Klimatizacija, grejanje, hlađenje i ventilacija

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Klimatizacija, grejanje, hlađenje i ventilacija"

Transcript

1 Klimatizacija, grejanje, hlađenje i ventilacija Prof. dr Maja Todorović mtodorovic@mas.bg.ac.rs Uvodni pojmovi (1) Grejanje i klimatizacija su grane tehnike i naučne discipline koje se bave ostvarivanjem i održavanjem termički pogodnih uslova za boravak čoveka u zatvorenom prostoru. Za razliku od sistema grejanja koji ostvaruju funkciju zagrevanja prostora i delimičnog provetravanja, sistemi klimatizacije ostvaruju daleko veći broj funkcija u cilju postizanja uslova ugodnosti tokom cele godine. Osnovne funkcije klimatizacionih postrojenja su: zagrevanje prostora u zimskom periodu; hlađenje prostora u letnjem periodu; ventilacija; održavanje relativne vlažnosti vazduha: vlaženje vazduha u zimskom periodu i sušenje (odvlaživanje) u letnjem; održavanje potrebnog nivoa čistoće vazduha. 1

2 Uvodni pojmovi (2) Energetska kriza 70-tih godina prošlog veka uticala je na celokupan život čoveka, pa i na sisteme grejanja i klimatizacije. Međutim, primena sistema u skoro svim sferama života nije zaustavljena, ali je došlo do modifikacije i razvoja novih tehničkih rešenja grejnih i klimatizacionih postrojenja. Osnovni cilj je da se projektuju i izvode energetski efikasni sistemi grejanja i klimatizacije. Kako bi se pospešila efikasnost grejnih sistema, razvijani su niskotemperaturski sistemi panelnog grejanja, primena obnovljivih izvora (biomase, Solarne energije, kao i energije tla, podzemnih voda i spoljnog vazduha) i usavršeni su sistemi automatske regulacije rada sistema. U cilju štednje energije u klimatizacionim sistemima smanjen je broj izmena svežeg vazduha na sat, ali se tada javio problem lošeg kvaliteta vazduha u klimatizovanim prostorijama Sick Building Sindrom (Razvoj: IAQ Indoor Air Quality). Odavanje toplote čoveka (1) U čovekovom telu se neprekidno odvijaju fizičkohemijski procesi koji se nazivaju metabolizam. Pri tim procesima razvija se toplota koju čovek neprekidno mora da odaje okolini da bi ostvario stanje termičke ravnoteže, odnosno da bi održao stalnu temperaturu tela. Količina proizvedene i odate toplote zavisi od: fizičke aktivnosti, odevenosti, temperature okoline, pola, uzrasta, mase tela, psihičkozdravstvenog stanja, aklimatizovanosti na podneblje, ishrane, individualnosti, itd. 2

3 Odavanje toplote čoveka (2) Toplotu stvorenu metabolizmom čovek odaje okolini na više načina to su tzv. mehanizmi odavanja toplote. Tako se razlikuje: SUVA (osetljiva, osetna) toplota, koju čovek odaje preko površine kože konvekcijom, zračenjem i kondukcijom i LATENTNA (vlažna) toplota, koju čovek odaje oslobađanjem vlage putem disanja i znojenja. Odavanje toplote čoveka (3) Prijem toplotnih nadražaja se odvija preko kože, koja predstavlja jedinstven omotač čovekove organske unutrašnjosti. U koži su smešteni termo-receptori, koji primaju toplotni nadražaj, transformišu ga u seriju nervnih impulsa koji se prenose nervnim sistemom do mozga. Primljena informacija se prosleđuje do hipotalamusa, centra koji predstavlja osnovni regulator telesne temparature. Nakon obrađene informacije, javlja se odgovor na nadražaj okoline u vidu odgovarajuće reakcije. Međutim, pored fiziološke komponente F, reakcija oraganizma određena je i psihološkom komponentom P, kao i povratnim dejstvom R. 3

4 Odavanje toplote čoveka (4) Reakcija organizma na toplotne nadražaje F, P NADRAŽAJ RECEPTORI MOZAK REAKCIJA ORGANIZMA R Odavanje toplote čoveka (5) Na odavanje toplote čoveka utiču dve vrste parametara, a to su: Uticaj sredine TERMIČKI PARAMETRI SREDINE temperatura vazduha (θ a ), temperatura okolnih površina (θ is ), realtivna vlažnost vazduha (ϕ) i brzina strujanja vazduha (w) Lični (subjektivni) uticaji stepen fizičke aktivnosti, odevenost, zdravstveno stanje, uzrast (starosna dob), pol, telesna težina, itd. Najznačajniji lični uticaji su stepen fizičke aktivnosti i odevenost. 4

