I, Računalniški praktikum, Praktikum merilne tehnike I in II, Kemija 2. letnik obvezni predmeti Fizika II, Matematika II, Elektronika v fiziki, Praktikum merilne tehnike III in IV 3. letnik obvezni predmeti Moderna fizika, Praktikum merilne tehnike V, Fizikalna merjenja, Matematično-fizikalni seminar, Organizacija in poslovanje, Delovna praksa, Zaključna naloga izbirni predmeti Projektno delo VS I, Konstrukcijski elementi, Linearna algebra, dodatni izbirni predmet izbirni predmeti Varstvo pri delu, Industrijski materiali, Projektno delo VS II, dodatni izbirni predmet izbirni predmeti Medicinska fizika, Matematična fizika, Optoelektronika, Prektikum merilne tehnike VI

25 ŠTUDIJSKO OKOLJE NA FMF obnovljene predavalnice in drugi prostori za študente Peterlinov paviljon: Mala in Velika fizikalna predavalnica stalno posodabljanje študentskih laboratorijev predavalnica F2 Praktikum teleskop AGO Golovec

26 ŠTUDIJSKO OKOLJE računalniki, brezžično omrežje študentski klub Fizikalna knjižnica študijska literatura učbeniki, skripta, spletna učilnica znanstvena kavarna maφja znanstvena kavarna maφja Študentski klub Fizikalna knjižnica avla

27 OBŠTUDIJSKO DOGAJANJE brucovanje recitiranje števila π: Nik Škrlec 1694 mest mafijski piknik

28 OBŠTUDIJSKO DOGAJANJE planinski izleti novoletna stojnica kontakti: pocukajte nas za rokav feministični teden

29 RAZISKOVALNO DELO osnovni delci, jedra in atomi trk elektrona z jedrom 12 C detektor Belle, Japonska rentgenska spektroskopija

30 RAZISKOVALNO DELO trdna snov in kvantni kaos kvazikristal nanocevka interferenca valovanja iz kaotičnega biljarda

31 RAZISKOVALNO DELO mehka snov in biofizika skupki celic koloidi v tekočem kristalu virus hepatitisa B doslej v Sloveniji 3 ERC projekti: vodje vseh polno ali delno zaposleni na Oddelku za fiziko

32 SODOBNA FIZIKA biofizika kvantna kemija fizika: atomi, tekočine, zvezde astrobiologija ekonofizika temeljna in interdisciplinarna vprašanja vrtinci ob padajočem listu papirja samourejeno gibanje ljudi

33 I. stopnja II. stopnja NADALJEVANJE ŠTUDIJA bolonjski sistem: veliko možnosti in izzivov fizikalna ali kombinirana izobrazba? ekonomija Fizika Pedagoška fizika Medicinska fizika Jedrska tehnika računalništvo, strojništvo, elektrotehnika kemija, biologija Fizika Fizikalna merilna tehnika

34 I. stopnja II. stopnja V SLOVENIJI ALI DRUGJE? še več možnosti in izzivov! FMF odlična osnova v Sloveniji Univerza v Ljubljani Univerza v Mariboru Univerza v Novi Gorici Univerza na Primorskem M. Orešič, Cornell University M. Mrkaić, Carnegie Mellon University A. Košmrlj, MIT M. Cvetič, University of Pennsylvania G. Tkačik, Princeton University G. Poberaj, ETHZ R. Jeraj, University of Wisconsin v tujini EU bolonjski sistem ZDA Fizika Fizikalna merilna tehnika

