Orthogonal Frequency Division Multiplexing (OFDM) in Long Term Evolution (LTE)
|
|
- Νικόλαος Αρβανίτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Orthogonal Frequency Division Multiplexing (OFDM) in Long Term Evolution (LTE) Καθηγητής Γεώργιος Ευθύµογλου
2 Wireless channel models There are two distinct fading models for the wireless channel 1. 1 path 0 multipath delay frequency flat fading channel 2. Multiple paths frequency selective fading channel 2
3 Received Signal Multipath delays occur as a transmitted signal is reflected by objects in the environment between a transmitter and a receiver. 3
4 Received Signal in Single Carrier systems Multipath delays causes intersymbol interference (ISI) in the received symbols, because time dispersion occurs where the energy from one symbol spills over into other symbols. h0 x s1 s2 s3 s4 s5 s6 s7 h1 x s1 s2 s3 s4 s5 s6 s7 h2 x s1 s2 s3 s4 s5 s6 s7 Example: delay spread = 7 symbol times Received signal is given by linear convolution of transmit signals with the impulse response of the channel. 4
5 Received signal Frequency Flat fading channel (narrowband systems) ( ) r n = h( n) s( n) + w( n) ( ) ( n) = + ( ) ( ) jθ a n e s n w n Frequency selective channel (wideband systems) ( ) r n = h( n)* s( n) + w( n) L 1 l= 0 ( ) ( ) ( ) = + h l s n l w n Each multipath component is typically associated with different time delay and attenuation, the shortest of which is the LOS path. 5
6 OFDM using N orthogonal subcarriers 1 TOFDM = = N T f k Fs fk = k f = N s N 1 N 1 k Fs j 2 t j 2π fkt N x(t) = X ( k) e = X ( k) e π k= 0 k= 0 ιαµόρφωση OFDM: Όλοι οι υπο-δίαυλοι, ταυτόχρονα, χρησιµοποιούνται από τον ίδιο χρήστη. Κάθε υπο-δίαυλος «κουβαλάει» ένα σύµβολο διαµόρφωσης. 6
7 OFDM vs Single Carrier OFDM: κάθε υπο-δίαυλος «κουβαλάει» ένα σύμβολο διαμόρφωσης Single Carrier: κάθε σύμβολο καταλαμβάνει όλο το φάσμα για μικρό χρόνο 7
8 Πλεονεκτήµατα του OFDM vs Single Carrier 1) Η διάρκεια εκποµπής κάθε συµβόλου διαµόρφωσης αυξάνεται Ν φορές. Εποµένως, οι πολλαπλές διαδροµές που φτάνουν κατά τη διάρκεια ενός συµβόλου διαµόρφωσης θα επηρεάζουν µόνο ένα µικρό µέρος του συµβόλου. 2) Η επίδραση του πολυδιαδροµικού καναλιού µπορεί να «εξουδετερωθεί»µε τη χρήση του κυκλικού προθέµατος. 3) Έχουµε frequency diversity γιατί κάθε σύµβολο πολλαπλασιάζεται µε διαφορετικό συντελεστή καναλιού. 4) Ένας χρήστης δύναται να εκπέµψει µέρος του φάσµατος εκποµπής, ενεργοποιώντας συγκεκριµένους subcarriers. 8
9 OFDM example Using single carrier with data rate of 10 Mbps with QPSK modulation (2 bits per symbol, BW=5MHz) gives a symbol rate Rs = 5 Msymbols/sec or symbol time Ts = 1/(5M sym/sec) = 0.2 μseconds. With a bandwidth of 5 MHz, if we have an OFDM system with 1000 carriers, the OFDM symbol time is T OFDM =1/Δf=1/(5MHz/1000)=200μseconds. = 1/(5MHz/1000) = At the speed of light, an object in an urban environment (typically 1 Kmaway)generatesadelayof6.6μsec. This reflected signal would be completely out of sync with the direct signal and will affect 6.6/0.2 = 33 symbols with single carrier system. However, for OFDM, the delay of 6.6 μseconds is only 1/30th of the OFDMsymboldurationT OFDM =200μseconds.
10 CALCULATING THE NUMBER OF SUBCARRIERS BASED ON MULTIPATH DELAY SPREAD The number of subcarriers can be calculated for a given bandwidth based on the delay spread of the channel. As an example, if the delay spread is 20 µseconds, in order that the subcarriers have flat fading, the OFDM symbol duration should be at least 10 times the delay spread or T OFDM =200µseconds. The OFDM symbol duration is then 200 µseconds (including the guard band) and the bandwidth of each subcarrier is 1/200 = 5 KHz. If the channel bandwidth is 1 MHz, 200 subcarriers can be used for OFDM operation.
11 CALCULATING THE NUMBER OF SUBCARRIERS BASED ON MULTIPATH DELAY SPREAD Περιορισμοί στο Φασματικό Πεδίο Το μοντέλο καναλιού Vehicular Β ITU-R, παρουσιάζει τιμές καθυστέρησης έως 20 μsec, για κινητά περιβάλλοντα. Ο σχεδιασμός της απόστασης Δf των υποφερόντων απαιτεί flat fading για κάθε υπο-φέρον ακόμα και για τις χειρότερες τιμές καθυστέρησης των 20 μsec. Το coherence bandwidth, δηλαδή το εύρος ζώνης που παρουσιάζει την ίδια διάλειψη, υπολογίζεται να είναι περίπου 10KHz: 1 1 B c 10KHz 5 τ = 5 20µs = max Περιορισμοί στο Χρονικό πεδίο Η μέγιστη ταχύτητα για την υποστήριξη κινητικότητας είναι 125Km/hr. Η μέγιστη μετατόπιση Doppler στα 3.5GHz είναι: f D ν 35 m / s = = = 408 Hz λ 0.086m Χρησιμοποιώντας ένα εύρος ζώνης υπoφέροντος ίσο με 10KHz, η ισχύς Διακαναλικής Παρεμβολής (InterCarrier Interference) που αντιστοιχεί στην παραπάνω μετατόπιση Doppler φαίνεται ότι περιορίζεται στο -27dB.