5 Temperatura vazduha Temperatura vazduha utiče na odavanje suve toplote konvekcijom, proporcionalno razlici temperatura tela i vazduha: gde su: Q konv A Du f cl α cl θ cl θ a Q konv = A Du f ( θ θ ) toplota koju čovek odaje konvekcijom, spoljna površina telesnog omotača (prema Dubois-u), stepen odevenosti koji predstavlja odnos površine odevenog tela prema površini nagog tela, koeficijent prelaza toplote sa površine odeće na vazduh, temperatura površine odeće i temperatura okolnog vazduha. Za čoveka prosečne visine (h = 1,73m) i težine (m = 70 kg) vrednost spoljne površine telesnog omotača iznosi ADu = 1,8 m 2. cl α c cl a Suvo odavanje toplote Zbog lakšeg definisanja ovog načina prenosa toplote uvedena je veličina: bezdimenzionalni otpor prenosu toplote kroz odeću Rcl, kao odnos ukupnog otpora prolazu toplote sa površine kože do spoljne površine odeće prema toplotnom otporu odeće od 0,155 m 2 K/W. Jedinica ovog bezdimenzionalnog otpora prolazu toplote kroz odeću odgovara: 1 clo 0,155 m 2 K/W. 5

6 Mera odevenosti Vrsta odeće Naga osoba Šorts Veoma laka odeća (šorts, laka košulja kratak rukav, lake pamučne čarape i sandale) Laka radna odeća (laki pamučni donji veš, tanke pantalone, pamučna košulja, pamučne ili vunene čarape i lake cipele) Tipično poslovno odelo (Pamučni donji veš, košulja, pantalone, sako, kravata, čarape i cipele) Tipično poslovno odelo sa lakim kaputom Teška vunena odeća sa jaknom (polarna) R cl (clo) 0,0 0,1 0,3-0,4 0,6 1,0 1,5 3,0-4,0 f cl (-) 1,00 1,01 1,05 1,10 1,15 1,15 1,30-1,50 Uticaj odevenosti Odavanje toplote čoveka u zavisnosti od odevenosti i temperature vazduha Ukupno odavanje Suvo odavanje 6

7 Latentno odavanje toplote Latentno odavanje toplote (vlage) čoveka odvija se putem disanja i znojenja. Disanjem, vodena para sa sluzokože disajnih organa prenosi se na udahnut vazduh, koji se u plućima dodatno obogaćuje vodenom parom. Izdisanjem, vazdušna masa struji kroz respiratorni trakt, gde se određena količina pare kondenzuje i vraća telu. Q ld = f (m d, x iz, x ud ) Prilikom znojenja se takođe odaje lantentna toplota. Jedan deo te toplote se odaje usled difuzije vodene pare kroz kožu i proporcionalan je razlici pritiska zasićenja vodene pare na temperaturi kože i parcijalnog pritiska vodene pare u vazduhu: Q lz, dif = f (p s, p d ) Mera fizičke aktivnosti Kao mera fizičke aktivnosti čoveka uvedena je jedinica met i ona odgovara odavanju toplote čoveka od 58,2 W/m 2 površine tela. Aktivnost spavanje sedenje hodanje brzinom 3,2 km/h hodanje brzinom 6,4 km/h kancelarijski rad spremanje kuće plesanje košarka maksimalna (kratkotrajna) Odavanje toplote met W 0,7 75 1, , , ,0 1, ,0 3, ,4 4, ,0 7, ,

8 Šema odavanja toplote čoveka Odavanje toplote čoveka u zavisnosti od temperature vazduha i aktivnosti 400 Q (W) Qlat Qu - težak rad Qs - težak rad Qu - srednje težak rad Qs - srednje težak rad Qu - mirovanje Qs - mirovanje - zona neutralnosti - zona ugodnosti temperatura vazduha ( o C) 8