35 ZAPOSLITEV industrija: Gorenje, Fotona, Turboinštitut, Savatech, Acroni, Letrika telekomunikacije: Iskratel, Telekom IT industrija: Comtrade, Adacta, Halcom kontrolni sistemi: Cosylab, Instrumentation Technologies energetika: Nuklearna elektrarna Krško, Petrol gradbeništvo: Gradbeni inštitut ZRMK, Zavod za gradbeništvo zdravstvo: Klinični center Ljubljana, Onkološki inštitut, Lek, Krka finance: Triglav, Kapitalska družba, Vzajemna, Wiener Staedtische zavarovalnica, Medvešek Pušnik znanost: Institut Jožef Stefan, Kemijski inštitut, Inštitut za kovinske materiale in tehnologijo, Nacionalni inštitut za biologijo izobraževanje: osnovne in srednje šole, Univerza v Ljubljani, Univerza v Mariboru, Univerza na Primorskem, Univerza v Novi Gorici, Ustanova Hiša eksperimentov uprava: Agencija RS za okolje, Uprava RS za jedrsko varnost, Agencija za radioaktivne odpadke, Nacionalni forenzični laboratorij drugo: Modrijan založba, Patentna pisarna, Slovenski inštitut za standardizacijo, Slovenski institut za kakovost in meroslovje, Zavod za varstvo pri delu, Tehniški muzej Slovenije, DARS

36 ZAPOSLITEV

37 ZAKAJ FIZIKA, ZAKAJ FMF? fizika aktualna, tehnološko pomembna odlična osnova za številne in raznolike poklice izhodišče za nadaljnji študij naravoslovja in tehnike ter interdisciplinarnih ved intelektualni izziv veselje ob odkrivanju novega Oddelek za fiziko FMF široka, mednarodno primerljiva izobrazba sodobno študijsko okolje

38 OGLEDI A. Astronomski observatorij B. Praktikum I: študentski laboratorij C. Meteorologija D. Optična pinceta E. Laboratorij za fiziko površin

MAGISTERIJ - 2. stopnja in znanstveni magisterij vpis v 2. letnik po merilih za prehode. / / petje 2, dirigiranje 1, godala in drugi

MAGISTERIJ - 2. stopnja in znanstveni magisterij vpis v 2. letnik po merilih za prehode. / / petje 2, dirigiranje 1, godala in drugi (priloga 1) Predvideno število študentov za vpis v podiplomski študij 20072008 ( skupaj za državljane Republike Slovenije in državljane članic Evropske unije) Visokošolski zavod AG MAGISTERIJ in DOKTORAT

Διαβάστε περισσότερα

kemijsko tehnologijo Biokemija

kemijsko tehnologijo Biokemija Univerzitetni študijski program Biokemija Podatki o študijskem programu Prvostopenjski univerzitetni študijski program BIOKEMIJA traja 3 leta (6 semestrov) in obsega skupaj 180 kreditnih točk. Strokovni

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO

FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO FKKT 1 FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Aškerčeva 5, Ljubljana telefon: h.c.: 2419 100, telefaks: 2419 220 Dekan: dr. RADOVAN STANISLAV PEJOVNIK, redni profesor Prodekani: Prodekanica za dodiplomski

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

FAKULTETA ZA FARMACIJO

FAKULTETA ZA FARMACIJO FFA 1 FAKULTETA ZA FARMACIJO Dekan: dr. STANISLAV GOBEC, izr. prof. tel.: 476 95 01 E-mail: stanislav.gobec@ffa.uni-lj.si Prodekan za študijsko področje: dr. BORUT BOŽIČ, izr. prof. tel.: 476 95 02 E-mail:

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Moderna fizika: nekaj zanimivosti in predstavitev predmeta

Moderna fizika: nekaj zanimivosti in predstavitev predmeta Moderna fizika: nekaj zanimivosti in predstavitev predmeta Peter Križan DELCI in SILE po nadstropjih DELCI in SILE, urejeni po NADSTROPJIH Velikost(m) Predmet Sila Smisel Strokovnjak 1021 kopice galaksij

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

L 158/370 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης 10.6.2013

L 158/370 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης 10.6.2013 L 158/370 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης 10.6.2013 ΠΑΡΑΡΤΗΜΑ ΜΕΡΟΣ Α ΑΜΟΙΒΑΙΑ ΑΝΑΓΝΩΡΙΣΗ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΤΙΤΛΩΝ Η οδηγία 2005/36/ΕΚ τροποποιείται ως εξής: 1. Στο άρθρο 49 παράγραφος 2 πρώτο

Διαβάστε περισσότερα

ZAKAJ? ZAKAJ? KAKO? KDAJ? KJE? METODE NUMERIýNEGA MODELIRANJA. Povrnimo se v otroštvo in postanimo ponovno radovedni in zvedavi!