12 Εφαρµογή Θέλουμε να σχεδιάσουμε ένα OFDM σύστημα με f c =2.5GHz, BW < 20MHz που να μεταφέρει δεδομένα με ρυθμό R b =10.24Mbpsκαιμερυθμόκωδικοποίησης(FEC)ρ=1/2. H μέγιστη ταχύτητα του δέκτη είναι v max = 216km/h και ο δίαυλοςέχειτ max =8μsec. Θέλουμε επίσης για τη χρήσιμη διάρκεια του OFDM συμβόλουναισχύει5τ max T sym 0.03T coh όπου Coherence time Τ coh του καναλιού είναι η χρονική διάρκεια στην οποία το κανάλι παραμένει σταθερό. 12
13 Εφαρµογή vmax Max. Doppler Shift : fd,max = fc = 500Hz c 1 Coherence Time : Tcoh = 2msec f D,max OFDM Symbol Duration : T = 5 τ = 40µ sec< 0.03 T = 60µ sec max 1 Sub-Carrier Spacing : f = = 25kHz T Cyclic Prefix Duration : T CP OFDM OFDM τ max TCP = 10µ sec coh 13
14 Εφαρµογή Assume Number of Sub-Carriers : N = 512 N fft Rb = Rskρ = k TO FDM + TCP ( ) fft BW = N f = 12.8 MHz, (<20MHz) ρ Rb TOFDM + TCP k = k = 2 bits / symbol QPSK N ρ 6 SINGLE CARRIER : Rs = = symbols / sec max s fft n = τ R 82 R 2 ρ fft Χωρίς OFDM, 82 διαδοχικά σύµβολα QPSK επηρεάζονται από ISI 14
15 Spectrum of OFDM orthogonal carriers IfwetakeanFFTofanOFDMsignalweseethatwheneachcarrier has a peak, all others are zero. This is expected, since the spectrum of each sub-carrier of length T has a zero at multiples of 1/T(peaks of other subcarriers) N=16 Subcarriers of OFDM signal amplitude frequency bins with N*16 resolution 15
16 Spectrum of OFDM orthogonal carriers Bandwidth of multi-carrier signal. Sub carriers Carrying data Data carried by each subcarriers (Sampling Point on Frequency Domain) Summation of all sub carriers Sampling Point on Frequency Domain 16
17 Carriers with duration T sec (1/10) Example: BW = Fs = 20MHz and N=128 In the 20MHz spectrum, there are 128 narrowband sub-carriers. The duration of each subcarrier is N 128 T = NTs = = = 6.4µ sec 6 F s The frequency separation between them is fixed at 1 1 Fs 20MHz = = = = KHz T NT N 128 The 128 subcarrier frequencies are s { 0, , 2* , (127)*156.25} KHz 17
18 Carriers with duration T sec (2/10) Assume a complex sinusoid j t e π Its spectrum is given in the next slide and is obtained by ( f )*sinc( f T) δ with duration T=100 µsec The shape of the function sinc(f T) has zeros at frequencies: = 0, 10, 20, 190, 210, 220 KHz, that is at multiplies of 1 1 f = = = 10KHz 4 T 10 sec Therefore, if we have a BW=Fs=1MHz, we can have frequency spacing between subcarriers f = 10KHz, that is, we can have BW 1000KHz N = 100 f = 10KHz = 18
19 Carriers with duration T sec (3/10) Observe that frequency nulls exist at all frequencies given by k /, { 0,1,2,..., 19,21,22,...99 } 5 { 0,1,2,..., 19,21,22,...99 } 10 Hz f = k T k= = spectrum of 200KHz with duration T=100µsec ans sampled with Fs=1MHz Amplitude Frequency, Hz x
20 Carriers with duration T sec (4/10) Spectrum of a single subcarrier with time duration Tu ( π f T ) sin u = π f Tu 2 ( sinc( f Tu) ) 2 20
21 Carriers with duration T sec (5/10) Example: BW=Fs=20MHz and Δf = KHz 1 1 The duration of each subcarrier is T = = = 3 f µ sec The number of subcarriers are given by N = Fs 20MHz 128 f = MHz = The 128 subcarrier frequencies are { 0, ,..., } KHz 21
22 Carriers with duration T sec (6/10) The N subcarrier frequencies can be written as k k k Fs fk = = =, k = 0,1,..., N 1 T NT N s The discrete time signal is given by k k n k n sk = exp j 2 π nts = exp j 2 π = exp j 2 π, k = 0,1,..., N 1 T NTs F s N n= 0,1,..., N 1 Theory: Two sinusoids that occupy time T will be orthogonal 1/T iff their frequency separation f is a multiple of!! Result:All N subcarriers s k with duration N samples are orthogonal 22
23 Carriers with duration T sec (7/10) For example, assume Fs = 16 and N=16 (T=N/Fs=1sec) The subcarrier frequencies are The spectrum of subcarrier f 10 is sinc ( f T) *δ( f f ) 10 k k Fs k16 f = k k ( Hz), k 0,1,...,15 T = N = 16 = = spectrum of 1 subcarrier with N samples Sinc centered around f Notice that sidelobes have nulls at the frequencies k k Fs k16 f = k k Hz k k T = N = 16 = = amplitude ( ), 0,1,...,15, frequency bin 23
24 Carriers with duration T sec (8/10) Spectrum of 16 samples of frequency 10 Hz with sampling freq. 16Hz Matlab code for previous plot: clear Fs=16; f0=10; N=16; x1t = exp(j*2*pi*f0*[0:n-1]/fs); % exp(j 2 π f0 t) with t = n Ts x1f = fft(x1t, N*16); % 16 x resolution in frequency domain figure (1) plot([0:n*16-1]/16, x1f) xlabel('frequency bin') ylabel('amplitude') title('spectrum of 1 subcarrier with N samples') 24
25 Carriers with duration T sec (9/10) When two sinusoids occupy time T=NTs, then if their frequency separation is then the sinusoids will be orthogonal (peak of 1 carrier happens at k k kf s = =, k integer T NT N spectrum of 2 subcarriers with N samples 18 s a null frequency of the other). amplitude frequency bin 25
26 Carriers of limited duration (10/10) Consider 16 samples of 2 frequencies 5 and 10 Hz with sampling freq. 16Hz. Their frequency separation is 5 Hz = k*fs/n = k*16/16 for k=5; clear Fs=16; f0=10; f1 = 5; N=16; x1t = exp(j*2*pi*f0*[0:n-1]/fs) + exp(j*2*pi*f1*[0:n-1]/fs) ; x1f = fft(x1t, N*16); % 16 x resolution in frequency domain figure (1) plot([0:n*16-1]/16, x1f) xlabel('frequency bin') ylabel('amplitude') title('spectrum of 2 subcarriers with N samples') 26