9 Temperatura okolnih površina Temperatura okolnih površina (unutrašnje površine zidova, prozora, poda i tavanice) utiče na razmenu toplote zračenjem. Toplota razmenjena zračenjem proporcionalna je razlici četvrtih stepena apsolutne temperature tela i srednje vrednosti temperature okolnih površina: Q R = A ε σ 4 [( T ) ( T ) ] 4 gde su: A ef efektivna površina zračenja (m 2 ), f ef efektivni faktor zračenja površine koji predstavlja odnos između efektivne površine odeće i ukupne spoljne površine odeće, zavisi od položaja tela, body ε koeficijent emisije zračenja spoljne površine odeće, σ Štefan-Bolcmanova konstanta, σ = 5, (W/m 2 K 4 ), T body temperatura tela (K), T is temperatura okolnih površina (K). ef is Rezultujuća temperatura Mada temperatura vazduha i temperatura okolnih površina utiču na različite mehanizme odavanja toplote čoveka, s obzirom da se radi o istim fizičkim veličinama, uvedena je rezultujuća temperatura koja objedinjuje obe ove karakteristične temperature. θ rez = A θ + B θ a Različiti autori navode različite vrednosti konstanti A i B. Najčešće se smatra da su sličnog uticaja pa se usvaja A=B=1/2. Generalni je stav da što je niža srednja temperatura okolnih površina, potrebna je viša temperatura vazduha (i obrnuto) za isti osećaj ugodnosti. Najbolje je kada su obe karakteristične temperature približno jednake. is 9

10 Relativna vlažnost vazduha Relativna vlažnost vazduha utiče, pre svega, na odavanje latentne toplote. Odavanje latentne toplote čoveka proporcionalno je razlici parcijalnog pritiska zasićenja za temperaturu površine tela i parcijalnog pritiska vodene pare u okolnom vazduhu. Naime, oubičajeno se smatra da je vazduh u neposrednom dodiru sa površinom kože, usled znojenja čoveka, primio maksimalno moguću količinu vodene pare, tj. da je zasićen. Uticaj relativne vlažnosti na osećaj ugodnosti čoveka treba posmatrati u sadejstvu sa temperaturom vazduha. Pri visokim temperaturama visoka relativna vlažnost nije dobra jer onemogućava odavanje latentne toplote (znojenjem) što je najvažniji način hlađenja tela pri visokom temperaturama okoline Dozvoljene vrednosti relativne vlažnosti u funkciji temperature Komforna klimatizacija (30) 35 ϕ 65 (70) % 10

11 Brzina strujanja vazduha Brzina strujanja vazduha utiče na prenos toplote konvekcijom i odavanje latentne toplote. Povećanjem brzine kretanja vazduha raste koeficijent prelaza toplote, pa se time povećava i količina toplote predata konvekcijom. Takođe, intenzivira se i odavanje latentne toplote jer se pri većoj brzini vazduha pospešuje isparavanje sa kože time što se zasićen vazduh koji je u dodiru s površinom kože brže odvodi a na njegovo mesto dolazi okolni suvlji vazduh. Veće brzine vazduha mogu izazvati neprijatan osećaj naročito kada se radi o struji hladnog vazduha. Zbog toga se propisuju maksimalne brzine strujanja vazduha u zoni boravka ljudi Dozvoljene brzine strujanja 11

12 Mera termičke ugodnosti Kada se govori o termičkoj ugodnosti ljudi ne postoji adekvatan način da se ona deterministički odredi, već se obično procenjuje na osnovu osećaja većeg broja ljudi. Istraživanja se odvijaju tako što se grupa ljudi izloži dejstvu nekih termičkih uslova, i posle određenog perioda aklimatizacije beleži se njihova reakcija i ocena ugodnosti boravka u tim uslovima. Kasnije se vrši statistička obrada tih podataka i zaključuje pri kojim uslovima sredine največi broj ljudi se ugodno oseća. Ovaj metod daje dobre rezultate kada se varira jedan uticajni parametar (na primer promena temperature: 18, 20, 22, 24 o C). Međutim, problem je mnogo složeniji, jer na osećaj ugodnosti deluje više parametara pri čemu je njihovo dejstvo interaktivno (međuzavisno). Termička ugodnost u funkciji brzine strujanja i temperature vazduha 12

13 Termička ugodnost u zavisnosti od fizičke aktivnosti Termička ugodnost generalni stav Generalni je stav da pri određivanju prihvatljivih termičkih uslova sredine treba težiti da svaki parametar bude u razumnim granicama za datu namenu objekta (određena aktivnost ljudi i uobičajena odevenost). Pri tome se treba pridržavati nekoliko osnovnih principa: što je viša temperatura vazduha, relativna vlažnost vazduha treba da je niža; što je niža temperatura vazduha, brzina strujanja vazduha treba da je manja; što je srednja temperatura okolnih površina viša u zimskom periodu, temperatura vazduha treba (može) da bude niža. 13