ZAKAJ? ZAKAJ? KAKO? KDAJ? KJE? METODE NUMERIýNEGA MODELIRANJA. Povrnimo se v otroštvo in postanimo ponovno radovedni in zvedavi! METODE NUMERIýNEGA MODELIRANJA. letnik Unierzitetni študij prof.dr. Bori ŠTOK ait.mag. Nikolaj MOLE Laboratorij za numeriþno modeliranje in imulacije http://www.f.uni-lj.i/lnm/lo/mnm/mnm.html POGLED V

Διαβάστε περισσότερα

Osnove statistike. Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru. 1.

Osnove statistike. Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru. 1. Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru 1. marec 2010 Obvestila. http://um.fnm.uni-mb.si/ Prosojnice se lahko spremenijo v tednu po predavanjih.

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Praktikum iz fizike Kemijsko inženirstvo

Praktikum iz fizike Kemijsko inženirstvo Praktikum iz fizike Kemijsko inženirstvo Aleš Mohorič Vodje skupin: Luka Vidovič Anton Potočnik Nejc Kosnik Praktikum iz fizike Spoznavanje narave gre skozi tri stopnje: 1. V prvi pojave opazujemo, jih

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

SEZNAM PREDAVANJ ZA ŠTUDIJSKO LETO 2008/09

SEZNAM PREDAVANJ ZA ŠTUDIJSKO LETO 2008/09 UL Fakulteta za farmacijo Aškerčeva 7, Ljubljana Na podlagi 129. čl. Pravil o organizaciji in delovanju Fakultete za farmacijo, je Senat FFA na svoji seji, dne 20.06.2008 sprejel SEZNAM PREDAVANJ ZA ŠTUDIJSKO

Διαβάστε περισσότερα

Zaporedna in vzporedna feroresonanca

Zaporedna in vzporedna feroresonanca Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju

Διαβάστε περισσότερα

Praktikum iz fizike Kemijsko inženirstvo

Praktikum iz fizike Kemijsko inženirstvo Praktikum iz fizike Kemijsko inženirstvo Aleš Mohorič Vodje skupin: Dolenc Rok Pirker Luka Košnik Nejc Spoznavanje narave 1. Pojav opazujemo, opisujemo in spoznavamo. 2. Spoznavanje strukture pojava -

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

15 let izkušenj za. jasen pogled v prihodnost. Bilten IPMMP Podjetništvo. Pomlad 2008 letnik 7

15 let izkušenj za. jasen pogled v prihodnost. Bilten IPMMP Podjetništvo. Pomlad 2008 letnik 7 Pomlad 2008 letnik 7 Bilten IPMMP Podjetništvo 15 let izkušenj za jasen pogled v prihodnost Inštitut za podjetništvo in management malih podjetij Ekonomsko-poslovna fakulteta Univerza v Mariboru Razlagova

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

2. Temeljni cilji programa in splošne ter predmetnospecifične kompetence

2. Temeljni cilji programa in splošne ter predmetnospecifične kompetence VISOKOŠOLSKI STROKOVNI ŠTUDIJSKI PROGRAM PRVE STOPNJE OPERATIVNO GRADBENIŠTVO, UNIVERZA V LJUBLJANI, FAKULTETA ZA GRADBENIŠTVO IN GEODEZIJO Predstavitev študijskega programa 1. Podatki o študijskem programu

Διαβάστε περισσότερα

Bézierove krivulje. Fakulteta za matematiko in fiziko, Univerza v Ljubljani. MARS 2009, Koper, / 54

Bézierove krivulje. Fakulteta za matematiko in fiziko, Univerza v Ljubljani. MARS 2009, Koper, / 54 1 / 54 Bézierove krivulje Emil Žagar Fakulteta za matematiko in fiziko, Univerza v Ljubljani MARS 2009, Koper, 18.8.2009 Slika: Prepoznate lik na sliki? 2 / 54 Slika: Kaj pa ta dva? 3 / 54 Slika: In te?