27 Generation of OFDM sub-carriers using IDFT (1/3) Example: generate the 5 th (k=5) subcarrier with frequency 5* MHzandamplitude0.5(BW=Fs=20MHzand N=128) Input signal X(k) is sampled with Fs and goes through a serial to parallel conversion. Inputvector X=[zeros(1,5),0.5,zeros(1,128-6)] T atinputofidftof length 128. X (0) = 0 X (5) = 0.5 X ( N 1) = 0... IFFT(X,N) 1 sk ( n) = 0.5exp j2π 5* n 20 5n = 0.5exp j2 π, n= 0,1,..., N
28 Generation of OFDM sub-carriers using IDFT (2/3) All complex sinusoids k k n k n sk = exp j2π nts = exp j2π = exp j2 π, k = 0,1,..., N 1 T NTs F s N transmitted for duration N*Ts=T will be orthogonal, since they differ in frequency between them by integer multiple of(1/t). Therefore, we can use each frequency signal to transmit one symbol X(k) (symbol is BPSK or QPSK or 16-QAM, etc). Then we can addtheminparallelfordurationt(nsamples)andtransmitthem N 1 kn x( n) = X ( k)exp j2 π, n= 0,1,..., N 1 (A) k= 0 N However, eq. (A) is the IDFT of vector X (symbol vector) s k 28
29 Generation of OFDM sub-carriers using IDFT (3/3) We can use each frequency f k =k*f s /N, k=0,1,,n-1 to transmit one symbol X(k) (symbol is BPSK or QPSK or 16-QAM, etc). Then we can add them in parallel for duration T OFDM =N*T s (N samples) and transmit N symbolsasablock.allthishappenswith1ifftdsp: Serial Symbol Source (BPSK, QPSK, 16-QAM, 64-QAM) N 1 kn x ( n ) = X ( k )exp j 2 π, n = 0,1,..., N 1 k= 0 N Serial To Parallel IFFT Parallel To Serial Cyclic Prefix Channel 29
30 Plotting the OFDM Spectrum (1/6) fsmhz = 20; fcmhz = ; N = 128; % sampling frequency % signal frequency % fft size % generating the time domain signal x1t = exp(j*2*pi*fcmhz*[0:n-1]/fsmhz); x1f = fft(x1t,n); % 128 point FFT figure; plot([-n/2:n/2-1]*fsmhz/n, fftshift(abs(x1f))) ; % sub-carriers from [-64:63] xlabel('frequency, MHz') ylabel('amplitude') title('frequency response of complex sinusoidal signal'); To fftshiftµετατοπίζει τις τιµές από το [Fs/2, Fs) [-Fs/2, 0), ώστε η µηδενική συχνότητα να είναι στο µέσο του φάσµατος. 30
31 Plotting the OFDM Spectrum (2/6) With an N =128 point fft() and sampling frequency of f s, the observable spectrum from is split to sub-carriers. However, the signal at the output of fft( ) is from As the frequencies from get aliased to the operator fftshift() is used when plotting the spectrum. 31
32 Plotting the OFDM Spectrum (3/6) Για ένα σύστηµα OFDM µε Ν=128 και συχνότητα δειγµατοληψίας F s βρείτε µε ποια συχνότητα βασικής ζώνης είναι ισοδύναµη η συχνότητα f 70 = 70 (F s /128), η οποία είναι µεγαλύτερη από την F s / 2.Αποδείξτετοµετηχρήσητουλογισµικού Matlab. Λύση Η παραπάνω συχνότητα, όταν δειγµατοληπτηθεί µε συχνότητα δειγµατοληψίας θα εµφανιστεί στη βασική ζώνη, διάστηµα [-F s /2, F s /2) [-64:63), ως η f -58 = -58 (F s /128), όπως αποδεικνύει η παρακάτω µαθηµατική σχέση: j π nt s s 128 j j π n π π 128 n j π n T 128 e = e = e = e 32
33 Plotting the OFDM Spectrum (4/6) clear; N=128; k1=70; k2=-58; n = [0:N-1]; x1 = exp(j*2*pi*k1*n/n); x2 = exp(j*2*pi*k2*n/n); plot(n, real(x1), 'bo-') hold on plot(n, real(x2), 'rx-') xlabel('sample number, n') ylabel('amplitude') 33
34 Plotting the OFDM Spectrum (5/6) In the example above, with a sampling frequency of 20MHz, the spectrum from [-10MHz, +10MHz) is divided into 128 sub-carriers with spaced apart by 20MHz/128 = kHz. The generated signal x1t of frequency MHz corresponds to the information on the 10th sub-carrier (starting from 0), which can also be generated from the IFFT as follows: Note the position of 1 in the input to the IDFT: x2f = [0 zeros(1,9) 1 zeros(1,n-10-1)]; x2t = N*ifft(x2F); % time domain signal using ifft() Ή ισοδύναµα x2f = [zeros(1,n/2) 0 zeros(1,9) 1 zeros(1,n/2-10-1)]; x2t = N*ifft(fftshift(x2F)); % time domain signal using ifft() To fftshiftµετατοπίζει τις τιµές από το αριστερό µισό στο δεξιό µισό. 34
35 Plotting the OFDM Spectrum (6/6) fsmhz = 20; % sampling frequency fcmhz = ; % signal frequency N = 128; % fft size % generating the time domain signal x1t = exp(j*2*pi*fcmhz*[0:n-1]/fsmhz); x2f = [zeros(1,n/2) 0 zeros(1,9) 1 zeros(1,n/2-10-1)]; % valid frequency on 10th subcarrier, rest all zeros x2t = N*ifft(fftshift(x2F)); % time domain signal using ifft() % comparing the signals diff = x2t - x1t; err = diff* diff'/length(diff) % this will give 0 35
36 Generation of OFDM symbol for WiFi Spectrum representation of OFDM symbol in a, N= FFT Size(=64) sub carries Guard band 26 sub carriers carrying Bits 26 sub carriers carrying Bits 6 sub carries Guard band DC No Subcarrier 36
37 Generation of OFDM symbol for WiFi Assume BPSK symbols to be sent. [1,-1,-1,1,,-1,1,1,-1,,1,1,1,-1] (52 bits) subcarrierindex_data = [-26:-1 1:26]; [1,-1,-1,1,,-1,1,1,-1,,1,1,1,-1] 37
38 Generation of OFDM symbol for WiFi IFFT transforms signal to time domain. frequency ModSequenceForSubCarriers = fftshift(modsequenceforsubcarriers); Shift Rotate frequency 0 frequency frequency ModSequenceInTimeDomain = ifft(modsequenceforsubcarriers,totalnumber OfSubCarrier); IFFT frequency time 38
39 OFDM spectrum Φάσµα εκποµπής για σήµα OFDM µε Ν=64, Fs = 20MHz 39
40 OFDM transmitter with encoder and interleaver Block diagram of OFDM transmitter 40
41 Interleaver Most error-correcting codes, both block codes and convolutional codes, cannot correct many errors if they occur close together. Typically, the codes can correct between one and five errors in blocks of data of perhaps 10 to 100 bits. In practice, errors often do not occur like this at all: in many cases we get bursts of tens or even hundreds of errors occurring very infrequently, and no errors for the rest of the time. A technique which can be employed to allow error-correcting codes to protect against bursts is interleaving. Figure below shows how interleaving might be used in association with (7,4) Hamming code so that it is able to correct up to four consecutive errors. Four consecutive code words are interleaved by writing the words into a 4 7 matrix of memory locations row by row, and reading out column by column. 41
42 Interleaver example consecutive code words are interleaved by writing the words into a 4 7 matrix of memory locations row by row, and reading out column by column. 42
43 De-interleaver example The interleaving is undone at the receiver by writing the received bits into a matrix column by column, and reading out row by row. un-interleaving has the effect of spreading out the errors so that each of the four code words contains only a single error, which can be corrected. 43
44 Burst errors look like random errors 44
45 Burst errors look like random errors The interleaving is undone at the receiver by writing the received bits into a matrix column by column, and reading out row by row. If we now have a burst of four errors on the channel, so that four consecutive bits in the data arriving at the receiver are errored, the un-interleaving has the effect of spreading out the errors so that each of the four code words contains only a single error, which can be corrected. The interleaving takes place after the coding at the transmitter, and the un-interleaving takes place before the decoding at the receiver. That is, the sequence is coding interleaving channel de-interleaving decoding. 45
46 OFDM transmitter with encoder and interleaver Block diagram of a/g transceiver architecture (Coded OFDM) The sequence of interleaved bits is mapped into a sequence of modulation symbols, e.g., 16-QAM. Therefore, 4 consecutive coded bits at the encoder output will be separated and each coded bit will combine with 3 other bits and will be sent with a different modulation symbol (e.g., 16-QAM), that is, it will be sent with a different subcarrier. 46
47 OFDM transmitter with encoder and interleaver Therefore, at the receiver side, after the Frequency deinterleaver, the probability of 4 consecutive bits are in error is small. In order for 4 consecutive bits to be in error, 4 16QAM symbols with different fading must be wrongly detected. The probability of this to happen is small. So the error bits at the Decoder input will not be consecutive but random. This way the decoder will be able to find the correct valid codeword from the received bits and provide the correct info bits. 47
48 Coded OFDM Problem solution 48
49 Frequency selective channel Multipath propagation results in frequency selective fading. OFDM solution to maintain subcarrier orthogonality is Cyclic Prefix 49
50 OFDM in time domain Transmitted signal is OFDM (block Transmission) Data symbols c k 50
51 Cyclic Prefix (1/5) Το cyclic prefixτου [ ] { } x n ορίζεται ως x[ N M],..., x[ N 1] δηλαδή αποτελείται από τις τελευταίες M τιµές του x n. Για κάθε ακολουθία εκποµπής x n µήκους Ν, αυτά τα Mδείγµατα µπαίνουν στην αρχή της ακολουθίας εκποµπής. Αυτό δηµιουργεί [ ] [ ] µία νέα ακολουθία x n µήκους Ν+M: [ ] [ ] = [ ],..., [ 1 ], [ 0 ],..., [ 1] x n x N M x N x x N x[n-m] x[n-m+1] x[n-1] x[0]x[1] x[2]... x[n-m-1] x[n-m] x[n-m+1] x[n-1] 51
52 Cyclic Prefix (2/5) OFDM symbol with cyclic prefix Total OFDM symbol time is T u + T g SNR loss 1 Tguard T 4 SNR 1dB loss T = 10 log 1 T useful guard total 52
53 Cyclic Prefix (3/5) Έστω ότι το x [ n] είναι είσοδος στο κανάλι πολλαπλών διακριτών διαδροµών (ισοδύναµο µε ένα FIR φίλτρο). Η έξοδος θα είναι: [ ] = [ ]* [ ] y n x n h n L [ ] [ ] = h k x n k k= 0 k= 0 [ ] [ ] [ ] h[ n] όπου η τρίτη ισότητα ισχύει για M>Lεπειδή για L = h k x n k = x n N N [ ] [ ] 0 k M 1, x n k = x n k for 0 n N 1. N 53
54 Cyclic Prefix (4/5) Εποµένως µε την προσθήκη του cyclic prefixστα Ν δείγµατα εκποµπής, η γραµµικήσυνέλιξη του σήµατος εκποµπής µε το κανάλι, που δίνει το y[n] για 0 n N 1, ισούται µε την κυκλικήσυνέλιξη του αρχικού σήµατος µε το κανάλι. Παίρνοντας εποµένως στο δέκτη το DFTτου y[n] (χωρίς θόρυβο) έχουµε: { N } [ ] [ ] [ ] [ ] [ ] [ ] Y k = DFT y n = x n h n = X k H k, 0 k N 1 N και εποµένως, αν γνωρίζουµε το DFT{h}, τα σύµβολα εκποµπής µπορούν να βρεθούν στο δέκτη µε µία απλή διαίρεση: { vector y } { vector h } DFT N { } vector{ X} = DFT { } N 54
55 Cyclic Prefix (5/5) X x y Y CP x h (CIR) x= IFFT { X} CP y= x h= x h { } { } { } { } Y= FFT y = FFT x h = FFT x FFT h = X H : Convolution, : CircularConvolution : Dot product Άρα, γνωρίζοντας τα Υ, Η, το Χ βρίσκεται µε απλή διαίρεση 55
56 Μετάδοση και λήψη OFDM µε κυκλικό πρόθεµα Στο OFDM αντί να στείλουµε κάποια σύµβολα διαµόρφωσης (π.χ. +1 bit 1και -1 bit 0)στέλνουµετηνέξοδοτου ifft Νσυµβόλων εκποµπής. Π.χ. ifft([ ], 4) ans = Επίσης, επειδή το σήµα εκπέµπεται σε ένα πολυδιαδροµικό κανάλι, το οποίο ενεργεί σαν φίλτρο, π.χ. h = [0.7, -0.3]. Προσθέτουµε το κυκλικό πρόθεµα στο υπάρχων σήµα εκποµπής. Ο αριθµός αυτών των δειγµάτων πρέπει να είναι µεγαλύτερος ή τουλάχιστον ίσος µε το µήκος του πολυδιαδροµικού καναλιού (φίλτρου). Εστω ότι επιλέγουµε µήκος κυκλικού προθέµατος 3. 56
57 Μετάδοση και λήψη OFDM µε κυκλικό πρόθεµα Το λαµβανόµενο σήµα στο δέκτη θα είναι: y = conv([ ], [ ]) y = Στο δέκτη, πετάµε τα πρώτα 3 δείγµατα (αντιστοιχούν στο κυκλικό πρόθεµα)και ταεπόµεναν(εδών=4)ταβάζουµεείσοδοσεένα DFT (fft in Matlab) και διαιρούµε µε την απόκριση συχνότητας του καναλιού υπολογισµένη σε Ν συχνότητες: x = fft([ ],4)./ fft([ ], 4) x =
58 OFDM in frequency domain Each data symbol c k is modulated by a subcarrier 58
59 SubCarriers with duration T OFDM sec The N subcarrier frequencies can be written as k k k Fs fk = = =, k = 0,1,..., N 1 T NT N OFDM s The discrete time signal of k-th subcarrier is given by k k n k n sk = exp j2π nts = exp j2π = exp j2 π, n= 0,1,..., N 1 TOFDM NTs Fs N Theory: Two sinusoids that occupy time duration N*Ts=T OFDM will be orthogonal iff their frequency separation f is : k f =, k= 1,2,... T OFDM Result:All N subcarriers s k with duration N samples are orthogonal 59
60 SubCarriers with duration T OFDM sec Example: BW=Fs=20MHz and Δf = KHz 1 1 The duration of each subcarrier is T OFDM = = = 3 f µ sec The number of subcarriers are given by N = Fs 20MHz 128 f = MHz = The 128 subcarrier frequencies are { 0, ,..., } KHz 60
61 Data Rates for OFDM The OFDM symbol duration is defined by the subcarrier spacing. For example, in Fixed WiMAX we have: T OFDM 1 1 = = = 64µ sec f Hz The bit rate achieved by Fixed WiMAX depends on the modulation and coding scheme (MCS) used in each subcarrier and is given by Bit Rate = Nsubcarriers (# bits / modulation symbol) CodingRate T + T OFDM G
62 Estimating data rates For an OFDM system with 192 subcarriers with data, the number of bits carried by an OFDM symbol is 192 *B where B = bits/modulation symbol. Bit Rate = N subcarriers *(# bits / modulation symbol) T G OFDM Numerical example using QPSK and cyclic prefix 8 µsec BitRate 192* 2 = = 72µ sec 5.33 Mbits / sec
63 Spectral efficiency of MCS Assume BW=1 Hz ID Modulation &Coding Scheme Spectral efficiency of MCS (bit/sec/hz) 1 BPSK 1/2 1 x ½ = QPSK 1/2 2 x ½ =1.0 3 QPSK 3/4 2 x ¾ = QAM ½ 4 x ½ = QAM 3/4 4 x 3/4 = QAM 2/3 6 x 2/3 = QAM 3/4 6 x ¾ = 4.5 ( R ) = spectral efficiency of MCS(bit/sec/Hz) ( H ) b MCS BW z 63
64 Estimating data rates in OFDM CAPACITY ANALYSIS OFDM BW efficiency (b/s/hz) 0,69 Modln+coding efficiency (b/s/hz) 0,50 1,00 1,50 2,00 3,00 4,00 4,50 Overall PHY layer efficiency, (b/s/hz) 0,35 0,69 1,04 1,38 2,07 2,76 3,11 User Data Rate, Mbps 1,21 2,42 3,63 4,84 7,26 9,68 10,89 (BW=3.5 MHz) OFDM Bandwidth efficiency' N_fft = Number of OFDM tones 256 N_data = Number of data tone 192 n = Sampling factor 8/7=1,152 Guard band efficiency (192*8/7) /256=0,864 Cyclic prefix guard time factor (Tg/Tb) 0,250 Guard time efficiency 1/(1+0,250)=0,8 OFDM Bandwidth efficiency factor (downlink) 0,864*0,8=0,691 OFDM Bandwidth efficiency factor (uplink) 0,691 64
65 LTE OFDM transmission Consider a time-discrete (sampled) OFDM signal where it is assumed thatthesamplingratefsisamultipleofthesubcarrierspacingδf fs=1/ts=n Δf As Nc Δf can be seen as the nominal bandwidth of the OFDM signal, this implies that N should exceed Nc with a sufficient margin. N/Nc, is the over-sampling of the time-discrete OFDM signal. 65
66 LTE OFDM transmission As an example, for 3GPP LTE the number of subcarriers Nc is approximately 600 in the case of a 10 MHz spectrum allocation. The IFFT size can then, for example, be selected as N = This correspondstoasamplingratefs=n Δf=15.36MHz,where Δf = 15 khz is the LTE subcarrier spacing. The subcarrier spacing Δf. OFDM transmission parameters The number of subcarriers Nc, which, together with the subcarrier spacing, determines the overall transmission bandwidth of the OFDM signal. The cyclic-prefix length TCP. Together with the subcarrier spacing Δf = 1/Tu, the cyclic-prefix length determines the overall OFDM symbol timet=tcp+tuor,equivalently,theofdmsymbolrate. 66
67 LTE OFDM demodulation Recover the modulation symbols 67
68 LTE Downlink: time domain I. Time duration for one frame is 10 ms.this means that we have 100 radio frames per second. II. Sampling frequency for 20MHz bandwidth is 15 KHz * 2048 (IFFT_size) = MHz = Fs III. Sampling time Ts = 1/Fs = 1/(15 KHz * 2048) = 1/ IV MHz = 8 x 3.84 MHz (sampling frequency in UMTS) V. Duration of time slot is 7 OFDM symbols + 7 CPs VI. Number of subframein one frame is 10. VII. Number of slots in one subframeis 2. This means that we have 20 slots in one frame. VIII. Each slot consists of a number of OFDM symbols which can be either 7 (normal cyclic prefix) or 6 (extended cyclic prefix) 68
69 LTE Downlink: time domain Frame structure for LTE in FDD mode (Frame Structure Type 1). 69
70 OFDM transmission There are many advantages to using OFDM in a mobile access system, namely: 1- Long symbol time and guard interval increases robustness to multipath and limits intersymbol interference. 2- Eliminates the need for intra-cell interference cancellation. 3- Allows flexible utilization of frequency spectrum. 4- Increases spectral efficiency due to the orthogonality between sub-carriers. 5- Allows optimization of data rates for all users in a cell by transmitting on the best(i.e. non-faded) subcarriers for each user. 70
71 LTE Downlink Resources Frequency domain representation of resource block (RB) N RB determines number of subcarriers (12*N RB ) and depends on transmit bandwidth(given below). In the downlink, the DC subcarrier iscounted(+1)butdoesnotusedtosenddata. 71
72 User equipment Concerned with power consumption. Assigned one or more Resource Block (RB) 72
73 Frequency Domain Resources Subcarrier spacing of 15 khz LTE bandwidth is highly flexible 1 MHz to 20 MHz is standard, even more with carrier aggregation 73
74 Resource Block (RB) for downlink RB = 12 subcarriers/slot 74
75 Channel bandwidth vs transmission bandwidth 75
76 Transmission bandwidth 76
77 Physical layer parameters for LTE in FDD mode 77
78 78
79 Time Frequency Representation 79
80 LTE Downlink: Resource Block The transmission can be scheduled by Resource Blocks (RB) 1 RB = 12 consecutive sub-carriers, or 180 khz, for the duration of one slot (0.5 ms), that is for (7 OFDM symbols, or 6 for extended CP) A Resource Element (RE) is the smallest defined unit which consists of one OFDM sub-carrier during one OFDM symbol interval. Each Resource Block consists of 12 7 = 84 Resource Elements (RE)in case of normal cyclic prefix (72 for extended CP). Each RE can carry number of bits depending on the modulation employed. For example, using for QPSK: a RB carries 84*2 bits per 0.5 msec. 80
81 LTE Downlink: Resource Block Definition of Resource Blocks and Resource Elements. 1 RB = 12 consecutive sub-carriers, or 180 khz, for the duration of one slot (0.5 ms), that is for (7 OFDM symbols, or 6 for 72 for extended CP) 81
82 LTE Downlink: Resource Block In summary: One frame is 10ms and it consists of 10 sub-frames. OneLTEsubframeis1msandcontains2slots. One slot is 0.5ms in time domain and each 0.5ms assignment can contain N resource blocks [6 < N < 110] depending on the bandwidth allocation and resource availability. One resource block is 0.5ms and contains 12 subcarriers for each OFDM symbol in frequency domain. There are 7 symbols (normal cyclic prefix) per time slot in the timedomainor6symbolsinlongcyclicprefixforlte. LTE Resource element is the smallest unit of resource assignment and its relationship to resource block is shown as below from both a timing and frequency perspective. 82
83 83
84 LTE Downlink: Resource Block Red color for f = 15 KHz. 84
85 LTE: Physical resource blocks (PRBs) or subframes = 1msec In OFDMA, users are allocated a specific number of subcarriers for a predetermined amount of time. Physical resource blocks (PRBs) or Subframe in the LTE specifications equalto 2consecutiveRBs,thatis,12subcarriersfor14OFDMsymbols. 85
86 LTE resource grid 86
87 UE-eNB connection 87
88 LTE Physical Channels Physical channels in the resource grid. 88
89 LTE Physical Channels P-SS: Primary synchronization signal S-SS: secondary synchronization signal PBCH:Physical Broadcast Channel PCFICH: Physical Control Format Indicator Channel PHICH:Physical Hybrid ARQ Indication Channel PDSCH: Physical Downlink Shared Channel PDCCH: Physical Downlink Control Channel PCH: Paging channel RS: Reference Signal, used both in uplink and downlink SRS: Sounding reference signal, used in uplink DMRS: Demodulation Reference Signal PRACH: Physical Random Access Channel used in uplink PUSCH: Physical Uplink Shared Channel PUCCH: Physical Uplink Control Channel 89
90 LTE Physical Channels Resource elements in the resource grid contain six types of data source: User data, Cell Specific Reference (CSR), Downlink Control Information (DCI), PSS, SSS, and BCH. 1. For subframe 0: all the sources of data are present (BCH only in this subframe: it carries Master Information Block, MIB) 2. Forsubframe5:userdata,CSR,DCI,PSS,andSSSarepresent. 3. All other subframes {1, 2, 3, 4, 6, 7, 8, 9}: user data, CSR and DCI symbols are present. 90
91 LTE resource grid 91
92 Radio frame structure (1 antenna port, CFI=2) 92
93 Case 1: Compute Data Rate for 1.4 MHz CFI=2 Given 1.4 MHz of available spectrum, there are 6 Resource Blocks available. There are 3 subframe categories: a) the 1 st one, b) the 5t one c)therest8subframes Thefirst2OFDMsymbolsofeachsubframeisusedforControl Signalling. The6centralRBsinthe1 st subframecontainpbch,pss/sss. Referencesignalsoccupy8REsineachRB. Let s calculate the amount of data and control block for each kind of subframe in 1 RB (12 subcarriers for duration 14 OFDM symbols): 93
94 Case 1: Compute Data Rate for 1.4 MHz CFI=2 Subframe(a):CFI+PBCH+PSS/SSS+reference= 2x12+6x12+4=100 control REs (2 OFDM symbols for CFI, 6=2+4 OFDM symbols for synch+pbch) 12x14-100= 68 data resource elements Subframe (b): CFI + PSS/SSS + reference = 2x12+2x12+6= 54 control REs 12x14-54= 114 data resource elements Subframe(c): CFI + reference= 2x12+6=30 control REs 12x14-30= 138 data resource elements
95 Case 1: Compute Data Rate for 1.4 MHz CF1=2 The overhead can be calculated as (control occupies 6 RB/subframe): Total control= (1 subframe a)x(6x100)+(1 subframe b)x(6x54)+(8 subframe c)x(6x30) = Total resource elements=(6x12)x(10x14)=10080 Overhead (CFI=2)= 100 x (2364/10080)=23.45% 2364 resource elements One information symbol can be allocated in each data resource element. The transmission is done by means of 64-QAM with 6 bits per symbol. The peak rate throughput is: Total data=(1 column a)x(6x68)+(1 column b)x(6x114)+(8 columns c)x(6x138) =7716 resource elements Bit rate= (7716 symbols x 6 bits/symbol)/10ms= 4.5 Mbps 95
96 Case 2: LTE Throughput calculation Let us understand peak data rate or LTE throughput calculation with following LTE system configuration: 20MHz channel, 4x4 MIMO configuration. Theoretically, Peak Data rate = No. of REs per subframe x no. of bits per modulation symbol / subframe time = x 6 / 1msec = bits/ 1 msec Data Rate=100.8Mbps For 4x4 MIMO data rate = 403Mbps About 25% of overhead is used here for RS (reference signal), synchronization signals, PDCCH, PBCH. This leads to effective data rate of about 403Mbps x 0.75 = 302Mbps. 96
97 LTE E-UTRAN LTE targets to achieve 100Mbps in the downlink (DL) and 50 Mbps in the uplink(ul) directions with user plane latency less than 5ms due to spectrum flexibility and higher spectral efficiency. These exceptional performance requirements are possible due to Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input and Multiple-Output (MIMO) functionality in the radio link at the physical layer. The Evolved UMTS Terrestrial Radio Access Network (E- UTRAN), the very first network node in the evolved packet system (EPS), achieves high data rates, lower control & user plane latency, seamless handovers, and greater cell coverage. 97
98 References 1. 4G LTE/LTE-Advanced for Mobile Broadband, by Erik Dahlman, Stefan Parkvall, and Johan Skold, 2011 Elsevier. 2. LTE in a Nutshell: The Physical Layer, White paper, 2010, Telesystem Innovations. 3. LTE Resource Guide at sampling-frequency-vs-resource-block.html 5. LTE Physical Layer Overview: Subsystems/lte/Content/lte_overview.html 6. LTE tutorial: LTE E-UTRAN and its Access Side Protocols 9. TS V BS Radio Transmission and Reception 98
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Υψηλοί Ρυθμοί Μετάδοσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Η Τεχνική OFDM ως Λύση για Υψηλούς Ρυθμούς Μετάδοσης Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Υψηλοί Ρυθμοί
ΕΥΡΥΖΩΝΙΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ
ΕΥΡΥΖΩΝΙΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ Ενότητα # 11: Κινητά Δίκτυα Επόμενης Γενιάς (Μέρος 1) Καθηγητής Χρήστος Ι. Μπούρας Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών email: bouras@cti.gr, site: http://ru6.cti.gr/ru6/bouras
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Ασύρματα Δίκτυα Μικρής Εμβέλειας (4) Αγγελική Αλεξίου
Ασύρματα Δίκτυα Μικρής Εμβέλειας (4) Αγγελική Αλεξίου alexiou@unipi.gr 1 Ασύρματα Τοπικά Δίκτυα IEEE 802.11 Φυσικό επίπεδο (PHY) 2 IEEE 802.11b (PHY) 3 Φυσικό επίπεδο (PHY) Το IEEE 802.11 καθόρισε αρχικά
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
ΤΕΧΝΙΚΕΣ ΟΡΘΟΓΩΝΙΚΗΣ ΠΟΛΥΠΛΕΞΙΑΣ ΜΕ ΠΟΛΛΑΠΛΑ ΦΕΡΟΝΤΑ
ΤΕΧΝΙΚΕΣ ΟΡΘΟΓΩΝΙΚΗΣ ΠΟΛΥΠΛΕΞΙΑΣ ΜΕ ΠΟΛΛΑΠΛΑ ΦΕΡΟΝΤΑ (Orthogonal Frequency Division Multiplexing) Alexandros-Apostolos A. Boulogeorgos e-mail: ampoulog@auth.gr WCS GROUP, EE Dept, AUTH SINGLE CARRIER VS
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ΜΕΛΕΤΗ ΕΝΟΣ ΔΕΚΤΗ ΣΥΣΤΗΜΑΤΟΣ WIMAX ΜΙΜΟ ΙΕΕΕ m STUDY OF A WiMAX MIMO IEEE m RECIEVER
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΛΕΤΗ ΕΝΟΣ ΔΕΚΤΗ ΣΥΣΤΗΜΑΤΟΣ WIMAX ΜΙΜΟ ΙΕΕΕ 802.16m STUDY OF A WiMAX MIMO IEEE 802.16m RECIEVER ΤΟΥΡΜΠΕΣΛΗ ΦΛΩΡΙΤΣΑ ΑΕΜ 3766 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ Δρ.
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 7: Ορθογώνια Πολυπλεξία Διαίρεσης Συχνότητας - OFDM Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Περιεχόμενα Ιστορική εξέλιξη Γενικά Ορθογωνιότητα Διαμόρφωση Υποκαναλιών
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Ευρυζωνικά δίκτυα (4) Αγγελική Αλεξίου
Ευρυζωνικά δίκτυα (4) Αγγελική Αλεξίου alexiou@unipi.gr 1 Αποτελεσματική χρήση του φάσματος Πολυπλεξία και Διασπορά Φάσματος 2 Αποτελεσματική χρήση του φάσματος Η αποτελεσματική χρήση του φάσματος έγκειται
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Modbus basic setup notes for IO-Link AL1xxx Master Block
n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that
Δίκτυα Καθοριζόμενα από Λογισμικό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δίκτυα Καθοριζόμενα από Λογισμικό Exercise Session 4: Familiarization with GNU Radio Τμήμα Επιστήμης Υπολογιστών SDR Assignment using GNU Radio Manolis Surligas
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Περιεχόμενα ΠΡΟΛΟΓΟΣ... 11. Κεφάλαιο 1 ο : Ιστορική Αναδρομή ο δρόμος προς το LTE... 13. Κεφάλαιο 2 ο : Διεπαφή Αέρα (Air Interface) Δικτύου LTE...
Περιεχόμενα ΠΡΟΛΟΓΟΣ... 11 Κεφάλαιο 1 ο : Ιστορική Αναδρομή ο δρόμος προς το LTE... 13 1.1 Ιστορική Αναδρομή Κινητής Τηλεφωνίας... 13 1.2 Δικτυακή Υποδομή Δικτύου 4G (LTE/SAE)... 26 1.3 Το δίκτυο προσβάσεως
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.
Τµήµα Ηλεκτρονικής ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Σπουδαστής: Γαρεφαλάκης Ιωσήφ Α.Μ. 3501 Επιβλέπων καθηγητής : Ασκορδαλάκης Παντελής. -Χανιά 2010- ΠΕΡΙΛΗΨΗ : Η παρούσα
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
Εισαγωγή στο 802.11 AC Συμβουλές και Λύσεις Υλοποίησης Ασύρματων Δικτύων στο RouterOS v6 MUM 2015 GREECE. Ελευθέριος Λιοδάκης
Εισαγωγή στο 802.11 AC Συμβουλές και Λύσεις Υλοποίησης Ασύρματων Δικτύων στο RouterOS v6 MUM 2015 GREECE Ελευθέριος Λιοδάκης Σχετικά με εμένα! Λιοδάκης Ελευθέριος D&C ELECTRONICS MikroTik Certified Consultant
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Θεωρία Πληροφορίας και Κωδίκων
Θεωρία Πληροφορίας και Κωδίκων Δρ. Νικόλαος Κολοκοτρώνης Λέκτορας Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης και Τεχνολογίας Υπολογιστών Τέρμα Οδού Καραϊσκάκη, 22100 Τρίπολη E mail: nkolok@uop.gr Web: http://www.uop.gr/~nkolok/
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ cdma2000: Initial Settings Forward Fundamental Radio Conf iguration 3 9.6 Kbps NonTD Multipath Fading Channel Select the parameters for
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
Δίκτυα Δακτυλίου. Token Ring - Polling
Δίκτυα Δακτυλίου Token Ring - Polling Όλοι οι κόμβοι είναι τοποθετημένοι σε ένα δακτύλιο. Εκπέμπει μόνο ο κόμβος ο οποίος έχει τη σκυτάλη (token). The token consists of a number of octets in a specific
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ
Κινητά Δίκτυα Επικοινωνιών
Κινητά Δίκτυα Επικοινωνιών Διαμόρφωση Πολλαπλών Φερουσών και OFDM (Orthogonal Frequency Division Multiplexing) Διαμόρφωση μιας Φέρουσας Είδαμε ότι τα πραγματικά κανάλια (και ιδιαίτερα τα κινητά) εισάγουν
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Information Theory Θεωρία της Πληροφορίας. Vasos Vassiliou
Information Theory Θεωρία της Πληροφορίας Vasos Vassiliou Network/Link Design Factors Transmission media Signals are transmitted over transmission media Examples: telephone cables, fiber optics, twisted
Εργαστήριο 3: Διαλείψεις
Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Λειτουργίες Φυσικού Στρώµατος
Λειτουργίες Φυσικού Στρώµατος Κωδικοποίηση/Αποκωδικοποίηση των TrCh Ραδιοµετρήσεις και µετάδοση τους σε ανώτερα στρώµατα Κατανοµή/συνδυασµός των Macrodiversity και εκτέλεση Soft Handover Ανίχνευση σφαλµάτων
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
ΑσύρµαταΜητροπολιτικά ίκτυα
ΑσύρµαταΜητροπολιτικά ίκτυα Απαιτήσεις ικτύωση υπολογιστικών συστηµάτων που βρίσκονται διασκορπισµένα σε µια γεωγραφική περιοχή της τάξης µιας «πόλης». Μεγαλύτερό εύρος ζώνης από τα αντίστοιχα τοπικά δίκτυα.
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
«ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ ΕΝΟΣ ΠΟΜΠΟΔΕΚΤΗ ΚΥΨΕΛΩΤΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ»
«ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ ΕΝΟΣ ΠΟΜΠΟΔΕΚΤΗ ΚΥΨΕΛΩΤΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ» FEASIBILITY STUDY AND LAB MEASUREMENTS OF A CELLULAR TELECOMMUNICATIONS TRANSCEIVER Δεσπότης Χρήστος Δάλατζης
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Μάθημα: Ευρυζωνικά Δίκτυα Ομάδα A
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Μάθημα: Ευρυζωνικά Δίκτυα Ομάδα A Θέμα 1 ο : (3 μονάδες) 1. Ποια από τις παρακάτω δομές πλαισίου χρησιμοποιείται στην δομή πλαισίου τύπου 1 (FDD) στο LTE; A. Συνολικό μήκος 10 msec, 2
(C) 2010 Pearson Education, Inc. All rights reserved.
Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
HORIZON QUANTUM. Logging
HORIZON QUANTUM High Capacity Packet Microwave System FEATURES NETWORK MANAGEMENT (NMS) Capacity w/accelerator Variable from 10 to 2000 Mbps full duplex CIR Management Access In or out of band 2x capacity
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Λειτουργίες Φυσικού Στρώµατος
Λειτουργίες Φυσικού Στρώµατος Κωδικοποίηση/Αποκωδικοποίηση των TrCh Ραδιοµετρήσεις και µετάδοση τους σε ανώτερα στρώµατα Κατανοµή/συνδυασµός των Macrodiversity και εκτέλεση Soft Handover Ανίχνευση σφαλµάτων
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
Μελέτη και Προσομοίωση n πομπού για ασύρματη πρόσβαση ΦΟΙΤΗΤΗΣ: ΛΑΖΑΡΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΕΥΣΤΑΘΙΟΥ ΔΗΜΗΤΡΙΟΣ
Μελέτη και Προσομοίωση 802.11n πομπού για ασύρματη πρόσβαση ΦΟΙΤΗΤΗΣ: ΛΑΖΑΡΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΕΥΣΤΑΘΙΟΥ ΔΗΜΗΤΡΙΟΣ A) Προσομοίωση του φάσματος του καναλιού του προτύπου για να φανεί
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U