14 Unutrašnja projektna temperatura (1) Unutrašnja projektna temperatura se određuje prema nameni prostorija. Namena prostorije govori o tome kojom se aktivnosti bave ljudi u određenoj prostoriji i kakva je njihova odevenost. Pod unutrašnjom projektnom temperaturom se obično podrazumeva temperatura vazduha merena u sredini prostorije na određenoj visini od poda, praktično u zoni boravka ljudi (kod nas na polovini visine). Termometar kojim se meri temperatura vazduha mora biti zaštićen od uticaja zračenja. Međutim, danas postoje tendencije da se unutrašnja projektna temperatura računa kao rezultujuća temperatura što više odgovara uslovima ugodnosti. Untrašnja projektna temperatura ima različite vrednosti za zimski i letnji period za istu prostoriju u zgradi. Unutrašnja projektna temperatura (2) Tokom zimskog perioda (trajanja grejne sezone) odevenost ljudi je prilagođena spoljnim uslovima, a tokom boravka u zatvorenom prostoru uglavnom ima vrednost koja odgovara približno 1 clo. Za letnji period, kada je potrebno hlađenje prostora, unutrašnja projektna temperatura ima višu vrednost, u odnosu na period grejanja, i takođe je prilagođena spoljnim uslovima i manjom odevenošću koja se kreće oko vrednosti od 0,5 clo. Za stambene i poslovne objekte uobičajena vrednost unutrašnje projektne temperature za period grejanja i za naše klimatsko podneblje, kreće se od 18 do 22 o C. Za letnji period vrednost unutrašnje projektne temperature kreće se u opsegu od o C, što je uslovljeno namenom prostorije, ali i kretanjem spoljne temperature vazduha. 14

15 Granice unutrašnje temperature vazduha u prostoriji Zona ugodnosti Pri brzini strujanja vazduha do 0,25 m/s 15

16 Model toplotne ravnoteže (1) Prema standardu SRPS EN ISO 7730 uvode se indeksi kojima se ocenjuje ugodnost boravka u prostoriji. PMV indeks (engl. Predicted Mean Vote) predviđa kako će grupa ljudi oceniti ugodnost boravka u prostoriji. Kod određivanja PMV indeksa fiziološki odziv termoregulacionog sistema osobe povezan je sa statističkim vrednovanjem termičke ugodnosti glasovima prikupljenim od najmanje 1300 ispitanika. Njegovo predviđanje je relativno složen matematički postupak, koji se sprovodi prema jednačinama datim u pomenutom standardu. Jednostavniji način određivanja PMV indeksa je očitavanjem vrednosti iz tablica za relativnu vlažnost vazduha 50% i različite temperature vazduha, brzine strujanja, nivoa fizičke aktivnosti i odevenosti. Model toplotne ravnoteže (2) Nivo ugodnosti vrednuje se na skali od 7 tačaka. Grupa ispitanika određuje brojevima na skali od -3 do +3 svoj subjektivan osećaj termičke ugodnosti. Osobe koje su se izjasnile brojevima ±2 ili ±3 spadaju u grupu nezadovoljnih stanjem u prostoriji. Kada je poznat PMV indeks, moguće je odrediti PPD (engl. Predicted Percentage of Dissatisfied) indeks koji predviđa procenat nezadovoljnih osoba u nekoj prostoriji. Određuje se pomoću jednostavnog matematičkog izraza kao funkcija od PMV indeksa: PPD = e (0,03353PMV 4 +0,2179PMV 2 ) [%] 16

17 Model toplotne ravnoteže (3) Skala ugodnosti prema PMV i međusobna zavisnost PMV i PPD indeksa Model toplotne ravnoteže (4) Tabela pokazuje različite kategorije termičkog komfora prema kriterijumima PMV i PPD indeksa, kao i oblast temperature vazduha tokom zimskog i letnjeg perioda Kategorija Kriterijum ugodnosti Raspon osetne temperature PPD PMV Zima (1,0 clo i 1,2 met) Leto (0,5 clo i 1,2 met) [%] [-] [ o C] [ o C] A < 6-0,2 < PMV< +0,2 22 ± 1,0 24,5 ± 1,0 B < 10-0,5 < PMV< +0,5 22 ± 2,0 24,5 ± 1,5 C < 15-0,7 < PMV< +0,7 22 ± 3,0 24,5 ± 2,5 17