Διαβάστε περισσότερα

Τεχνολογικό Πανεπιστήμιο Κύπρου. Πληροφορίες για υποψήφιους προπτυχιακούς φοιτητές 2012/2013

Τεχνολογικό Πανεπιστήμιο Κύπρου. Πληροφορίες για υποψήφιους προπτυχιακούς φοιτητές 2012/2013 Τεχνολογικό Πανεπιστήμιο Κύπρου Πληροφορίες για υποψήφιους προπτυχιακούς φοιτητές 2012/2013 1 ΠΕΡΙΕΧΟΜΕΝΑ Γενικές Πληροφορίες 5 Σχολές και Τμήματα 7 Περιγραφή Προγραμμάτων Σπουδών 9 Διαδικασίες Εισαγωγής

Διαβάστε περισσότερα

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Sjeverna zgrada FSB-a, prvi kat

Sjeverna zgrada FSB-a, prvi kat Elektrotehnika i električni strojevi Prof. dr. sc. Davor Zorc (nositelj) Prof. dr. sc. Joško Deur (nositelj) Dr. sc. Danijel Pavković Mario Hrgetić, dipl. ing. Katedra za strojarsku automatiku Sjeverna

Διαβάστε περισσότερα

Predstavitveni zbornik. Veterinarstvo. Enoviti magistrski študijski program 2. stopnje

Predstavitveni zbornik. Veterinarstvo. Enoviti magistrski študijski program 2. stopnje Predstavitveni zbornik Veterinarstvo Enoviti magistrski študijski program 2. stopnje Univerza v Ljubljani Veterinarska fakulteta Predstavitveni zbornik Enoviti magistrski študijski program 2. stopnje VETERINARSTVO

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

Raziskovalna dejavnost

Raziskovalna dejavnost Uvod Politehnika Nova Gorica je v letu 2005 praznovala desetletnico obstoja. Njena dejavnost se je razširila in sedaj pokriva dodiplomsko in podiplomsko izobraževanje, raziskovalno in razvojno delo ter

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

STUDIJ FIZIKE PMF-Fizički odsjek Zagreb

STUDIJ FIZIKE PMF-Fizički odsjek Zagreb STUDIJ FIZIKE PMF-Fizički odsjek Zagreb www.phy.hr zgrade fakulteta velika predavaonica ulazak u zgradu mjesto je moderno i udobno ALI ljudi su ono što čini studij fizike uistinu privlačnim uvijek marljivi

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice

GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice Moderna fizika - seminarska naloga GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice Domžale, dne 20. 2. 2004 Marjan Grilj, 3.l. fizika vsš, FMF Vsebina: (1) Osnove: (a) opazovanje (b) določanje oddaljenosti

Διαβάστε περισσότερα

ADS sistemi digitalnega snemanja ADS-DVR-4100D4

ADS sistemi digitalnega snemanja ADS-DVR-4100D4 ADS-DVR-4100D4 Glavne značilnosti: kompresija, idealna za samostojni sistem digitalnega snemanja štirje video vhodi, snemanje 100 slik/sek v D1 ločljivosti pentaplex funkcija (hkratno delovanje petih procesov):

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Marko Hočevar, Matevž Dular. Diagnostika v okoljskem strojništvu

Marko Hočevar, Matevž Dular. Diagnostika v okoljskem strojništvu Marko Hočevar, Matevž Dular Diagnostika v okoljskem strojništvu Ljubljana, 2016 1 Naslov publikacije: Avtorja: Strokovna recenzenta: Lektoriranje besedila: Izdelava slik in diagramov: Prelom in priprava

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

ENOVITI MAGISTRSKI ŠTUDIJSKI PROGRAM 2. stopnje VETERINARSTVO (PREDSTAVITVENI ZBORNIK)

ENOVITI MAGISTRSKI ŠTUDIJSKI PROGRAM 2. stopnje VETERINARSTVO (PREDSTAVITVENI ZBORNIK) Univerza v Ljubljani Veterinarska fakulteta ENOVITI MAGISTRSKI ŠTUDIJSKI PROGRAM 2. stopnje VETERINARSO (PREDSTAVIENI ZBORNIK) Ljubljana, januar 201 Naslov PREDSTAVIENI ZBORNIK ENOVITI MAGISTRSKI ŠTUDIJSKI

Διαβάστε περισσότερα

REZULTATI MERITEV OKOLJSKEGA MERILNEGA SISTEMA MESTNE OBČINE LJUBLJANA DECEMBER 2007

REZULTATI MERITEV OKOLJSKEGA MERILNEGA SISTEMA MESTNE OBČINE LJUBLJANA DECEMBER 2007 Št. poročila: EKO 3358 REZULTATI MERITEV OKOLJSKEGA MERILNEGA SISTEMA MESTNE OBČINE LJUBLJANA STROKOVNO POROČILO Ljubljana, januar 28 Št. poročila: EKO 3358 REZULTATI MERITEV OKOLJSKEGA MERILNEGA SISTEMA

Διαβάστε περισσότερα

Poročilo o delu v š.l. 2012/13. Elementi letnega delovnega načrta 2013/14

Poročilo o delu v š.l. 2012/13. Elementi letnega delovnega načrta 2013/14 dsgvsdg Poročilo o delu v š.l. 2012/13 Elementi letnega delovnega načrta 2013/14 Avgust 2013 Robert Harb, univ. dipl. inž. str. Ravnatelj POROČILO 12/13, Višja strokovna šola 1 Šolski center Ptuj Višja

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Moderna fizika (FMF, Matematika, 2. stopnja)

Moderna fizika (FMF, Matematika, 2. stopnja) Moderna fizika (FMF, Matematika, 2. stopnja) gradivo za vaje Vsebina Elektromagnetno polje 2 1.01.EMP: Maxwellove enačbe I 2 1.02.EMP: Maxwellove enačbe II 3 1.03.EMP: Maxwellove enačbe III 4 1.04.EMP:

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Kanonična oblika linearnega programa. Simpleksna metoda. Bazne rešitve kanoničnega linearnega programa.

Kanonična oblika linearnega programa. Simpleksna metoda. Bazne rešitve kanoničnega linearnega programa. Kanonična oblika linearnega programa.. Drago Bokal, Tanja Gologranc Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru min c T x p. p. Ax = b x 0 Kako dobimo

Διαβάστε περισσότερα

ASTRONOMI V KMICI dvanajstič

ASTRONOMI V KMICI dvanajstič ASTRONOMI V KMICI dvanajstič Astronomi v Kmici, dvanajstič kmi a Kazalo KMICA V GALILEJEVEM LETU... 2 MEDNARODNO LETO ASTRONOMIJE 2009 V SLOVENIJI... 2 ROJSTVO ZVEZD... 2 POVPREČNA TEMPERATURA PLANETOV...

Διαβάστε περισσότερα

Matematično modeliranje. Simpleksna metoda.

Matematično modeliranje. Simpleksna metoda. Simpleksna metoda. Drago Bokal, Tanja Gologranc Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru Kanonična oblika linearnega programa. min c T x p. p.

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

KVANTNA FIZIKA. Svetloba valovanje ali delci?

KVANTNA FIZIKA. Svetloba valovanje ali delci? KVANTNA FIZIKA Proti koncu 19. stoletja je vrsta poskusov kazala še druga neskladja s predvidevanji klasične fizike, poleg tistih, ki so vodila k posebni teoriji relativnosti. Ti pojavi so povezani z obnašanjem

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

UPORABA POLYHIPE-BIOKOMPATIBILNIH

UPORABA POLYHIPE-BIOKOMPATIBILNIH UPORABA POLYHIPE-BIOKOMPATIBILNIH AKRILNIH POLIMEROV V TKIVNEM INŽENIRSTVU KOSTNIH NADOMESTKOV PoliMaT Academy TalentCamp 2012 Naloga za samostojno delo; področje C: Polimeri v medicini ddr. Matjaž DEŽELAK,

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

UVOD U KVANTNU TEORIJU

UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU 1.) FOTOELEKTRIČKI EFEKT 2.) LINIJSKI SPEKTRI ATOMA 3.) BOHROV MODEL ATOMA 4.) CRNO TIJELO 5.) ČESTICE I VALOVI Elektromagnetsko zračenje UVOD U KVANTNU TEORIJU

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Fizika. Doc. dr Nikola Cvetanović. Većina tehničkih problema su u suštini fizički

Fizika. Doc. dr Nikola Cvetanović. Većina tehničkih problema su u suštini fizički Fizika Doc. dr Nikola Cvetanović kabinet 011 Važnost fizike za tehniku Φυσιζ fizis Grčki, priroda Većina tehničkih problema su u suštini fizički Fizika vas uči veštinama potrebnim za inžinjere: kako se

Διαβάστε περισσότερα

Evolucija kontaktnih tesnih dvojnih sistema W UMa tipa

Evolucija kontaktnih tesnih dvojnih sistema W UMa tipa Evolucija kontaktnih tesnih dvojnih sistema W UMa tipa B.Arbutina 1,2 1 Astronomska opservatorija, Volgina 7, 11160 Beograd, Srbija 2 Katedra za astronomiju, Univerzitet u Beogradu, Studentski trg 16,

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice

Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice Laboratorij za termoenergetiko Vodikove tehnologije in PEM gorivne celice Pokrivanje svetovnih potreb po energiji premog 27% plin 22% biomasa 10% voda 2% sonce 0,4% veter 0,3% nafta 32% jedrska 6% geoterm.

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

GOSPODARJENJE Z ENERGIJO PREDAVANJE 1

GOSPODARJENJE Z ENERGIJO PREDAVANJE 1 GOSPODARJENJE Z ENERGIJO PREDAVANJE 1 UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo εργον αεργον Gospodarjenje z energijo UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

EF 1 EKONOMSKA FAKULTETA. Dekan: dr. MAKS TAJNIKAR, red. prof. Prodekani: Prodekan za študijske zadeve: dr. MARKO JAKLIČ, red. prof.

EF 1 EKONOMSKA FAKULTETA. Dekan: dr. MAKS TAJNIKAR, red. prof. Prodekani: Prodekan za študijske zadeve: dr. MARKO JAKLIČ, red. prof. EF 1 EKONOMSKA FAKULTETA Dekan: dr. MAKS TAJNIKAR, red. prof. Prodekani: Prodekan za študijske zadeve: dr. MARKO JAKLIČ, red. prof. Prodekanica za mednarodno sodelovanje: dr. NEVENKA HROVATIN, red. prof.

Διαβάστε περισσότερα

antična Grčija - snov zgrajena iz atomov /rezultat razmišljanja/

antična Grčija - snov zgrajena iz atomov /rezultat razmišljanja/ ZGRADBA ATOMA 1.1 - DALTON atom (atomos nedeljiv) antična Grčija - snov zgrajena iz atomov /rezultat razmišljanja/ dokaz izpred ~ 200 let Temelj so 3 zakoni: ZAKON O OHRANITVI MASE /Lavoisier, 1774/ ZAKON

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar

Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar Stikalni pretvorniki Seminar: Načrtovanje elektronike za EMC 9. 3. 2016 Boštjan Glažar niverza v Ljubljani Fakulteta za elektrotehniko Tržaška cesta 25, SI-1000 Ljubljana Vsebina Prednosti stikalnih pretvornikov

Διαβάστε περισσότερα

Osnove meteorologije z nalogami za študente 2. letnika programa Fizika Del 1: atmosferska sta=ka in stabilnost

Osnove meteorologije z nalogami za študente 2. letnika programa Fizika Del 1: atmosferska sta=ka in stabilnost Osnove meteorologije z nalogami za študente 2. letnika programa Fizika Del 1: atmosferska sta=ka in stabilnost izr.prof.dr. Nedjeljka Žagar Fakulteta za matema=ko in fiziko Univerza v Ljubljani Ljubljana,

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ

Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς έ ν τ ε κ α ( 1 1 ) τ ο υ μ ή ν α Α π ρ ι λ ί ο υ η μ έ ρ α Π α ρ α σ κ ε υ ή, τ ο

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

PRENAPETOSTNE ZAŠČITE ZA DOM

PRENAPETOSTNE ZAŠČITE ZA DOM PRENAPETOSTNE ZAŠČITE ZA DOM? TEVIZA, d.o.o., Bevkova 5, 1270 Litija, tel.: (0) 1 898 37 53, fax: (0) 1 898 32 93 PRENAPETOSTNE ZAŠČITE V ENERGETSKIH NIZKONAPETOSTNIH SISTEMIH PROTEC B - Odvodnik skupine

Διαβάστε περισσότερα

Andrej Uršič, Simona Uršič, Matevž Gobec. Zavod za zdravstveno varstvo Celje

Andrej Uršič, Simona Uršič, Matevž Gobec. Zavod za zdravstveno varstvo Celje OCENA STOPNJE TVEGANJA ZA ZDRAVJE, KI GA PREDSTAVLJAJO S TEŽKIMI KOVINAMI KONTAMINIRANA TLA NA OBMOČJU OBČINE ŽALEC IN S TEM POVEZANA ŽIVILA PRIDELANA NA TEM OBMOČJU Andrej Uršič, Simona Uršič, Matevž

Διαβάστε περισσότερα

Diagnostika v okoljskem strojništvu

Diagnostika v okoljskem strojništvu Marko Hočevar Diagnostika v okoljskem strojništvu učbenik za predmet Diagnostika v okoljskem strojništvu Ljubljana, november 2015 1 Kazalo Kazalo... Seznam uporabljenih simbolov... 1. Uvod... 2. Zrak...

Διαβάστε περισσότερα

Fizika 1 za matematičare

Fizika 1 za matematičare Željko Skoko Fizički odsjek, PMF, Zagreb Predavanja: utorak, 10-12 h, F102 Vježbe: četvrtak, 10-12 h, F102 Ines Vlahović Konzultacije: četvrtak, 13-15 h, F204 e-mail: zskoko@phy.hr tel: 4605 530 1 Literatura:

Διαβάστε περισσότερα

Predstavitev študijskega programa:

Predstavitev študijskega programa: PRVOSTOPENJSKI UNIVERZITETNI ŠTUDIJSKI PROGRAM KONSERVIRANJE IN RESTAVRIRANJE LIKOVNIH DEL, UNIVERZA V LJUBLJANI, AKADEMIJA ZA LIKOVNO UMETNOST IN OBLIKOVANJE Predstavitev študijskega programa: 1. Podatki

Διαβάστε περισσότερα

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo ENERGETSKI STROJI Uvod Pregled teoretičnih osnov Volmetrični stroji Trbinski stroji Značilnosti Trikotniki hitrosti Elerjeva trbinska enačba Notranji izkoristek Energijska karakteristika Energetske naprave

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

SEPTEMBER. 1 čet 2 pet 3 sob 4 ned 5 pon 6 tor 7 sre 8 čet 9 pet. 10 sob 11 intenzivne pevske vaje v Ankaranu ned 12 pon 13 tor. Vodnik 2016/

SEPTEMBER. 1 čet 2 pet 3 sob 4 ned 5 pon 6 tor 7 sre 8 čet 9 pet. 10 sob 11 intenzivne pevske vaje v Ankaranu ned 12 pon 13 tor. Vodnik 2016/ SEPTEMBER maša; zaek pouka* () piknik** spoznavni večer prvošolcev filmski večer ekskurzije (.. l.) * dogodki na GŽ (prva vrstica) ** dogodki v DJB (druga vrstica). elja med letom ekskurzija (. l.) Marijino

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα