ΕΡΓΑΛΕΙΑ ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΛΗΨΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΡΓΑΛΕΙΑ ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΛΗΨΗ"

Transcript

1 ΕΡΓΑΛΕΙΑ ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Πέτρος Χαβιάρης Πανεπιστήμιο Αιγαίου Λεωφ. Δημοκρατίας 1, 85100, Ρόδος Σόνια Καφούση Πανεπιστήμιο Αιγαίου Λεωφ. Δημοκρατίας 1, 85100, Ρόδος Φραγκίσκος Καλαβάσης Πανεπιστήμιο Αιγαίου Λεωφ. Δημοκρατίας 1, 85100, Ρόδος ΠΕΡΙΛΗΨΗ Η μελέτη της επικοινωνίας στη σχολική τάξη των Μαθηματικών αποτελεί ένα σύγχρονο ερευνητικό άξονα της μαθηματικής εκπαίδευσης, ως αποτέλεσμα της αναγνώρισης της κοινωνικής διάστασης της κατασκευής της μαθηματικής γνώσης. Σκοπός της εργασίας είναι η παρουσίαση και ανάλυση μεθοδολογικών εργαλείων που έχουν αναπτυχθεί τα τελευταία χρόνια για τη μελέτη της κοινωνικής αλληλεπίδρασης μεταξύ των μελών της τάξης στο μάθημα των Μαθηματικών. Παρουσιάζονται και αναλύονται δύο βασικές ερευνητικές προσεγγίσεις, η επικοινωνιακή και η αλληλεπιδραστική, οι οποίες θεωρούνται αντιπροσωπευτικές των νέων απόψεων για τη μάθηση και τη διδασκαλία των Μαθηματικών. Η μία έχει τις ρίζες της στην κοινωνικοπολιτισμική προσέγγιση της γνώσης και η άλλη θεωρείται συμπληρωματική της κατασκευαστικής θεωρίας της γνώσης.

2 1. Εισαγωγή Στις σύγχρονες επιστημολογικές, ψυχολογικές και κοινωνιολογικές θεωρήσεις που έχουν επηρεάσει τη μαθηματική εκπαίδευση, η κοινωνική διάσταση της κατασκευής της μαθηματικής γνώσης έχει κυρίαρχο ρόλο. Η γνώση θεωρείται προϊόν συλλογικής δραστηριότητας και η αλήθεια της αντιμετωπίζεται ως μια συμφωνία ανάμεσα στα μέλη μιας επιστημονικής κοινότητας σε μια δεδομένη κοινωνικοπολιτισμική συγκυρία. Σύμφωνα με τον von Glasersfeld (1995), η βιωσιμότητα της γνώσης εξασφαλίζεται μόνο όταν είναι εναρμονισμένη με τις συμβάσεις του κοινωνικού περιβάλλοντος, ενώ ο van Oers (1996) υποστηρίζει ότι οι κοινωνικές αλληλεπιδράσεις προσδιορίζουν το νόημα που δίνουμε στις εμπειρίες μας. Βασικός προσανατολισμός του ερευνητικού ενδιαφέροντος των παιδαγωγών των Mαθηματικών, σήμερα, είναι η μελέτη της κοινωνικής αλληλεπίδρασης στη σχολική τάξη των Μαθηματικών και η σχέση της με τη μάθηση των Μαθηματικών (Bower,2000). Ειδικότερα, οι σύγχρονες προσεγγίσεις για τη μάθηση και τη διδασκαλία των Μαθηματικών προσπαθούν να γεφυρώσουν την αντιπαράθεση μεταξύ μιας ψυχολογικής παράδοσης για την αυτονομία του μαθητή και της νοητικής του ανάπτυξης και μιας κοινωνιολογικής παράδοσης που επικρίνει την παιδοκεντρική αντίληψη και παραθέτει τη μάθηση ως κοινωνικοποίηση του παιδιού σε μια δεδομένη κοινωνικοπολιτισμική πραγματικότητα (Voigt, 1995). Στην εργασία αυτή επιχειρείται η παρουσίαση και ανάλυση δύο βασικών ερευνητικών προσεγγίσεων, της επικοινωνιακής και της αλληλεπιδραστικής, και των μεθοδολογικών τους εργαλείων που χρησιμοποιούν για τη μελέτη της επικοινωνίας μεταξύ των μελών της τάξης κατά τη διδασκαλία των Μαθηματικών. Οι προσεγγίσεις αυτές μπορεί να θεωρηθούν αντιπροσωπευτικές των σύγχρονων τάσεων στην έρευνα της Διδακτικής των Μαθηματικών. Η ανάλυση των συγκεκριμένων ερευνητικών παραδειγμάτων μπορεί να βοηθήσει στην προσπάθεια δημιουργίας ενός θεωρητικού πλαισίου, το οποίο να εξυπηρετεί το σχεδιασμό έρευνας για τη μελέτη της κοινωνικής αλληλεπίδρασης σε σχέση με τη μάθηση των Μαθηματικών στη σχολική τάξη. 2. Η επικοινωνιακή προσέγγιση (communicational approach) Η επικοινωνιακή προσέγγιση, στηριζόμενη στην κοινωνικοπολιτισμική θεωρία γνώσης, αναπτύσσει το πεδίο της έρευνάς της με βάση το αξίωμα ότι η σκέψη μπορεί να μελετηθεί ως μια περίπτωση επικοινωνίας, αν τη θεωρήσουμε σαν ένα συνεχή εσωτερικό διάλογο του ατόμου(sfard,2001). Η θεώρηση αυτή αποτελεί συνέπεια της θέσης πως σε κάθε ανθρώπινη δραστηριότητα ενυπάρχει κοινωνική καταγωγή και επιχειρεί να ενισχύσει την υπόθεση του Vygotsky πως κάθε νοητική λειτουργία αρχικά εμφανίζεται μεταξύ των ατόμων (διαψυχολογική) και μετά εσωτερικοποιείται (ενδοψυχολογική). Έτσι, στη συγκεκριμένη προσέγγιση η μάθηση

3 θεωρείται ως η ανάπτυξη τρόπων με τους οποίους το άτομο συμμετέχει σε εγκαθιδρυμένες κοινωνικές δραστηριότητες και το ερευνητικό της ενδιαφέρον εστιάζεται στην ερμηνεία των αλληλεπιδράσεων που παρακινούν την ανάπτυξη αυτή (Sfard,2001). Με βάση αυτές τις υποθέσεις, η μάθηση των Μαθηματικών προσδιορίζεται ως εισαγωγή στη μαθηματική συζήτηση(mathematical discourse), δηλαδή ως εισαγωγή σε έναν ειδικό τρόπο επικοινωνίας, το μαθηματικό. Οι συνιστώσες της κοινωνικής αλληλεπίδρασης, όπως περιγράφονται στις αναλύσεις των ερευνητών της επικοινωνιακής προσέγγισης, είναι τα μεσολαβητικά εργαλεία ή μεσολαβητές (mediating tools-mediators), τα οποία χρησιμοποιούν οι άνθρωποι ως μέσα επικοινωνίας και οι μεταδιαλογικοί κανόνες (meta-discursive rules), οι οποίοι συντονίζουν την προσπάθεια επικοινωνίας. Ως μεσολαβητικά εργαλεία αναφέρονται τα συμβολικά συστήματα, τα οποία θεωρείται ότι αποτελούν τους θεμέλιους λίθους της επικοινωνιακής δράσης (και άρα της σκέψης) και δεν νοούνται ως βοηθητικά μέσα για τη διεξαγωγή της επικοινωνίας. Αντίθετα, υπάρχει άμεση σχέση ανάμεσα στον τρόπο που κατασκευάζουμε έννοιες (conceptualization) και στον τρόπο που χρησιμοποιούμε τα σύμβολα (symbolizing). Κυρίαρχο συμβολικό εργαλείο θεωρείται η γλώσσα, ενώ στα Μαθηματικά, επιπροσθέτως, μεσολαβητικά εργαλεία θεωρούνται το σύστημα αρίθμησης, τα γραφήματα, οι πίνακες, οι αλγεβρικοί τύποι κλπ. Οι μετα-διαλογικοί κανόνες είναι θεωρητικές κατασκευές που αναπτύχθηκαν στην προσπάθεια των επιστημόνων να μελετήσουν τη διαδικασία της επικοινωνίας. Στην επικοινωνιακή προσέγγιση οι κανόνες αυτοί μπορούν να κατανοηθούν ως τις κανονικότητες που διέπουν την επικοινωνιακή διαδικασία και παραμένουν σταθερές, όταν αλλάζει το περιεχόμενο της επικοινωνίας. Συγκεκριμένα, θεωρούνται ως οι «σιωπηροί» ρυθμιστές των διαπροσωπικών και ενδοπροσωπικών συνδιαλλαγών, προσδιορίζουν τις επιλογές των συμμετεχόντων για δράση και καθορίζουν την ανάπτυξη αξιών και αντιλήψεων (Sfard,2000). Με βάση τα παραπάνω, τα τελευταία χρόνια αναπτύσσονται μεθοδολογικά εργαλεία για την ανάλυση μαθηματικών διαλόγων στην τάξη στα πλαίσια της επικοινωνιακής προσέγγισης. Πιο συγκεκριμένα, οι ερευνήτριες Sfard και Kieran (2001) σχεδίασαν και εφάρμοσαν δύο τύπους αναλύσεων: την εστιακή ανάλυση (focal analysis), η οποία επικεντρώνεται στη μελέτη αντικειμενικών φαινομένων της επικοινωνίας και την ανάλυση (preoccupational analysis), η οποία στοχεύει στη διερεύνηση της λειτουργίας των μετα-διαλογικών κανόνων. Στην πρώτη περίπτωση, προκειμένου να διερευνηθούν οι εκφράσεις που χρησιμοποιεί ένας συνομιλητής για να προσδιορίσει το αντικείμενο της προσοχής του και να αποσαφηνιστεί σε τι και πώς αυτός επικεντρώνει την προσοχή του όταν μιλά ή όταν σκέφτεται, χρησιμοποιείται μια τριμερής ανάλυση των φράσεών του. Κάθε στιγμή της ομιλίας του συζητητή αναλύεται ως προς: α) τη λέξη-εστία (pronounced focus), που δηλώνει σε τι επικεντρώνεται η προσοχή του συζητητή και β) τη διαδικασία-εστία (attended focus) που δηλώνει πώς ο συζητητής ενεργεί. Οι στιγμές του διαλόγου ομαδοποιούνται ως προς την πρόθεση -εστία (intended focus) που υποδηλώνεται από τις

4 λέξεις- εστίες και τις διαδικασίες-εστίες, οι οποίες χρησιμοποιούνται από τον ομιλητή για τον ίδιο σκοπό. Το παράδειγμα που ακολουθεί δείχνει μια εφαρμογή της εστιακής ανάλυσης(sfard,2001) : Το παρακάτω φύλλο εργασίας δόθηκε σε δωδεκάχρονους μαθητές που εργάζονταν σε μικρές ομάδες και αναφερόταν σε μια γραμμική συνάρτηση της μορφής αx+β ) Πόσο είναι το g(6); 1 0 2) Πόσο είναι το g(10); 2 5 3) Οι μαθητές μιας Α Γυμνασίου όταν τους ζητήθηκε να 3 10 γράψουν τον τύπο της συνάρτησης έγραψαν: 4 15 Evan: g(x)=5(x-1) 5 20 Amy: g(x)=3(x-3)+2(x-2) Stuart: g(x)=5x-5 Ποιος έχει δίκιο; Το πρωτόκολλο συνομιλίας μεταξύ δύο μαθητών αποτέλεσε τη βάση για την εστιακή ανάλυση. Ο πίνακας που ακολουθεί δείχνει ένα παράδειγμα ταξινόμησης των στιγμών της συνομιλίας για ένα μαθητή: φράσεις (Utterances) λέξεις-εστίες (pronounced foci) διαδικασίες-εστίες (attended foci) 1a, 1b, 11a, «κλίση» Χρήση του πίνακα για την 1c, 11b, «σημείο τομής» εύρεση του σημείου τομής 1c «μείον 5» 1. βρίσκω το 0 στην 11b «το 0» αριστερή στήλη του πίνακα 2. βρίσκω τον αριθμό στη δεξιά στήλη του πίνακα που αντιστοιχεί στο 0 3, 5 «κλίση» Χρήση του τύπου της συνάρτησης Βρίσκω το συντελεστή του x στον τύπο 5x+-5 προθέσεις-εστίες (intended foci) Το σημείο τομής Η κλίση ( Οι αντίστοιχες φράσεις του μαθητή στο διάλογο είναι οι ακόλουθες: 1. (1 a ) Περίμενε, πώς θα βρούμε την κλίση πάλι; (1b) Οχι, όχι. Η κλίση, όχι, θέλουμε (1c)το σημείο τομής που είναι 5. (1d)Η κλίση. 3. Μιλώ γι αυτό. Είναι 5.

5 5. 5x. Σωστά; 11. (11a). Κοίτα. Επειδή, η κλίση, είναι μηδέν. (11b) Α, όχι, το σημείο τομής είναι μηδέν.) Ανάλογος πίνακας κατασκευάστηκε και για το συνομιλητή του πρώτου μαθητή και έτσι κατέστη δυνατή η σύγκριση των ενεργειών των δύο συνομιλητών. Η ανάλυση της συζήτησης επικεντρώνεται στα εξής σημεία: α)στη συνέπεια ή μη που παρουσιάζει ο λόγος και οι ενέργειες του μαθητή σε σχέση με τις προθέσεις του, β)στη διατήρηση ή μη της σημασίας του μαθηματικού αντικειμένου και των στοιχείων του κατά τη διάρκεια της συνομιλίας, γ)στην επιδεξιότητα ή μη με την οποία χρησιμοποιεί διαφορετικές διαδικασίες για ένα σκοπό. Μια τέτοια ανάλυση επιτρέπει τη μελέτη των ενεργειών των μαθητών κατά την αλληλεπίδραση μεταξύ τους όσον αφορά τις γνωστικές τους προθέσεις(cognitive intentions), οι οποίες σχετίζονται με τους στόχους μιας συγκεκριμένης μαθηματικής δραστηριότητας. Η συστηματική, όμως, μελέτη των προθέσεων που καθοδηγούν την επικοινωνιακή διαδικασία(metadiscursive intentions) δε φαίνεται να είναι εφικτή, καθώς αυτές είναι πολύπλοκες και περιλαμβάνουν τόσο τις υποθέσεις των συμμετεχόντων για τον τρόπο που καθοδηγείται μια αλληλεπίδραση όσο και θέματα που αφορούν τη σχέση μεταξύ των συνομιλητών. Γι αυτό το λόγο, οι συγκεκριμένες ερευνήτριες ανέπτυξαν μια μέθοδο προκειμένου να μελετήσουν τις επικοινωνιακές προθέσεις των συνομιλητών. Βασικό εργαλείο που χρησιμοποιείται στην ανάλυση αυτή είναι το αλληλεπιδραστικό διάγραμμα (interactivity flowchart). Πρόκειται για ένα διάγραμμα που επιχειρεί να αποτυπώσει τις κινητήριες δυνάμεις ενός διαλόγου συνδέοντας κάθε φράση με εκείνη που την προκαλεί να δημιουργηθεί. Οι φράσεις χαρακτηρίζονται ως αντιδράσεις(reactions) σε μια φράση- στόχο ή ως απευθύνσεις- προκλήσεις(proactions) για απάντηση. Η συνεχής ροή φράσεων σημειώνονται στο διάγραμμα με αντίστοιχα βέλη επιτρέποντας μια αναπαράσταση της συζήτησης και την αποκάλυψη κανονικοτήτων(regularities) που εμφανίζει ο διάλογος (βλ. παράρτημα ). Η συζήτηση αποτυπώνεται στο διάγραμμα σε παράλληλα κανάλια επικοινωνίας, ένα για κάθε συμμετέχοντα, δίνοντας τη δυνατότητα στον ερευνητή να μελετήσει τα επικοινωνιακά χαρακτηριστικά του κάθε συνομιλητή ξεχωριστά αλλά και σε σύγκριση με τον άλλο, ενώ ταυτόχρονα μπορεί να εστιάσει σε ενδιαφέρουσες στιγμές της αλληλεπίδρασης. Η ανάλυση της συζήτησης επικεντρώνεται στα εξής σημεία: α)στο ενδιαφέρον που δείχνει ο συνομιλητής για την αλληλεπίδραση (πόσο επιτρέπει στον εαυτό του και στους συνομιλητές του να αλληλεπιδράσουν), β)στην «εξουσία» που ασκεί ή όχι ένας συνομιλητής προκειμένου να καθοδηγήσει τη συζήτηση, γ)στην ειλικρίνεια ή την υποκρισία των συνομιλητών (μέσα από το ύφος της γλώσσας που χρησιμοποιούν στις αποκρίσεις τους), δ)στη συναισθηματική κατάσταση του κάθε συνομιλητή και κατά πόσο αυτή λαμβάνεται υπόψη από τους άλλους συνομιλητές (για παράδειγμα, πώς αντιδρά ένας συνομιλητής στη σιωπή ή τη λανθασμένη παρέμβαση του άλλου).

6 Στα πλαίσια της επικοινωνιακής προσέγγισης, η μελέτη της αλληλεπίδρασης που συμβαίνει μεταξύ των μελών μιας τάξης εστιάζεται στο ρόλο των προθέσεων που έχουν οι συνομιλητές και στη δυναμική που αυτές οι προθέσεις εμφανίζουν στην εκπαιδευτική διαδικασία. Ερμηνεύοντας κάθε γεγονός της εκπαιδευτικής διαδικασίας ως επικοινωνιακό (συνδιαλλαγή μηνυμάτων), το οποίο συντελείται σε μια συγκεκριμένη συγκυρία κοινωνικοπολιτισμικών συνθηκών, οι ερευνητές προσανατολίζουν τα ερωτήματά τους με βάση τη θέση ότι κάθε ενέργεια ενός συνομιλητή είναι προϊόν μιας συλλογικής δραστηριότητας και δεν είναι άμεσο παράγωγο των προσωπικών ικανοτήτων και της μαθηματικής του δυναμικής. Επομένως, για να είναι πιο αποτελεσματική η μάθηση των Μαθηματικών πρέπει οι μαθητές να διδαχθούν επικοινωνιακές δεξιότητες (communicative skills). Η συστηματική μελέτη διαφορετικών επεισοδίων από την τάξη κατά τη διδασκαλία των Μαθηματικών μπορεί να επιτρέψει το σχεδιασμό διδακτικών παρεμβάσεων που να στοχεύουν στη βελτίωση της μαθηματικής επικοινωνίας. Απαντήσεις σε ερωτήματα όπως: πώς οι μαθητές μπορούν να συνειδητοποιούν και να δηλώνουν με σαφήνεια τις προθέσεις τους, ποια πρέπει να είναι τα χαρακτηριστικά των μαθηματικών δραστηριοτήτων ώστε οι μαθητές να εμπλέκονται σε θετικές αλληλεπιδράσεις, ποια πρέπει να είναι η σύνθεση των ομάδων εργασίας στην τάξη, αποτελούν τη βάση για το σχεδιασμό διδασκαλιών που επιχειρούν να βελτιώσουν τη μαθηματική επικοινωνία. 3. Η αλληλεπιδραστική προσέγγιση (interactionism) Στα πλαίσια της αλληλεπιδραστικής θεωρίας για τη μάθηση των Mαθηματικών το ενδιαφέρον των ερευνητών εστιάζεται στη μελέτη τύπων αλληλεπίδρασης που εγκαθιδρύονται στη σχολική τάξη. Σύμφωνα με το Voigt(1995), μια βασική υπόθεση της προσέγγισης αυτής είναι ότι τα αντικείμενα μιας μαθηματικής συζήτησης στην τάξη είναι ασαφή διότι επιδέχονται ποικιλία ερμηνειών. Προκειμένου το υποκείμενο να δώσει νόημα σε ένα μαθηματικό αντικείμενο χρησιμοποιεί την προϋπάρχουσα γνώση του και δημιουργεί ένα πλαίσιο για την ερμηνεία του. Αυτή η ποικιλία των ερμηνειών για το ίδιο μαθηματικό αντικείμενο δημιουργεί ευκαιρίες μάθησης κατά την κοινωνική αλληλεπίδραση. Κατά τη διαδικασία της αλληλεπίδρασης οι συμμετέχοντες διαπραγματεύονται τα μαθηματικά τους νοήματα και προσπαθούν να φτάσουν σε μια συμφωνία σχετικά με το ποια αποτελέσματα και ποια επιχειρήματα θα θεωρηθούν ως μαθηματικές λύσεις και κατάλληλες μαθηματικές εξηγήσεις αντίστοιχα. Μια άλλη βασική υπόθεση της αλληλεπιδραστικής προσέγγισης είναι ότι κάθε συμμετέχοντας στην αλληλεπίδραση ρυθμίζει τη δράση του σε συνάρτηση με αυτό που ο ίδιος υποθέτει ότι είναι οι προσδοκίες και οι γνώσεις των άλλων συμμετεχόντων. Παράλληλα, οι αποδέκτες της δράσης την ερμηνεύουν ανάλογα με αυτό που πιστεύουν ότι είναι οι γνώσεις και οι προσδοκίες του υποκειμένου που ενεργεί. Μια τρίτη βασική αρχή της συγκεκριμένης προσέγγισης είναι ότι ο δάσκαλος και οι μαθητές δε «μοιράζονται» γνώση αλλά τα μαθηματικά νοήματα που παράγονται μέσω της διαπραγμάτευσης

7 θεωρούνται σαν να είναι κοινά (taken as shared). Οι συμμετέχοντες αλληλεπιδρούν σαν να ερμηνεύουν το μαθηματικό θέμα της συζήτησής τους με τον ίδιο ακριβώς τρόπο, αν και δεν μπορούν πραγματικά να είναι σίγουροι ότι οι υποκειμενικές τους κατανοήσεις συμφωνούν με αυτές των άλλων συμμετεχόντων. Σ αυτή τη διαδικασία οι μαθητές και ο δάσκαλος πετυχαίνουν μια θεματική συνάφεια στη συζήτησή τους. Αλληλεπιδρώντας συνθέτουν ένα μαθηματικό θέμα το οποίο από τη μια εξαρτάται από τη συνεισφορά των συμμετεχόντων και από την άλλη δεν μπορεί να εξηγηθεί επαρκώς μέσα από τις σκέψεις και τις προθέσεις του καθενός συμμετέχοντος ξεχωριστά Το παρακάτω παράδειγμα μαθηματικής συζήτησης μεταξύ δύο μαθητών και ενός ερευνητή δείχνει τη σύνθεση ενός μαθηματικού θέματος (Voigt, 1995). Οι μαθητές είχαν εμπλακεί στην επίλυση της ακόλουθης σειράς αριθμητικών προτάσεων: = = = = = = = Ο διάλογος που ακολουθεί αφορά την επίλυση της 7 ης αριθμητικής πρότασης Γιάννης: Α! ναι, αυτό είναι 18, όχι 19. Μαρία: Ναι, αλλά αυτό είναι 32 όχι 31. Γιάννης: Σωστά! Μαρία: Είναι το ίδιο πράγμα. Ερευνητής: Ποιο είναι το ίδιο πράγμα; Μαρία:Αυτά τα δύο(δείχνει τις προτάσεις 6 και 7). Ερευνητής: Γιάννη, ποιο είναι το ίδιο; Είχαμε 31 και 19. Γιάννης: Κάνουν 50. Ερευνητής: Ναι. Γιάννης:Και, κοίτα 32 και 18. Δες, είναι ένα περισσότερο από αυτό και αυτό είναι ένα λιγότερο από αυτό (δείχνει τους προσθετέους αντίστοιχα). Αναλύοντας τον παραπάνω διάλογο μπορούμε να υποθέσουμε ότι η στρατηγικής της αντιστάθμισης των προσθετέων(compensation) εμφανίστηκε ανάμεσα στους δυο μαθητές χωρίς ο καθένας από αυτούς να την είχε στο μυαλό του. Στην αρχή κάθε μαθητής είχε εστιάσει την παρατήρησή του στη σύγκριση ενός προσθετέου. Στη συνέχεια, ο ένας μαθητής παρακινούμενος από τον άλλο αποδέχτηκε τη θέση του συνομιλητή του. Μέσα από αυτή τη διαπραγμάτευση κατασκευάστηκε ένα νόημα για το συγκεκριμένο θέμα, το οποίο δεν μπορούμε να υποθέσουμε ότι θα μπορούσε να κατασκευαστεί από τον ένα μαθητή χωρίς αυτή τη διαπραγμάτευση. Στη διάρκεια, λοιπόν, μιας διαπραγμάτευσης νοημάτων οι μαθητές και ο δάσκαλος ή οι μαθητές μεταξύ τους επιτυγχάνουν σχέσεις μαθηματικών νοημάτων τις οποίες αποδέχονται ως από κοινού

8 μοιρασμένες. Αυτές οι κοινά αποδεχτές μαθηματικές σχέσεις αποτελούν για τους ερευνητές της αλληλεπιδραστικής προσέγγισης τα μαθηματικά θέματα. Στο προηγούμενο διάλογο το μαθηματικό θέμα που συνέθεσαν οι μαθητές κατά τη διαπραγμάτευση των νοημάτων τους είναι η σύγκριση των δύο αριθμητικών προτάσεων. Έτσι, μία μαθηματική εξήγηση είναι μία κοινωνική διαδικασία και όχι μια ατομική ενέργεια. Τα νοήματα δεν καθορίζονται από ένα πολιτισμικό πλαίσιο που προϋπάρχει και είναι ανεξάρτητο από τη διαπραγμάτευσή τους. Στην καθημερινή πρακτική της τάξης ο δάσκαλος και οι μαθητές υποθέτουν ότι τα χαρακτηριστικά της μικροκουλτούρας τους είναι καθορισμένα, ενώ στην πραγματικότητα είναι από κοινού κατασκευασμένα μέσω αλληλεπιδραστικών διαδικασιών. Συγκρίνοντας διαφορετικές σχολικές τάξεις μπορούμε να αναγνωρίσουμε διαφορετικές μικροκουλτούρες ανάλογα με τη δραστηριότητα των συμμετεχόντων. Από τη σκοπιά του ερευνητή, οι διαφορετικές μικροκουλτούρες γίνονται παρατηρήσιμες μέσω τύπων αλληλεπίδρασης (patterns of interaction) που αναπτύσσονται στη σχολική πρακτική. Οι τύποι κοινωνικής αλληλεπίδρασης αφορούν κανονικότητες, οι οποίες οικοδομούνται σταδιακά κατά την αλληλεπίδραση των μελών μιας τάξης και δεν είναι απαραίτητα σκόπιμες ή αναγνωρίσιμες από τους συμμετέχοντες στην αλληλεπίδραση. Το κάθε μέλος της τάξης εμπλέκεται «σιωπηρά» στη δημιουργία ενός τύπου αλληλεπίδρασης μέσα από τα ιδιαίτερα χαρακτηριστικά της προσωπικότητάς του (ενδιαφέροντα- προσδοκίες- επιθυμίες- συνήθειες) (Bauersfeld, 1995). Για έναν ερευνητή η εγκαθίδρυση μιας κανονικότητας στον τρόπο που αλληλεπιδρούν τα μέλη μιας τάξης γίνεται φανερή μέσα από τη σταθεροποίηση μιας διαδικασίας διαπραγμάτευσης νοημάτων μεταξύ των συμμετεχόντων. Η εγκαθίδρυση μιας κανονικότητας στον τρόπο που συντελείται η αλληλεπίδραση ελαχιστοποιεί τον κίνδυνο της αποδιοργάνωσης της διαδικασίας της αλληλεπίδρασης, λόγω της διαφορετικότητας των νοημάτων των μελών μιας τάξης (Cobb,1995). Για παράδειγμα, ένας τύπος αλληλεπίδρασης μεταξύ των μελών μιας τάξης είναι ο εκμαιευτικός (elicitation pattern)(voigt,1995), στον οποίο μπορούν να διακριθούν τρεις φάσεις ανάπτυξης: α) Ο δάσκαλος προτείνει ένα ανοιχτό μαθηματικό θέμα και οι μαθητές εκφράζουν διαφορετικές απαντήσεις και λύσεις τις οποίες ο δάσκαλος αποτιμά. β) Εάν οι απαντήσεις των μαθητών είναι αρκετά αποκλίνουσες από την επιδιωκόμενη σωστή λύση, ο δάσκαλος οδηγεί με κατάλληλες ερωτήσεις τους μαθητές στη σωστή απάντηση πιστεύοντας πως μ αυτό τον τρόπο εκμαιεύει τη μαθηματική γνώση. Η φάση αυτή συμφωνεί με τη Σωκρατική μέθοδο κατά την οποία ο δάσκαλος εκμαιεύει περιοχές της μαθηματικής γνώσης μέσα από επάλληλα βήματα αιτιολόγησης των απαντήσεων από τους μαθητές. γ) Ο δάσκαλος και οι μαθητές αξιολογούν τη γνώση που έχει αποκτηθεί. Ένας άλλος τύπος αλληλεπίδρασης είναι ο διαλογικός (discussion pattern) ο οποίος συνήθως παρατηρείται σε διδασκαλίες Μαθηματικών που ακολουθούν διερευνητικές προσεγγίσεις. Στον τύπο αυτό αλληλεπίδρασης μπορούν να διακριθούν οι εξής φάσεις ανάπτυξης:

9 Οι μαθητές λύνουν ένα μαθηματικό πρόβλημα σε μικρές ομάδες εργασίας. Ο δάσκαλος ζητά από έναν μαθητή να ανακοινώσει τη λύση στην οποία κατέληξε η ομάδα. Ο μαθητής ανακοινώνει τη λύση και την εξηγεί. Ο δάσκαλος συμβάλλει στην εξήγηση του μαθητή μέσα από ερωτήσεις, νύξεις, αναμορφώσεις και έτσι μια κοινά αποδεκτή λύση ή εξήγηση αναδύεται ως έγκυρη Ο δάσκαλος ρωτά άλλους μαθητές για διαφορετικούς τρόπους επίλυσης του προβλήματος. Η πρώτη φάση ξαναρχίζει(wood,1995). Υπάρχουν σημαντικές διαφορές ανάμεσα στο μαιευτικό και το διαλογικό τύπο αλληλεπίδρασης μέσα στην τάξη. Στον πρώτο, η λύση είναι ο βασικός στόχος της μαθηματικής πρακτικής στο σχολείο, ενώ στο δεύτερο η λύση ενός μαθηματικού προβλήματος είναι η αρχή για διαπραγμάτευση. Στο μαιευτικό τύπο οι μαθητές υποχρεώνονται να ακολουθήσουν βήμα προς βήμα τον τρόπο επίλυσης του προβλήματος ο οποίος προτείνεται από το δάσκαλο. Αντίθετα, στο διαλογικό τύπο η επιχειρηματολογία ωφελείται από τις συνεισφορές των παιδιών. Στην πρώτη περίπτωση οι ικανότητες των παιδιών παραμένoυν αφανείς, ενώ στη δεύτερη δημοσιοποιούνται. Στις περιπτώσεις που εγκαθιδρύεται ο μαιευτικός τύπος αλληλεπίδρασης οι μαθητές συμμετέχουν με επιτυχία όταν μαθαίνουν να λύνουν προβλήματα με τον τρόπο που αναμένει ο δάσκαλος. Αντίθετα, κατά τη συμμετοχή των μαθητών στο διαλογικό τύπο αλληλεπίδρασης δημιουργούνται οι ευκαιρίες να μάθουν οι μαθητές να επιχειρηματολογούν με μαθηματικό τρόπο(voigt, 1995). Επίσης, ο Voigt(1995) χρησιμοποιεί τον όρο θεματικοί τύποι αλληλεπίδρασης (thematic patterns) για να περιγράψει εξειδικευμένες κανονικότητες που εμφανίζονται στην επικοινωνία κατά τη διδασκαλία των Μαθηματικών. Για παράδειγμα, σε δραστηριότητες που περιλαμβάνουν σχήματα και αφορούν στην πρόσθεση διψηφίων αριθμών, θεματικοί τύποι αλληλεπίδρασης είναι η μέτρηση αντικειμένων και ο νοερός υπολογισμός με αριθμούς. Ο πρώτος τύπος εμφανίζεται όταν οι μαθητές συνεργαζόμενοι ερμηνεύουν τα σύμβολα ως αναπαραστάσεις συγκεκριμένων αντικειμένων και ο δεύτερος εμφανίζεται όταν ερμηνεύουν τα σύμβολα ως αναπαραστάσεις αριθμών. Την τελευταία δεκαετία οι ερευνητές Cobb, Yackel και Bauersfeld (Cobb & Bauersfeld, Yackel & Cobb,1996) επιχειρούν να συντονίσουν τις θέσεις της κατασκευαστικής και της αλληλεπιδραστικής προσέγγισης προκειμένου να συνδέσουν τη γνωστική ανάπτυξη του παιδιού με την κοινωνική αλληλεπίδραση μέσα στη σχολική τάξη. Η θεωρία τους (emergent theory) επεξεργάζεται τον τρόπο εγκαθίδρυσης κοινωνικών συνηθειών (social norms) στη διδασκαλία των Μαθηματικών καθώς και τη σχέση τους με τη γνωστική ανάπτυξη των μαθητών. Οι κοινωνικές συνήθειες είναι ένα σύνολο συμφωνημένων αρχών συνύπαρξης και συνδιαλλαγής των ατόμων μιας ομάδας που επιτελεί ένα σκοπό, οι οποίες καθοδηγούν την κοινωνική συμπεριφορά των μελών της τάξης και κατευθύνουν τους τύπους αλληλεπίδρασης που αναπτύσσονται στην τάξη. Εγκαθιδρύονται μέσω της κοινωνικής αλληλεπίδρασης των συμμετεχόντων μελών, η οποία

10 συντελείται στο πλαίσιο της επαναδιαπραγμάτευσης των ιδεών τους. Για παράδειγμα, βασικές κοινωνικές νόρμες που περιγράφονται από τους ερευνητές αυτής της προσέγγισης είναι η υποχρέωση των μαθητών να εξηγούν και να δικαιολογούν τις απόψεις τους ανεξάρτητα από την ορθότητά τους, να εργάζονται από κοινού και να μοιράζονται την ευθύνη των ενεργειών τους κ.ά. Οι ίδιοι ερευνητές χρησιμοποιούν τον όρο κοινωνικομαθηματικές συνήθειες (sociomathematical norms) για να προσδιορίσουν τις συνήθειες εκείνες που κατευθύνουν τη μαθηματική συζήτηση στην τάξη. Ως τέτοιες συνήθειες σημειώνονται οι εξής: α)τι συνιστά μια μαθηματική λύση ως διαφορετική, β) Τι συνιστά μια μαθηματική λύση ως ποιοτικά ανώτερη(sophisticated), β)τι συνιστά μια μαθηματική λύση ως αποτελεσματική, δ)πότε μια μαθηματική λύση αξιολογείται ως κατάλληλη. Η διαφορετικότητα, η ελκυστικότητα και η αποτελεσματικότητα μιας λύσης χαρακτηρίζει την ίδια τη λύση, ενώ το να αξιολογηθεί μια λύση ως κατάλληλη αφορά τη διαδικασία με την οποία κατασκευάστηκε και αιτιολογήθηκε. Οι κοινωνικομαθηματικές νόρμες μπορούν να εγκαθιδρυθούν κατά τη διδασκαλία των Μαθηματικών, εφόσον κοινωνικές νόρμες σαν αυτές που αναφέρθηκαν έχουν ήδη εγκαθιδρυθεί μεταξύ των μελών της τάξης. Τα τελευταία χρόνια έχουν πραγματοποιηθεί αρκετές ερευνητικές εργασίες γύρω από τους τρόπους με τους οποίους οι κοινωνικομαθηματικές νόρμες μπορούν να αναπτυχθούν στην τάξη των Μαθηματικών οι οποίες εστιάζονται κυρίως στις ενέργειες και τις πρακτικές του δασκάλου και στη συνεισφορά κατάλληλων μαθηματικών δραστηριοτήτων(mcclain & Cobb, Hershcowich & Schwaz, 1999). Το παρακάτω ερμηνευτικό πλαίσιο που έχει παρουσιάσει η Yackel και οι συνεργάτες της (2000) επιχειρεί να συντονίσει κοινωνιολογικές και ψυχολογικές προσεγγίσεις στη μάθηση και τη διδασκαλία των Μαθηματικών: Κοινωνική προσέγγιση Κοινωνικές νόρμες της τάξης Κοινωνικομαθηματικές νόρμες Μαθηματικές πρακτικές στην τάξη Ψυχολογική προσέγγιση Αντιλήψεις για το δικό μας ρόλο, το ρόλο των άλλων και τη φύση της μαθηματικής δραστηριότητας Εξειδικευμένες αντιλήψεις και αξίες για τα Μαθηματικά Μαθηματικές έννοιες και δραστηριότητες 4. Συζήτηση Με βάση τα όσα αναφέρθηκαν παραπάνω σχετικά με τις σύγχρονες τάσεις στην έρευνα για την κοινωνική αλληλεπίδραση στη διδασκαλία των Μαθηματικών και τα μεθοδολογικά εργαλεία που έχουν αναπτυχθεί γι αυτό το σκοπό, θα μπορούσαμε να σημειώσουμε ότι τόσο στην επικοινωνιακή όσο και στην αλληλεπιδραστική προσέγγιση η ανάλυση των μετα-διαλογικών

11 κανόνων -ως ρυθμιστές των διαπροσωπικών και ενδοπροσωπικών συνδιαλλαγών - και η εγκαθίδρυση κοινωνικών και κοινωνικομαθηματικών συνηθειών - που κατευθύνουν τους τύπους αλληλεπίδρασης που αναπτύσσονται στην τάξη- μας επιτρέπουν να εμβαθύνουμε και να μελετήσουμε τη σχέση της κοινωνικής αλληλεπίδρασης με τη μάθηση των Μαθηματικών. Ωστόσο, οι ερευνητές της επικοινωνιακής προσέγγισης, ενώ εστιάζουν τα ερωτήματά τους και αναπτύσσουν εργαλεία γύρω από το πώς το άτομο συμμετέχει στη διαδικασία ενσωμάτωσής του σε ένα κοινωνικοπολιτισμικό περιβάλλον, καλούνται να προσδιορίσουν την έννοια της δημιουργικότητας του ατόμου ( Lerman, 2001). Ανάλογα, οι ερευνητές της αλληλεπιδραστικής προσέγγισης, εστιάζοντας στη δυναμική της μικροκουλτούρας που δημιουργείται στη σχολική τάξη, καλούνται να δώσουν απάντηση για το πώς οι πρακτικές των μαθητών μπορούν να μετεξελιχθούν στις θεσμοθετημένες πρακτικές της μαθηματικής κοινότητας(cobb et al.,1996). Όπως εύστοχα σχολιάζει ο Cazden (1986) «Σχετικά με το πώς η συζήτηση συνδέει το γνωστικό με το κοινωνικό, έχουμε δει ότι το κοινωνικό έχει δύο αλληλοσυσχετιζόμενα νοήματα: το μικροκοινωνιολογικό μήνυμα της κατάστασης της οποίας η συζήτηση είναι ένα μέρος και το μακροκοινωνιολογικό μήνυμα της διαστρωμάτωσης μέσα σε μια κοινωνία. Η έρευνα για την επικοινωνία στην τάξη η οποία αποσκοπεί στο να συμβάλλει στη διασαφήνιση της σχέσης γνωστικόκοινωνικό πρέπει να λαμβάνει υπόψη της και τις δυο αυτές μεταβλητές». ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΑΝΑΦΟΡΕΣ Bauersfeld, H. (1995). The structuring of the structures: development and function of mathematizing as a social practice. In L. Steffe and J. Gale (Ed.), Constructivism in Education, pp LEA. Bower,J.(2000). Postscript: intergrating themes on discourse and design. In P.Cobb,E. Yackel & K. McClain(eds.) Symbolizing and Communicating in Mathematics Clasrooms. Perspectives on Discourse,Tools,and Instructional Design. pp Erlbaum,Manhwah. Cazden,C.(1986). Classroom Discourse. In M. Wittrook. (ed.) Handbook of Research on Teaching. pp Cobb, P. (1995). Mathematical Learning and Small Group Interaction: Four Case Studies In P.Cobb & H. Bauersfeld (eds) The emergence of mathematical meaning:interaction in Classroom Cultures, pp LEA. Cobb, P.,Jaworski,B. & Presmeg,N. Emergent and Sociocultural Views of Mathematical Activity. In L.Steffe & P. Nesher (eds.)theories of Mathematical Learning. pp.3-20.new Jersey.LEA. Cobb, P.& Bauersfeld, H. (1995). Introduction:The Coordination of Psychological and Sociological Perspectives in Mathematics Education In P.Cobb & H. Bauersfeld (eds) The emergence of mathematical meaning:interaction in Classroom Cultures, pp LEA. Hershcowich, R. & Schwaz, B.(1999).The Emergent Perspective in Rich Learning Environments: Some Roles of Tools and Activities in The Construction of Sociomathematical Norms. Educational Studies in Mathematics. 39, Lerman,S.(2001). Cultural, Discoursive Psychology: A Sociocultural Approach to Studying the Teaching and Learning of Mathematics. Educational Studies in Mathematics. 46, McClain,k. & Cobb,P.( 2001). An Analysis of Development of Sociomathematical Norms in One First Grade Classroom.. Journal for Research in Mathematics Education, 32(3), Sfard,A.(2000). Steering (dis)course between metaphor and rigor. Using focal analysis to investigate the emergence of mathematical objects. Journal for Research in Mathematics Education, 31(3), Sfard,A.(2001). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. Educational Studies in Mathematics. 46,

12 Sfard,A. and Kieran,C.(2001) Cognition as communication, Rethinking learning by talking through multifaceted analysis of students mathematical interactions. Mind, Culture and Activity, 8(1), van Oers,B.(1996) Learning Mathematics as a Meaningful Activity. In L.Steffe & P. Nesher (eds.)theories of Mathematical Learning. pp new Jersey.LEA. Voigt,J.(1995). Thematic Patterns of Interaction and Sociomathematical Norms. In P.Cobb & H. Bauersfeld (eds) The emergence of mathematical meaning:interaction in Classroom Cultures, pp LEA. von Glasersfeld, E. (1995). Radical Constructivism: A way of Knowing and learning. The Falmer Press. Yackel,E. and Cobb, P.(1996). Sociomathematical noms, argumentation and autonomy in mathematics. Journal for Research in Mathematics Education 27, Yackel,E., Rasmusen.C & King, K.(2000). Social and sociomathematical norms in an advanced undergrtuate mathematics course. Journal of Mathematical Behavior. 19, Wood,T.(1995). An Emerging Practice Of Teaching. In P.Cobb & H. Bauersfeld (eds) The emergence of mathematical meaning:interaction in Classroom Cultures, pp LEA. ABSTRACT The study of communication in mathematics classroom constitutes a basic research axis in mathematical education as a consequence of the recognition that the mathematical knowledge is socially constructed. The purpose of this paper is the presentation and the analysis of methodological tools developed in last years for the study of social interaction among members in mathematics classroom. They are presented and analyzed two basic research approaches, the communicational and the interactionist, which are considered as representative of the new views about the learning and teaching mathematics. The first one has its origin on sociocultural theory of knowledge and the second is considered as a complementary of constructivism. ΠΑΡΑΡΤΗΜΑ Το αλληλεπιδραστικό διάγραμμα έχει την παρακάτω μορφή:

13

Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης. Η πραγματικότητα έχει την ίδια σημασία για όλους. Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές

Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης. Η πραγματικότητα έχει την ίδια σημασία για όλους. Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης Βασικές παραδοχές : Η πραγματικότητα έχει την ίδια σημασία για όλους Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές Αυτοί που δεν καταλαβαίνουν είναι ανίκανοι,

Διαβάστε περισσότερα

Η ΔΙΑΧΕΙΡΙΣΗ ΑΝΙΣΟΤΗΤΩΝ ΑΠΟ ΤΟΥΣ ΙΔΙΟΥΣ ΤΟΥΣ ΜΑΘΗΤΕΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ: Ο ΡΟΛΟΣ ΤΟΥ ΜΕΤΑΔΙΑΛΟΓΙΚΟΥ ΑΝΑΣΤΟΧΑΣΜΟΥ

Η ΔΙΑΧΕΙΡΙΣΗ ΑΝΙΣΟΤΗΤΩΝ ΑΠΟ ΤΟΥΣ ΙΔΙΟΥΣ ΤΟΥΣ ΜΑΘΗΤΕΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ: Ο ΡΟΛΟΣ ΤΟΥ ΜΕΤΑΔΙΑΛΟΓΙΚΟΥ ΑΝΑΣΤΟΧΑΣΜΟΥ Η ΔΙΑΧΕΙΡΙΣΗ ΑΝΙΣΟΤΗΤΩΝ ΑΠΟ ΤΟΥΣ ΙΔΙΟΥΣ ΤΟΥΣ ΜΑΘΗΤΕΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ: Ο ΡΟΛΟΣ ΤΟΥ ΜΕΤΑΔΙΑΛΟΓΙΚΟΥ ΑΝΑΣΤΟΧΑΣΜΟΥ Χαβιάρης Πέτρος 1.Θεωρητικό πλαίσιο Αν στις ανθρώπινες σχέσεις ζητούμενο είναι να μπορεί ο ένας

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

Μαθηματικά: θεωρίες μάθησης. Διαφορετικές σχολές Διαφορετικές υποθέσεις

Μαθηματικά: θεωρίες μάθησης. Διαφορετικές σχολές Διαφορετικές υποθέσεις Μαθηματικά: θεωρίες μάθησης Διαφορετικές σχολές Διαφορετικές υποθέσεις Τι είναι μάθηση; Συμπεριφορισμός: Aλλαγή συμπεριφοράς Γνωστική ψυχολογία: Aλλαγή νοητικών δομών Κοινωνικοπολιτισμικές προσεγγίσεις:

Διαβάστε περισσότερα

Περιεχόμενο μαθήματος

Περιεχόμενο μαθήματος ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΔΙΔΑΚΤΙΚΑ ΦΑΙΝΟΜΕΝΑ Διδάσκοντες Μ. Καλδρυμίδου Χ. Λεμονίδης Ι. Παπαδόπουλος Μ.Τζεκάκη Περιεχόμενο μαθήματος Ο στόχος του μαθήματος είναι η εμβάθυνση στην τάξη των

Διαβάστε περισσότερα

ανάπτυξη μαθηματικής σκέψης

ανάπτυξη μαθηματικής σκέψης ανάπτυξη μαθηματικής σκέψης (έννοιες, αντιλήψεις, αναπαραστάσεις) οργάνωση περιεχομένου μαθηματικών, εννοιολογικές αντιλήψεις στα μαθηματικά και στους μαθητές Μαρία Καλδρυμίδου θέματα οργάνωση περιεχομένου

Διαβάστε περισσότερα

ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ

ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ ΜΑΘΗΣΗ ΜΕΣΩ ΣΧΕΔΙΑΣΜΟΥ 1 ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ ΠΕΡΙΕΧΟΜΕΝΟ ΕΙΣΗΓΗΣΗΣ 1. Τι αλλαγές επιχειρούν τα νέα ΠΣ; 2 2. Γιατί το πέρασμα στην πράξη (θα)

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Η διερευνητική διδακτική προσέγγιση στην ανάπτυξη και την αξιολόγηση της κριτικής σκέψης των μαθητών Σταύρος Τσεχερίδης Εισαγωγή Παρά την ευρεία αποδοχή της άποψης ότι η καλλιέργεια της κριτικής σκέψης

Διαβάστε περισσότερα

Μοντέλα Εκπαίδευσης με σκοπό τη Διδασκαλία με χρήση Ψηφιακών Τεχνολογιών

Μοντέλα Εκπαίδευσης με σκοπό τη Διδασκαλία με χρήση Ψηφιακών Τεχνολογιών 1ο Κεφάλαιο Μοντέλα Εκπαίδευσης με σκοπό τη Διδασκαλία με χρήση Ψηφιακών Τεχνολογιών Τις τελευταίες δεκαετίες, οι επιστημονικές ενώσεις, οι συνδικαλιστικοί φορείς και εκπαιδευτικοί της πράξης μέσω συνεδρίων

Διαβάστε περισσότερα

Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών. Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε.

Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών. Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε. Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε. Στάσεις απέναντι στα Μαθηματικά Τι σημαίνουν τα μαθηματικά για εσάς; Τι σημαίνει «κάνω μαθηματικά»;

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα

Διαβάστε περισσότερα

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ «ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Διδάσκουσες:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής Η Πληροφορική ως αντικείμενο και ως εργαλείο μάθησης

Διαβάστε περισσότερα

H ΔΙΑΔΙΚΑΣΙΑ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ. Διδάσκουσα Φένια Χατζοπούλου

H ΔΙΑΔΙΚΑΣΙΑ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ. Διδάσκουσα Φένια Χατζοπούλου H ΔΙΑΔΙΚΑΣΙΑ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Διδάσκουσα Φένια Χατζοπούλου kchatzop@uth.gr Περιεχόμενα Ορισμός Ιστορική αναδρομή Μορφές και τύποι της αξιολόγησης Η συζήτηση γύρω από την αξιολόγηση

Διαβάστε περισσότερα

«Η παιδαγωγική αξία της αξιολόγησης του μαθητή» Δρ. Χριστίνα Παπαζήση Σχολική Σύμβουλος Φυσικών Επιστημών

«Η παιδαγωγική αξία της αξιολόγησης του μαθητή» Δρ. Χριστίνα Παπαζήση Σχολική Σύμβουλος Φυσικών Επιστημών «Η παιδαγωγική αξία της αξιολόγησης του μαθητή» Δρ. Χριστίνα Παπαζήση Σχολική Σύμβουλος Φυσικών Επιστημών Ρωτώ τον εαυτό μου Κάνε αυτήν την απλή ερώτηση στον εαυτό σου, κάθε πρωί στην πορεία σου για το

Διαβάστε περισσότερα

EDUS265 Εκπαιδευτική Τεχνολογία

EDUS265 Εκπαιδευτική Τεχνολογία Απόψεις EDUS265 Εκπαιδευτική Τεχνολογία Χαράλαμπος Βρασίδας www.cardet.org www.unic.ac.cy Γιατίοιορισμοίενόςκλάδουείναισημαντικοί; Πώς θα ορίζατε τον όρο «Τεχνολογία»; Πώς θα ορίζατε τον όρο «Εκπαιδευτική

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

Η ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας

Η ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Η ανάλυση της κριτικής διδασκαλίας Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Διαδικασία η γνώση ως ανάπτυξη υψηλών νοητικών λειτουργιών (

Διαβάστε περισσότερα

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Μάθηση και γνώση: μια συνεχής και καθοριστική αλληλοεπίδραση Αντώνης Λιοναράκης Στην παρουσίαση που θα ακολουθήσει θα μιλήσουμε

Διαβάστε περισσότερα

Παιδαγωγικό Υπόβαθρο ΤΠΕ. Κυρίαρχες παιδαγωγικές θεωρίες

Παιδαγωγικό Υπόβαθρο ΤΠΕ. Κυρίαρχες παιδαγωγικές θεωρίες Παιδαγωγικό Υπόβαθρο ΤΠΕ Κυρίαρχες παιδαγωγικές θεωρίες Θεωρίες μάθησης για τις ΤΠΕ Συμπεριφορισμός (behaviorism) Γνωστικές Γνωστικής Ψυχολογίας (cognitive psychology) Εποικοδομητισμός (constructivism)

Διαβάστε περισσότερα

Κοινωνικο-πολιτισμικές Θεωρήσεις της Μάθησης

Κοινωνικο-πολιτισμικές Θεωρήσεις της Μάθησης Κοινωνικο-πολιτισμικές Θεωρήσεις της Μάθησης Στις σύγχρονες επιστημολογικές, ψυχολογικές και κοινωνιολογικές θεωρίες έχει παρατηρηθεί μια θεωρητική μετακίνηση από θέσεις οι οποίες υιοθετούσαν πως η μάθηση

Διαβάστε περισσότερα

Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές

Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές Φοιτητής: Σκαρπέντζος Γεώργιος Καθηγήτρια: Κολέζα Ευγενία ΠΕΡΙΕΧΟΜΕΝΑ Βασικές θεωρίες σχεδιασμού της διδασκαλίας Δραστηριότητες και κατανόηση εννοιών

Διαβάστε περισσότερα

5.34 Αξιοποίηση κοινοτήτων μάθησης στο πλαίσιο προγράμματος προπτυχιακής εκπαίδευσης εν δυνάμει εκπαιδευτικών

5.34 Αξιοποίηση κοινοτήτων μάθησης στο πλαίσιο προγράμματος προπτυχιακής εκπαίδευσης εν δυνάμει εκπαιδευτικών 5.34 Αξιοποίηση κοινοτήτων μάθησης στο πλαίσιο προγράμματος προπτυχιακής εκπαίδευσης εν δυνάμει εκπαιδευτικών συντελεστές Σπυρίδων Δουκάκης sdoukakis@rhodes.aegean.gr ΠΤΔΕ Πανεπιστημίου Αιγαίου Μαρία Μοσκοφόγλου-

Διαβάστε περισσότερα

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Όνοµα: Τάσος Αναστάσιος Επώνυµο: Μικρόπουλος Τίτλος: Αναπληρωτής Καθηγητής, Εργαστήριο Εφαρµογών Εικονικής Πραγµατικότητας στην Εκπαίδευση, Πανεπιστήµιο Ιωαννίνων

Διαβάστε περισσότερα

ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ

ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ Ενότητα 10: Η μάθηση στην προσχολική ηλικία: αξιολόγηση Διδάσκων: Μανωλίτσης Γεώργιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΠΡΟΣΧΟΛΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

Διαβάστε περισσότερα

kafoussi@rhodes.aegean.gr, kara@rhodes.aegean.gr, kalabas@rhodes.aegean.gr

kafoussi@rhodes.aegean.gr, kara@rhodes.aegean.gr, kalabas@rhodes.aegean.gr Οι αντιλήψεις των εκπαιδευτικών και των γονιών για τις άτυπες γνώσεις των νηπίων στα µαθηµατικά Σόνια Καφούση, Χρυσάνθη Σκουµπουρδή, Φραγκίσκος Καλαβάσης Πανεπιστήµιο Αιγαίου kafoussi@rhodes.aegean.gr,

Διαβάστε περισσότερα

EDUS265 Εκπαιδευτική Τεχνολογία

EDUS265 Εκπαιδευτική Τεχνολογία EDUS265 Εκπαιδευτική Τεχνολογία Χαράλαμπος Βρασίδας www.cardet.org www.unic.ac.cy 2004-2006 CARDET 1 Απόψεις Γιατί οι ορισμοί ενός κλάδου είναι σημαντικοί; Πώς θα ορίζατε τον όρο «Τεχνολογία»; Πώς θα ορίζατε

Διαβάστε περισσότερα

Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού

Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Πέτρος Κλιάπης kliapis@sch.gr 1 Ο Ρόλος του εκπαιδευτικού Αξιολογεί την αρχική μαθηματική κατάσταση κάθε παιδιού, ομαδοποιεί τα παιδιά σύμφωνα με

Διαβάστε περισσότερα

Η ΠΟΙΟΤΗΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΤΟ ΔΥΝΑΜΙΚΟ ΜΟΝΤΕΛΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ. Λεωνίδας Κυριακίδης Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου

Η ΠΟΙΟΤΗΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΤΟ ΔΥΝΑΜΙΚΟ ΜΟΝΤΕΛΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ. Λεωνίδας Κυριακίδης Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου Η ΠΟΙΟΤΗΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΤΟ ΔΥΝΑΜΙΚΟ ΜΟΝΤΕΛΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ Λεωνίδας Κυριακίδης Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου ΕΙΣΑΓΩΓΗ Το Δυναμικό Μοντέλο Εκπαιδευτικής Αποτελεσματικότητας

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ)

ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ) Αντιμετώπιση των ΜΔ δια των ΣΤΡΑΤΗΓΙΚΩΝ Σωτηρία

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ Δ/ΛΙΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. Μανώλης Πατσαδάκης

ΠΡΑΚΤΙΚΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ Δ/ΛΙΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. Μανώλης Πατσαδάκης ΠΡΑΚΤΙΚΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ Δ/ΛΙΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μανώλης Πατσαδάκης Γιατί Αξιολόγηση των Μαθητών; ΠΟΛΙΤΙΚΗ ΕΠΙΛΟΓΗ Υποστηρίζει την επίτευξη των γενικών εκπ/κών στόχων της

Διαβάστε περισσότερα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα Διαφοροποιημένη Διδασκαλία Ε. Κολέζα Τι είναι η διαφοροποιημένη διδασκαλία; Είναι μια θεώρηση της διδασκαλίας που βασίζεται στην προϋπόθεση ότι οι δάσκαλοι πρέπει να προσαρμόσουν τη διδασκαλία τους στη

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο

Διαβάστε περισσότερα

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Ακολούθως αναπτύσσονται ορισμένα διευκρινιστικά σχόλια για το Σχέδιο Μαθήματος. Αφετηρία για τον ακόλουθο σχολιασμό υπήρξαν οι σχετικές υποδείξεις που μας

Διαβάστε περισσότερα

Δημήτρης Ρώσσης, Φάνη Στυλιανίδου Ελληνογερμανική Αγωγή. http://www.creative-little-scientists.eu

Δημήτρης Ρώσσης, Φάνη Στυλιανίδου Ελληνογερμανική Αγωγή. http://www.creative-little-scientists.eu Τι έχουμε μάθει για την προώθηση της Δημιουργικότητας μέσα από τις Φυσικές Επιστήμες και τα Μαθηματικά στην Ελληνική Προσχολική και Πρώτη Σχολική Ηλικία; Ευρήματα για την εκπαίδευση στην Ελλάδα από το

Διαβάστε περισσότερα

Μαθηµατική. Μοντελοποίηση

Μαθηµατική. Μοντελοποίηση Μαθηµατική Μοντελοποίηση Μοντελοποίηση Απαιτητική οικονοµία και αγορά εργασίας Σύνθετες και περίπλοκες προβληµατικές καταστάσεις Μαθηµατικές και τεχνολογικές δεξιότητες Επίλυση σύνθετων προβληµάτων Μαθηµατικοποίηση

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Μαθηματικών

Αναλυτικό Πρόγραμμα Μαθηματικών Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,

Διαβάστε περισσότερα

ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ ΤΗ ΜΑΘΗΣΗ

ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ ΤΗ ΜΑΘΗΣΗ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ ΤΗ ΜΑΘΗΣΗ Γιάννης Ιωάννου Β.Δ. MSc, MA 1 Θεωρητικό Υπόβαθρο Φιλοσοφία & Γνωστική Ψυχολογία Το Μεταμοντέρνο κίνημα Αποδοχή της διαφορετικότητας Αντίσταση στις συγκεντρωτικές

Διαβάστε περισσότερα

Αυθεντικό πλαίσιο μάθησης και διδασκαλίας για ένα σχολείο που μαθαίνει. Κατερίνα Κασιμάτη Επικ. Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ

Αυθεντικό πλαίσιο μάθησης και διδασκαλίας για ένα σχολείο που μαθαίνει. Κατερίνα Κασιμάτη Επικ. Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ Αυθεντικό πλαίσιο μάθησης και διδασκαλίας για ένα σχολείο που μαθαίνει Κατερίνα Κασιμάτη Επικ. Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ Ορισμός αυθεντικής μάθησης Αυθεντική μάθηση είναι η μάθηση που έχει

Διαβάστε περισσότερα

1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία

1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία 1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία Ο διδακτικός σχεδιασμός (instructional design) εμφανίσθηκε στην εκπαιδευτική διαδικασία και στην κατάρτιση την περίοδο

Διαβάστε περισσότερα

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan)

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) On-the-fly feedback, Upper Secondary Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) Τάξη: Β Λυκείου Διάρκεια ενότητας Μάθημα: Φυσική Θέμα: Ταλαντώσεις (αριθμός Χ διάρκεια μαθήματος): 6X90

Διαβάστε περισσότερα

ΚΑΠΕΛΟΥ ΚΑΤΕΡΙΝΑ. ΤΕΙ Αθήνας & 2ης Περιφ. Νομαρχίας Αθήνας, e-mail : kapelou@rhodes.aegean.gr

ΚΑΠΕΛΟΥ ΚΑΤΕΡΙΝΑ. ΤΕΙ Αθήνας & 2ης Περιφ. Νομαρχίας Αθήνας, e-mail : kapelou@rhodes.aegean.gr 95 ΣΥΓΚΡΙΣΗ ΤΩΝ ΠΡΟΤΑΣΕΩΝ ΠΡΟΣΕΓΓΙΣΗΣ ΤΟΥ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΣΕ ΣΥΓΧΡΟΝΑ ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (NCTM & ΑΠΣ/ΔΕΠΠΣ) ΓΙΑ ΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΚΑΙ ΠΡΩΤΟΣΧΟΛΙΚΗ ΒΑΘΜΙΔΑ ΚΑΠΕΛΟΥ ΚΑΤΕΡΙΝΑ ΤΕΙ Αθήνας &

Διαβάστε περισσότερα

Θεωρίες Μάθησης και Εκπαιδευτικό Λογισμικό

Θεωρίες Μάθησης και Εκπαιδευτικό Λογισμικό ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρίες Μάθησης και Εκπαιδευτικό Λογισμικό Ενότητα 13: Κοινωνικός Εποικοδομισμός (Social Constructivism ) Σταύρος Δημητριάδης Άδειες Χρήσης

Διαβάστε περισσότερα

Εννοιολογική χαρτογράφηση. Τ. Α. Μικρόπουλος

Εννοιολογική χαρτογράφηση. Τ. Α. Μικρόπουλος Εννοιολογική χαρτογράφηση Τ. Α. Μικρόπουλος Οργάνωση γνώσης Η οργάνωση και η αναπαράσταση της γνώσης αποτελούν σημαντικούς παράγοντες για την οικοδόμηση νέας γνώσης. Η οργάνωση των εννοιών που αναφέρονται

Διαβάστε περισσότερα

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο 6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο Το εκπαιδευτικό σενάριο Η χρήση των Τ.Π.Ε. στην πρωτοβάθμια εκπαίδευση θα πρέπει να γίνεται με οργανωμένο

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

των βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών μοντέλων.

των βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών μοντέλων. Θεωρίες Μάθησης και ιδακτικές Στρατηγικές Εισαγωγή γή στις βασικές έννοιες 11/4/2011 Σκοπός του 3 ου μαθήματος Η συνοπτική παρουσίαση των βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών

Διαβάστε περισσότερα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Επιμέλεια: Ελισάβετ Λαζαράκου Σχολική Σύμβουλος, 28 η Περιφέρεια Δημοτικής Εκπαίδευσης Αττικής

Επιμέλεια: Ελισάβετ Λαζαράκου Σχολική Σύμβουλος, 28 η Περιφέρεια Δημοτικής Εκπαίδευσης Αττικής Φ.Ε.Κ. τεύχος Β αρ. φύλλου 303/13-03-2003, Παράρτημα Α, Μάιος 2003 Επιμέλεια: Ελισάβετ Λαζαράκου Σχολική Σύμβουλος, 28 η Περιφέρεια Δημοτικής Εκπαίδευσης Αττικής Βασικός σκοπός της αξιολόγησης του μαθητή

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Η τάξη µου» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Η Εκπαίδευση στην εποχή των ΤΠΕ

Η Εκπαίδευση στην εποχή των ΤΠΕ Η Εκπαίδευση στην εποχή των ΤΠΕ «Ενσωμάτωση και αξιοποίηση των εννοιολογικών χαρτών στην εκπαιδευτική διαδικασία μέσα από μία δραστηριότητα εποικοδομητικού τύπου» Δέγγλερη Σοφία Μουδατσάκη Ελένη Λιόβας

Διαβάστε περισσότερα

Τίτλος μαθήματος: ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ. Ενότητα 3 Η ΕΡΩΤΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ

Τίτλος μαθήματος: ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ. Ενότητα 3 Η ΕΡΩΤΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Τίτλος μαθήματος: ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ Ενότητα 3 Η ΕΡΩΤΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Οι ερωτήσεις στη διδασκαλία Α) Η ερώτηση του εκπαιδευτικού Β) Η ερώτηση του μαθητή Α) Η

Διαβάστε περισσότερα

Αναλύοντας κείμενα και εικόνες για την έννοια της περιοδικότητας στα σχολικά βιβλία

Αναλύοντας κείμενα και εικόνες για την έννοια της περιοδικότητας στα σχολικά βιβλία Αναλύοντας κείμενα και εικόνες για την έννοια της περιοδικότητας στα σχολικά βιβλία Βασιλική Σπηλιωτοπούλου Παιδαγωγικό Τμήμα ΑΣΠΑΙΤΕ Μεταδιδάκτωρ ερευνήτρια: Χρυσαυγή Τριανταφύλλου Οι άνθρωποι από πολύ

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ & ΤΗΝ ΑΕΙΦΟΡΙΑ

ΕΚΠΑΙΔΕΥΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ & ΤΗΝ ΑΕΙΦΟΡΙΑ ΕΚΠΑΙΔΕΥΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ & ΤΗΝ ΑΕΙΦΟΡΙΑ Διδακτικές τεχνικές/ μέθοδοι Εκπαίδευση για το Περιβάλλον & την Αειφορία Μεθοδολογικές προσεγγίσεις προσανατολισμένη στη ΔΡΑΣΗ με κεντρικό άξονα την ΟΛΙΣΤΙΚΟΤΗΤΑ

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Επικοινωνία, Μάθηση και Προσεγγίσεις Αποτελεσματικής Διδασκαλίας Λευκωσία 26 Φεβρουαρίου 2014

Επικοινωνία, Μάθηση και Προσεγγίσεις Αποτελεσματικής Διδασκαλίας Λευκωσία 26 Φεβρουαρίου 2014 ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ Επικοινωνία, Μάθηση και Προσεγγίσεις Αποτελεσματικής Διδασκαλίας Λευκωσία 26 Φεβρουαρίου 2014 1 Συνάντηση με εκπαιδευτικούς εσπερινών Γυμνασίων - Λυκείων

Διαβάστε περισσότερα

ΜΙΑ ΣΥΣΤΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΔΙΔΑΚΤΙΚΗΣ ΕΡΩΤΗΣΗΣ, ΟΠΩΣ

ΜΙΑ ΣΥΣΤΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΔΙΔΑΚΤΙΚΗΣ ΕΡΩΤΗΣΗΣ, ΟΠΩΣ ΚΕΦAΛΑΙΟ 3 Ερωτήσεις: εργαλείο, μέθοδος ή στρατηγική; Το να ζει κανείς σημαίνει να συμμετέχει σε διάλογο: να κάνει ερωτήσεις, να λαμβάνει υπόψη του σοβαρά αυτά που γίνονται γύρω του, να απαντά, να συμφωνεί...

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ Μάθημα 1 ο Εισαγωγή στις βασικές έννοιες Προτεινόμενη Βιβλιογραφία Elliot, S. N., Kratochwill, T. R., Cook, J. L., & Travers, J. F. (2008). Εκπαιδευτική Ψυχολογία: Αποτελεσματική

Διαβάστε περισσότερα

Με την ολοκλήρωση του μαθήματος ο διδασκόμενος αναμένεται να είναι σε θέση να:

Με την ολοκλήρωση του μαθήματος ο διδασκόμενος αναμένεται να είναι σε θέση να: Τίτλος Μαθήματος: ΚΟΙΝΩΝΙΟΛΟΓΙΚΕΣ ΚΑΙ ΨΥΧΟΛΟΓΙΚΕΣ ΙΑΣΤΑΣΕΙΣ ΤΗΣ ΜΟΥΣΙΚΗΣ ΠΑΙ ΑΓΩΓΙΚΗΣ Κωδικός Μαθήματος: MUS 652 Κατηγορία Μαθήματος: (Υποχρεωτικό/Επιλεγόμενο) Υποχρεωτικό Επίπεδο Μαθήματος: (πρώτου, δεύτερου

Διαβάστε περισσότερα

Παιδαγωγός Φ.Α Α ΝΘΡΩΠΙΝΗ ΚΟΙΝΩΝΙΑ. ΈΝΑ ΠΛΕΓΜΑ ΕΞΟΥΣΙΑΣΤΙΚΩΝ ΣΧΕΣΕΩΝ. Παπαδημητρίου 1990

Παιδαγωγός Φ.Α Α ΝΘΡΩΠΙΝΗ ΚΟΙΝΩΝΙΑ. ΈΝΑ ΠΛΕΓΜΑ ΕΞΟΥΣΙΑΣΤΙΚΩΝ ΣΧΕΣΕΩΝ. Παπαδημητρίου 1990 Παιδαγωγός Φ.Α Α ΝΘΡΩΠΙΝΗ ΚΟΙΝΩΝΙΑ. ΈΝΑ ΠΛΕΓΜΑ ΕΞΟΥΣΙΑΣΤΙΚΩΝ ΣΧΕΣΕΩΝ Παπαδημητρίου 1990 Ερωτήματα Από πού αντλεί ο εκπαιδευτικός την εξουσία του? Πώς την ασκεί? Σε ποιους τομείς? Πηγές Δασκαλικής εξουσίας

Διαβάστε περισσότερα

ΑΥΘΕΝΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ. Κατερίνα Κασιμάτη Επίκ. Καθηγήτρια, Γενικό Τμήμα Παιδαγωγικών Μαθημάτων Α.Σ.ΠΑΙ.Τ.Ε.

ΑΥΘΕΝΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ. Κατερίνα Κασιμάτη Επίκ. Καθηγήτρια, Γενικό Τμήμα Παιδαγωγικών Μαθημάτων Α.Σ.ΠΑΙ.Τ.Ε. ΑΥΘΕΝΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ Κατερίνα Κασιμάτη Επίκ. Καθηγήτρια, Γενικό Τμήμα Παιδαγωγικών Μαθημάτων Α.Σ.ΠΑΙ.Τ.Ε. Ερωτήσεις.. Πώς το παραδοσιακό διδακτικό πλαίσιο διαμορφώνει το αξιολογικό

Διαβάστε περισσότερα

α. η παροχή γενικής παιδείας, β. η καλλιέργεια των δεξιοτήτων του μαθητή και η ανάδειξη των

α. η παροχή γενικής παιδείας, β. η καλλιέργεια των δεξιοτήτων του μαθητή και η ανάδειξη των ΔΕΠΠΣ ΑΠΣ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ α. η παροχή γενικής παιδείας, β. η καλλιέργεια των δεξιοτήτων του μαθητή και η ανάδειξη των ενδιαφερόντων του, γ. η εξασφάλιση ίσων ευκαιριών και δυνατοτήτων μάθησης

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΔΙΔΑΚΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΙΙ

ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΔΙΔΑΚΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΙΙ ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΔΙΔΑΚΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΙΙ Διδάσκοντες Μ. Καλδρυµίδου Χ. Λεµονίδης Ι. Παπαδόπουλος Μ.Τζεκάκη Αλληλεπίδραση στην τάξη Η μαθηματική γνώση δεν αποτελεί οριστικό προϊόν

Διαβάστε περισσότερα

Τo πρόγραμμα «Διάγραμμα Ροής» και η διδακτική του αξιοποίηση στην Διδασκαλία του προγραμματισμού

Τo πρόγραμμα «Διάγραμμα Ροής» και η διδακτική του αξιοποίηση στην Διδασκαλία του προγραμματισμού Τo πρόγραμμα «Διάγραμμα Ροής» και η διδακτική του αξιοποίηση στην Διδασκαλία του προγραμματισμού Α. Βρακόπουλος 1, Θ.Καρτσιώτης 2 1 Καθηγητής Πληροφορικής Δευτεροβάθμιας Εκπαίδευσης Vraa8@sch.gr 2 Σχολικός

Διαβάστε περισσότερα

Μεταπτυχιακό στην Εκπαιδευτική/Σχολική Ψυχολογία

Μεταπτυχιακό στην Εκπαιδευτική/Σχολική Ψυχολογία Μεταπτυχιακό στην Εκπαιδευτική/Σχολική Ψυχολογία Στόχοι του Προγράμματος Ο γενικός στόχος του προγράμματος είναι η ανάπτυξη επιστημονικής γνώσης στη θεωρία και στην εφαρμογή των ψυχολογικών και κοινωνικών

Διαβάστε περισσότερα

Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας. Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013

Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας. Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013 Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013 Σκοπός τη σημερινής παρουσίασης: αναγνώριση της παρατήρησης ως πολύτιμη

Διαβάστε περισσότερα

Οργανωσιακή μάθηση. Εισηγητής : Δρ. Γιάννης Χατζηκιάν

Οργανωσιακή μάθηση. Εισηγητής : Δρ. Γιάννης Χατζηκιάν Οργανωσιακή μάθηση Εισηγητής : Δρ. Γιάννης Χατζηκιάν 1 Μάθηση είναι: Η δραστηριοποίηση και κατεύθυνση δυνάμεων για την όσο το δυνα-τόν καλύτερη προσαρμογή στο φυσικό και ιστορικό περιβάλλον. Η απόκτηση

Διαβάστε περισσότερα

Mαθησιακό Περιβάλλον: Χώρος και μη λεκτική επικοινωνία ως στοιχεία του μαθησιακού περιβάλλοντος

Mαθησιακό Περιβάλλον: Χώρος και μη λεκτική επικοινωνία ως στοιχεία του μαθησιακού περιβάλλοντος Mαθησιακό Περιβάλλον: Χώρος και μη λεκτική επικοινωνία ως στοιχεία του μαθησιακού περιβάλλοντος Τι είναι/ περιλαμβάνει ένα περιβάλλον μάθησης;? Χώρος? Εκπαιδευτικά Υλικά? Σχέσεις- Αλληλεπιδράσεις? Κλίμα

Διαβάστε περισσότερα

Αξιοποίηση Διαδραστικού Πίνακα στη. Συναρτήσεων - Γραφικών παραστάσεων

Αξιοποίηση Διαδραστικού Πίνακα στη. Συναρτήσεων - Γραφικών παραστάσεων 2ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ - ΠΑΤΡΑ 28-30/4/2011 1283 Αξιοποίηση Διαδραστικού πίνακα στη διδασκαλία Συναρτήσεων - Γραφικών παραστάσεων Σ. Παπαδημητρίου Διεύθυνση Εκπαιδευτικής Ραδιοτηλεόρασης, ΥΠΔΒΜΘ, sofipapadi@gmail.com

Διαβάστε περισσότερα

το σύστηµα ελέγχει διαρκώς το µαθητή,

το σύστηµα ελέγχει διαρκώς το µαθητή, Α/Α Τύπος Εκφώνηση Απαντήσεις Ένας νηπιαγωγός, προκειµένου να διδάξει σε παιδιά προσχολικής ηλικίας το λεξιλόγιο των φρούτων Σωστό και λαχανικών που συνδέονται µε τις διατροφικές συνήθειες µας, δε ζητάει

Διαβάστε περισσότερα

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης

Διαβάστε περισσότερα

(Α.Σ.ΠΑΙ.Τ.Ε.) ΠΑΡΑΔΟΤΕΟ Δ3-5_3 1 ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΣΥΝΕΔΡΙΟ. Vocational Technology Enhanced Learning (VocTEL) 2015

(Α.Σ.ΠΑΙ.Τ.Ε.) ΠΑΡΑΔΟΤΕΟ Δ3-5_3 1 ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΣΥΝΕΔΡΙΟ. Vocational Technology Enhanced Learning (VocTEL) 2015 ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Α.Σ.ΠΑΙ.Τ.Ε.) «Αρχιμήδης ΙΙΙ Ενίσχυση Ερευνητικών ομάδων στην Α.Σ.ΠΑΙ.Τ.Ε.» Υποέργο: 3 Τίτλος: «Σχεδιασμός, Ανάπτυξη και Αξιολόγηση Σεναρίων Μικτής

Διαβάστε περισσότερα

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 8: Επίλυση προβλήματος

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 8: Επίλυση προβλήματος Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 8: Επίλυση προβλήματος Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Να γίνει

Διαβάστε περισσότερα

Ο υπολογιστής ως γνωστικό εργαλείο. Καθηγητής Τ. Α. Μικρόπουλος

Ο υπολογιστής ως γνωστικό εργαλείο. Καθηγητής Τ. Α. Μικρόπουλος Ο υπολογιστής ως γνωστικό εργαλείο Καθηγητής Τ. Α. Μικρόπουλος Τεχνολογίες Πληροφορίας & Επικοινωνιών ΟιΤΠΕχαρακτηρίζουνόλαταμέσαπουείναιφορείς άυλων μηνυμάτων (χαρακτήρες, εικόνες, ήχοι). Η αξιοποίησή

Διαβάστε περισσότερα

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 9: Η συνεργατική διδασκαλία & μάθηση

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 9: Η συνεργατική διδασκαλία & μάθηση Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 9: Η συνεργατική διδασκαλία & μάθηση Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας

Διαβάστε περισσότερα

Διδακτικές Τεχνικές (Στρατηγικές)

Διδακτικές Τεχνικές (Στρατηγικές) Διδακτικές Τεχνικές (Στρατηγικές) Ενδεικτικές τεχνικές διδασκαλίας: 1. Εισήγηση ή διάλεξη ή Μονολογική Παρουσίαση 2. Συζήτηση ή διάλογος 3. Ερωταποκρίσεις 4. Χιονοστιβάδα 5. Καταιγισμός Ιδεών 6. Επίδειξη

Διαβάστε περισσότερα

Τροχιές μάθησης. learning trajectories. Διδάσκων: Κωνσταντίνος Π. Χρήστου. Παιδαγωγικό Τµήµα Νηπιαγωγών. επ. Κωνσταντίνος Π.

Τροχιές μάθησης. learning trajectories. Διδάσκων: Κωνσταντίνος Π. Χρήστου. Παιδαγωγικό Τµήµα Νηπιαγωγών. επ. Κωνσταντίνος Π. Παιδαγωγικό Τµήµα Νηπιαγωγών Τροχιές μάθησης learning trajectories Διδάσκων: Κωνσταντίνος Π. Χρήστου επ. Κωνσταντίνος Π. Χρήστου τι είναι η τροχιά μάθησης Η μάθηση των μαθηματικών ακολουθεί μία τροχιά

Διαβάστε περισσότερα

Μαθησιακός Σχεδιασμός με την ενσωμάτωση νέων τεχνολογιών

Μαθησιακός Σχεδιασμός με την ενσωμάτωση νέων τεχνολογιών Μαθησιακός Σχεδιασμός με την ενσωμάτωση νέων τεχνολογιών Ημερίδα για την ενσωμάτωση των Τεχνολογιών Πληροφορίας και Επικοινωνίας στη Μαθησιακή Διαδικασία 3 Μαρτίου 2012 Αναστασία Οικονόμου Προϊσταμένη

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ 1. Τίτλος ΟΙ ΣΥΓΚΟΙΝΩΝΙΕΣ 2. Εµπλεκόµενες γνωστικές περιοχές Γεωγραφία, Γλώσσα 3. Γνώσεις και πρότερες ιδέες ή αντιλήψεις τ

ΑΠΑΝΤΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ 1. Τίτλος ΟΙ ΣΥΓΚΟΙΝΩΝΙΕΣ 2. Εµπλεκόµενες γνωστικές περιοχές Γεωγραφία, Γλώσσα 3. Γνώσεις και πρότερες ιδέες ή αντιλήψεις τ ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Οι συγκοινωνίες» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr

Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr Θεμελίωση μιας λύσης ενός προβλήματος από μια πολύπλευρη (multi-faceted) και διαθεματική (multi-disciplinary)

Διαβάστε περισσότερα

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟ 1: Η εκπαιδευτική έρευνα και ο σχεδιασμός της Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

Παρατήρηση διδασκαλίας. Εργαλείο βελτίωσης της εκπαιδευτικής αποτελεσματικότητας

Παρατήρηση διδασκαλίας. Εργαλείο βελτίωσης της εκπαιδευτικής αποτελεσματικότητας Παρατήρηση διδασκαλίας Εργαλείο βελτίωσης της εκπαιδευτικής αποτελεσματικότητας Εκπαιδευτική Αποτελεσματικότητα Ο μάχιμος εκπαιδευτικός, αποτελεί, καθοριστικό παράγοντα για τη βελτίωση της αποτελεσματικότητας

Διαβάστε περισσότερα

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 6: Η σημασία των ερωτήσεων στην εκπαιδευτική διαδικασία

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 6: Η σημασία των ερωτήσεων στην εκπαιδευτική διαδικασία Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 6: Η σημασία των ερωτήσεων στην εκπαιδευτική διαδικασία Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική

Διαβάστε περισσότερα

Συζήτηση με Ολόκληρη την Τάξη: μια σημαντική διάσταση για τη διδασκαλία και τη μάθηση των μαθηματικών

Συζήτηση με Ολόκληρη την Τάξη: μια σημαντική διάσταση για τη διδασκαλία και τη μάθηση των μαθηματικών Συζήτηση με Ολόκληρη την Τάξη: μια σημαντική διάσταση για τη διδασκαλία και τη μάθηση των μαθηματικών Πέτρος Γ. Βερύκιος Ροβέρτου Γκάλλι 88, Ηλιούπολη, Αθήνα 16346 pverikios@math.uoa.gr Περίληψη Τα στοιχεία

Διαβάστε περισσότερα

Διδακτικές προσεγγίσεις υποψηφίων καθηγητών πληροφορικής

Διδακτικές προσεγγίσεις υποψηφίων καθηγητών πληροφορικής Διδακτικές προσεγγίσεις υποψηφίων καθηγητών πληροφορικής Μαρία Κορδάκη Μεταπτυχιακό δίπλωμα στις Επιστήμες της Αγωγής - Υποψ. διδάκτωρ Π.Τ.Δ.Ε. Σχολική Σύμβουλος Μαθηματικών e-mail: kordaki@packet-g.cti.gr

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΔΙΔΑΣΚΑΛΙΑΣ: ΠΕΡΙΓΡΑΦΗ ΔΙΔΑΣΚΑΛΙΑΣ:

ΠΛΑΙΣΙΟ ΔΙΔΑΣΚΑΛΙΑΣ: ΠΕΡΙΓΡΑΦΗ ΔΙΔΑΣΚΑΛΙΑΣ: Α) Διάταξη χώρου (γενικά): Β) Διάταξη χώρου (ως προς τις ΦΕ): Γ) Δυναμικό τάξης (αριθμός μαθητών, φύλο μαθητών, προνήπια-νήπια, κλπ): Δ) Διάρκεια διδασκαλίας: Ε) Ήταν προϊδεασμένοι οι μαθητές για το αντικείμενο

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ. Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων

Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ. Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων 1. Οι ψηφιακές τεχνολογίες ως γνωστικά εργαλεία στην υποστήριξη της διδασκαλίας και της μάθηση

Διαβάστε περισσότερα

Σ. Κ. ΚΡΑΣΣΑΣ &Ν. Μ. ΣΑΛΤΕΡΗΣ. Σχολικοί Σύμβουλοι Δημοτικής Εκπαίδευσης Αττικής

Σ. Κ. ΚΡΑΣΣΑΣ &Ν. Μ. ΣΑΛΤΕΡΗΣ. Σχολικοί Σύμβουλοι Δημοτικής Εκπαίδευσης Αττικής Σ. Κ. ΚΡΑΣΣΑΣ &Ν. Μ. ΣΑΛΤΕΡΗΣ Σχολικοί Σύμβουλοι Δημοτικής Εκπαίδευσης Αττικής Περιληπτικά Τα δομικά στοιχεία της διδασκαλίας και βασικά ερωτήματα του διδάσκοντος Διάγραμμα διδασκαλίας Βασικά μοντέλα /

Διαβάστε περισσότερα

Παναής Κασσιανός, δάσκαλος Διευθυντής του 10ου Ειδικού Δ.Σ. Αθηνών (Μαρασλείου)

Παναής Κασσιανός, δάσκαλος Διευθυντής του 10ου Ειδικού Δ.Σ. Αθηνών (Μαρασλείου) Παναής Κασσιανός, δάσκαλος Διευθυντής του 10ου Ειδικού Δ.Σ. Αθηνών (Μαρασλείου) Ομιλία-συζήτηση με βασικό άξονα προσέγγισης το Φάσμα του Αυτισμού και με αφορμή το βιβλίο της Εύας Βακιρτζή «Το Αυγό» στο

Διαβάστε περισσότερα

Δρ Γεωργία Αθανασοπούλου Σχ. Σύμβουλος Δυτικής Αττικής και Ν. Φωκίδας

Δρ Γεωργία Αθανασοπούλου Σχ. Σύμβουλος Δυτικής Αττικής και Ν. Φωκίδας Δρ Γεωργία Αθανασοπούλου Σχ. Σύμβουλος Δυτικής Αττικής και Ν. Φωκίδας Η ΓΛΩΣΣΑ! Η γλώσσα είναι το μέσο με το οποίο σκεφτόμαστε και επικοινωνούμε με τους άλλους, αλλά και ένα μέσο με το οποίο δημιουργούμε

Διαβάστε περισσότερα