18 Klimatske karakteristike podneblja Postrojenja za grejanje i klimatizaciju podešavaju se prvenstveno uslovima ugodnosti ljudi pa je, prema tome, čovek osnovni faktor od koga zavisi i veličina postrojenja i njegove karakteristike. Međutim, ako je čovek osnovni činilac, spoljna klima sa svojim meteorološkim parametrima, uz termičke karakteristike objekta, je svakako najuticajniji faktor. Klima bitno varira od mesta do mesta, utiče direktno na investicione i eksploatacione troškove postrojenja, pa je zato važno da tu oblast inženjeri poznaju, da bi bili u stanju da uticaj klime uzmu u obzir na odgovarajući način. Šta remeti termičke uslove sredine? Spoljni meteorološki parametri "spoljna" klima, koja se definiše preko sledećih osnovnih parametara: Temperatura spoljnog vazduha t s, Vlažnost vazduha ϕ, Brzina vetra w, Sunčevo zračenje insolacija. Osim navedenih, tu su još: oblačnost, visina oblaka, vazdušni pritisak i padavine. Meteorološki parametri spoljne klime su promenljivi, kako tokom dana tako i u toku godine, i značajno zavise od karakteristika posmatrane lokacije, kao što su: geografska širina, nadmorska visina i konfiguracija terena (zaklonjenost, blizina vodenih površina, itd.) 18

19 Temperatura spoljnog vazduha (1) Temperatura spoljnog vazduha je sa aspekta grejanja najuticajniji parametar. Spoljni vazduh zagreva energija Sunčevog zračenja, indirektno preko površinskih slojeva zemlje. S obzirom na promenu uslova zračenja Sunca, usled rotacije i kretanja Zemlje oko Sunca, vrednosti temperature vazduha se periodično menjaju u toku dana i godine. Ta periodičnost promene može često da varira usled promene oblačnosti, promene količine padavina, kao i mešanja vazdušnih masa različitih temperatura. U meteorološkim osmatranjima posebno se mere i izračunavaju srednje dnevne temperature, max i min. dnevne temperature, srednje mesečne, srednje godišnje, kao i maksimalne odnosno minimalne godišnje temperature. Dnevna promena temperature 3 temperatura ts ( o C) ( o C) JANUAR Vedar dan Oblačan dan vreme (h) 19

20 Srednje temperature θ Srednja mesečna temperatura: θ n θ m, i i= sr, mes = 1 12 θ n Srednja godišnja temperatura: sr, mes, i = 1 sr, god = i 12 θsr,mes tsr,mes ( o C) θsr,god t sr, god meseci Godišnja promena temperature Godišnja promena temperature određuje dužinu grejnog perioda, odnosno broj radnih dana sistema za grejanje. Spoljna temperatura vazduha u korelaciji sa dužinom grejnog perioda utiče na godišnju potrebnu toplotu za grejanje, a time i na potrošnju goriva (eksploatacione troškove). Granice perioda grejanja određene su onom srednjom dnevnom temperaturom pri kojoj treba početi, odnosno prekinuti sa grejanjem. Temperatura granice grejanja je u vezi sa uslovima ugodnosti ljudi i iznosi 12 o C. Prema tome, grejni period nekog mesta obuhvata broj dana čije su srednje dnevne temperature niže od temperature granice grejanja. 20

21 Vlažnost spoljnog vazduha Vlažnost spoljnog vazduha neprekidno varira u zavisnosti od količine vodene pare koja isparava sa površine zemlje. Pri višim temperaturama vazduha on može da primi više vlage, pa sa povećanjem sadržaja vlage raste i parcijalni pririsak vodene pare p d, sve do dostizanja pritiska zasićenja p s na posmatranoj temperaturi. Kada je dostignut p s (t) tada vazduh na posmatranoj temperaturi sadrži maksimalnu količinu vodene pare, i tada je vrednost relativne vlažnosti 100%. Dakle, relativna vlažnost vazduha se definiše kao: ϕ = p p d s Dnevni tok relativne vlažnosti 100 Relativna vlažnosti (%) decembar juli doba dana (h) 21

22 Brzina vetra Brzina vetra je stohastička veličina. U atmosferi, usled nejednakog zagrevanja zemljine površine dolazi do stvaranja temperaturskih razlika i razlika pritisaka u susednim vazdušnim masama, što prouzrokuje njihovo kretanje u svim pravcima. Strujanje vazduha u pretežno horizontalnom pravcu naziva se vetar, koji predstavlja meteorološki element definisan pravcem i brzinom strujanja. Statističkom obradom podataka došlo se do dijagrama koji se naziva RUŽA VETROVA, dge se prikazuje pravac i učestanost. Pravac je predstavljen u obliku duži koja je u srazmeri sa učestanošću duvanja i ima odgovarajući pravac prema strani sveta. Uz ružu vetrova daje se i dijagram sa prosečnim brzinama vetra za različite pravce. U centralnom krugu, u promilima, upisan je podatak o trajanju tišine, tj. o dužini perioda bez vetra. Ruža vetrova Leto Zima Cela godina 22

23 Sunčevo zračenje (1) Sunce zrači energiju kao crno telo čija je temperatura površine 6000 o C, dok je u centru Sunca, prema teorijskim proračunima, temperatura reda veličine o C. Sunčevo zračenje na ulazu u Zemljinu atmosferu nazivamo ekstraterestijalnim zračenjem. Kako se udaljenost Zemlje od Sunca menja tokom godine i ekstraterestijalno zračenje (iradijansa) se menja od najmanje vrijednosti 1321 W/m 2 do najveće 1412 W/m 2. Ekstraterestijalno zračenje za srednju udaljenost Zemlje od Sunca naziva se Sunčeva (Solarna) konstanta. Svetska meteorološka organizacija je godine standardizovala Sunčevu konstantu čija vrednost iznosi Io=1367 W/m 2. Na putu kroz zemljinu atmosferu Sunčevo zračenje slabi zbog sudaranja zraka sa česticama prašine i zbog apsorpcije od strane troatomnih i višeatomnih molekula gasova. Sunčevo zračenje (2) Sunčevo zračenje koje dospeva na zemljinu površinu sastoji se od direktnog i difuznog: I = I + I uk DIR Ako se posmatra ukupno Sunčevo zračenje koje dospeva na horizontalnu površinu, onda se ono još naziva globalno zračenje. dif I = uk, HOR I GL Intenzitet Sunčevog zračenja na površini Zemlje zavisi od geografske širine i nadmorske visine za određenu lokaciju, a takođe se menja tokom dana i tokom godine. 23

24 Sunčevo zračenje (3) Zbog deklinacije Zemlje (ugla nagiba ose rotacije Zemlje u odnosu na putanju oko Sunca) tokom godine se menjaju uglovi položaja Sunca na nebu, kao i putanja Sunčevih zraka do površine Zemlje. Samim tim, značajno se razlikuje intenzitet Sunčevog zračenja leti i zimi. Sunčevo zračenje koje dospe na površinu fasadnog zida zgrade zagreva ga, na taj način smanjujući količinu toplote koju treba zimi dovesti za grejanje. S druge strane, Sunčevo zračenje značajno doprinosi toplotnom opterećenju prostorija u zgradi tokom letnjeg perioda, posebno komponenta koja potiče od prodora Sunčevih zraka kroz transparentni deo omotača. Sunčevo zračenje (4) Mesečne sume globalnog zračenja (kj/cm 2 ) Prosečno trajanje dnevnog sijanja Sunca (h/dan) meseci Srednje mesečne sume globalnog zračenja Sunca u Beogradu meseci Prosečno trajnje dnevnog sijanja Sunca za Beograd 24

25 Spoljna projektna temperatura (1) Grejanje zgrada počinje kada spoljna temperatura padne ispod neke određene granice, koju obično nazivamo temperaturom granice grejanja (θ gg ). Koja će to temparatura biti zavisi od: termičkih karakteristika objekta i individualnih zahteva korisnika. Za spoljnu projektnu temperaturu tsp nekog mesta ne uzima se najniža temperatura koja se javila u nekom periodu u posmatranom mestu, jer se ona javlja jako retko i kratko vremenski traje. Postrojenje za grejanje, koje bi bilo projektovano na osnovu takvog apsolutnog minimuma, bilo bi predimenzionisano investiciono skupo i eksploataciono neekonomično, jer bi jako retko radilo punim kapacitetom. Zato se za vrednost spoljne projektne temperature usvaja neka viša vrednost, ali dovoljno niska. Spoljna projektna temperatura (2) Kada je θs > θsp sistem mora da zadovolji ostvarivanje željene unutrašnje temperature; Kada je θs < θsp sistem ne mora da održava željenu unutrašnju temperaturu, ali obično može forsiranim radom, bez noćnog prekida. 25

26 Spoljna projektna temperatura (3) Temperatura spoljnog vazduha ( o C) Model godina za Beograd Temperatura spoljnog vazduha ( o C) t θ u o a =20 o C t gg θ gg kraj grejanja početak grejanja meseci meseci Tok spoljne temperature prema Model godini za Beograd Granica grejanja i dužina trajanja grejne sezone Metode za određivanje spoljne projektne temperature (1) Postoji više grupa metoda za određivanje spoljne projektne temperature. One se uglavnom zasnivaju na statističkoj obradi spoljnih temperatura u dužem vremenskom periodu 20 godina ili duže od toga. Ovde će biti reči o 3 različite grupe metoda za određivanje θsp: I GRUPA Metode na bazi različitih kombinacija minimalnih godišnjih temperatura. II GRUPA Metode na bazi časovnih vrednosti spoljne temperature. III GRUPA Metode na bazi dinamičkog ponašanja zgrada u termičkom smislu. 26

27 I GRUPA n θgod, min, i 1. i=, gde je n broj godina (20, 30...) θsp = 1 n Po ovoj metodi je definisana spoljna projektna temperatura po ranijem Nemačkom normativu 4701, da bi u danas važećem normativu uveo novi način njenog određivanja. 2. Formula Rusa Čaplina θ sp = θ θ 0,4 sr, mes + 0, 6 aps,min gde su: θ sr,mes srednja temperatura najhladnijeg meseca u godini i θ aps, min apsolutni minimum za posmatrani vremenski period. II GRUPA Kriterijum: procenat pojavljivanja časovne vrednosti temperature vazduha iznad neke referentne vrednosti u dužem vremenskom periodu. Ta referentna temperatura je spoljna projektna temperatura. U izdanju ASHRAE Fundamentals iz navode se novi kriterijumi za određivanje tsp: Oštriji kriterijum je 99,6%, ali računato prema časovinim vrednostima za celu godinu (8760 h), a ne za 3 najhladnija meseca, a to znači da je u 35 h/god spoljna temperatura niža od tsp, što približno odgovara ranijem kriterijumu 99%. Blaži kriterijum je 99% računato prema časovinim vrednostima za celu godinu, a to znači da je u 88 h/god spoljna temperatura niža od tsp, što približno odgovara ranijem kriterijumu 97,5%. 27

28 III GRUPA Umesto izdvojenih časovnih temperatura analiziraju se nizovi sa sukcesivnim vrednostima spoljne temperature onako kako su se stvarno pojavile u prirodi. Suština je u tome da se temperatura vazduha u prostoriji održava kroz određeni period daleko duži od 1 h, što je posledica akumulacione sposobnosti zgrade (toplota se akumuliše u masi zidova prostorije, tako da je toplotna inercija izražena). Po ovoj metodi je definisana spoljna projektna temperatura po novom Nemačkom normativu. Kao projektna se usvaja srednja dvodnevna temperatura, koja je u poslednjih 20 godina bila dostignuta ili podbačena 10 puta. 28

1 GREJANJE I KLIMATIZACIJA UVODNI POJMOVI

1 GREJANJE I KLIMATIZACIJA UVODNI POJMOVI 1 GREJANJE I KLIMATIZACIJA UVODNI POJMOVI Grejanje i klimatizacija su grane tehnike i naučne discipline koje se bave ostvarivanjem i održavanjem pogodnih uslova za boravak čoveka u zatvorenom prostoru.

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

ENERGETSKA EFIKASNOST U ZGRADARSTVU DIFUZIJA VODENE PARE

ENERGETSKA EFIKASNOST U ZGRADARSTVU DIFUZIJA VODENE PARE ENERGETSKA EFIKASNOST U ZGRADARSTVU DIFUZIJA VODENE PARE Vlažan vazduh Atmosferski vazduh, pored osnovnih komponenata (kiseonik, azot i male količine vodonika, ugljendioksida i plemenitih gasova), može

Διαβάστε περισσότερα

PRELAZ TOPLOTE - KONVEKCIJA

PRELAZ TOPLOTE - KONVEKCIJA PRELAZ TOPLOTE - KONVEKCIJA Prostiranje toplote Konvekcija Pri konvekciji toplota se prostire kretanjem samog fluida (tečnosti ili gasa): kroz fluid ili sa fluida na čvrstu površinu ili sa čvrste površine

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Drugi zakon termodinamike

Drugi zakon termodinamike Drugi zakon termodinamike Uvod Drugi zakon termodinamike nije univerzalni prirodni zakon, ne važi za sve sisteme, naročito ne za neobične sisteme (mikrouslovi, svemirski uslovi). Zasnovan je na zajedničkom

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

4 PRORAČUN DOBITAKA TOPLINE LJETO

4 PRORAČUN DOBITAKA TOPLINE LJETO 4 PRORAČUN DOBITAKA TOPLINE LJETO Izvori topline u ljetnom razdoblju: 1. unutrašnji izvori topline Q I (dobitak topline od ljudi, rasvjete, strojeva, susjednih prostorija, ) 2. vanjski izvori topline Q

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

TOPLOTNO OPTEREĆENJE I KLIMATIZACIJA

TOPLOTNO OPTEREĆENJE I KLIMATIZACIJA TOPLOTNO OPTEREĆENJE I KLIMATIZACIJA Uvodna razmatranja Dobici toplote predstavljaju količinu toplote u jedinici vremena koju prostorija prima Toplotno opterećenje obuhvata svu količinu toplote koja zagreva

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

Korektivno održavanje

Korektivno održavanje Održavanje mreže Korektivno održavanje Uzroci otkaza mogu biti: loši radni uslovi (temperatura, loše održavanje čistoće...), operativne promene (promene konfiguracije, neadekvatno manipulisanje...) i nedostaci

Διαβάστε περισσότερα

EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje

EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje EuroCons Group Karika koja povezuje Filtracija vazduha Obrok vazduha 24kg DNEVNO Većina ljudi ima razvijenu svest šta jede i pije, ali jesmo li svesni šta udišemo? Obrok hrane 1kg DNEVNO Obrok tečnosti

Διαβάστε περισσότερα

P I T A NJ A. Standrad SRPS EN 6946

P I T A NJ A. Standrad SRPS EN 6946 P I T A NJ A Standrad SRPS EN 6946 1. Navesti kriterijume na osnovu kojih građevinski element spada u grupu neventilisanih, slabo ventilisanih ili dobro ventilisanih vazdušnih prostora. Vazdušni sloj se

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Vlažan vazduh (II) D.Voronjec i Đ.kozić

Vlažan vazduh (II) D.Voronjec i Đ.kozić Vlažan vazduh (II) D.Voronjec i Đ.kozić 4. JEDNOSTAVNIJE PROMENE STANJA VLAŽNOG VAZDUHA I NJIHOVA ANALIZA U i-x DIJAGRAMU Za većinu promena stanja, koje se proučavaju u tehnici klimatizacije, grejanja

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

BIOFIZIKA TERMO-FIZIKA

BIOFIZIKA TERMO-FIZIKA BIOFIZIKA TERMO-FIZIKA Akademik, prof. dr Jovan P. Šetrajčić jovan.setrajcic@df.uns.ac.rs Univerzitet u Novom Sadu Departman za fiziku PMF Powered byl A T E X 2ε! p. / p. 2/ Termika FENOMENOLOŠKA TEORIJA

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

SPECIJALNA POGLAVLJA IZ TERMODINAMIKE I GRAĐEVINSKE FIZIKE - Skripta sa pitanjima i odgovorima PITANJA: I DEO TERMODINAMIKA Page 1 of 6

SPECIJALNA POGLAVLJA IZ TERMODINAMIKE I GRAĐEVINSKE FIZIKE - Skripta sa pitanjima i odgovorima PITANJA: I DEO TERMODINAMIKA Page 1 of 6 PITANJA: I DEO TERMODINAMIKA Page 1 of 6 2. Skicirati jednostavno kompresiono rashladno postrojenje i dati njegov prikaz u (h,s) dijagramu stanja. Ako ovo postrojenje radi u režimu toplotne pumpe (KTP),

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Katedra za biofiziku i radiologiju. Medicinski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku. Vlaga zraka

Katedra za biofiziku i radiologiju. Medicinski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku. Vlaga zraka Katedra za biofiziku i radiologiju Medicinski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku Vlaga zraka Vlagu zraka čini vodena para koja se, uz ostale plinove, nalazi u zraku. Masa vodene pare

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα