Finite size Emptiness Formation Probability for the XXZ spin chain at = 1/2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Finite size Emptiness Formation Probability for the XXZ spin chain at = 1/2"

Transcript

1 Finite size Emptiness Formation Probability for the XXZ spin chain at = 1/2 Luigi Cantini luigi.cantini@u-cergy.fr LPTM, Université de Cergy-Pontoise (France) CFT AND INTEGRABLE MODELS Bologna, September 12-15, 2011 Based on arxiv:1109.???? Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

2 XXZ spin chain at = 1 2 Hamiltonian of the XXZ spin chain H N ( ) = 1 2 N i=1 σxσ i x i+1 + σyσ i y i+1 + σzσ i z i+1 = q + q 1 2 [Razumov, Stroganov 00] = 1 2 g.s. energy E = 3N 4 N odd (N = 2n + 1) Periodic boundary conditions: σ α N+1 = σα 1. Two-fold degenerate ground state Ψ ± 2n+1, rational-valued components. N even (N = 2n) Twisted periodic boundary conditions: σ z N+1 = σz 1, while σ ± N+1 = e±i 2π 3 σ ± N+1, where σ± = σ x + ±iσ y. A single ground state Ψ e 2n, complex valued components. Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

3 Emptiness Formation Probability (EFP) The definition of the EFP ( (Ψ µ E µ N (k) = N ), ) k i=1 p+ i Ψ µ N (Ψ µ N, Ψµ N ), p + i = σz i µ = ±, e Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

4 Emptiness Formation Probability (EFP) The definition of the EFP ( (Ψ µ E µ N (k) = N ), ) k i=1 p+ i Ψ µ N (Ψ µ N, Ψµ N ), p + i = σz i µ = ±, e we define also a Pseudo EFP ( E ẽ2n(k) Ψ e 2n, ) k i=1 p+ i Ψ e 2n = (Ψ e 2n, Ψe 2n ). Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

5 Emptiness Formation Probability (EFP) The definition of the EFP ( (Ψ µ E µ N (k) = N ), ) k i=1 p+ i Ψ µ N (Ψ µ N, Ψµ N ), p + i = σz i µ = ±, e we define also a Pseudo EFP ( E ẽ2n(k) Ψ e 2n, ) k i=1 p+ i Ψ e 2n = (Ψ e 2n, Ψe 2n ). They have an analytical, factorized form! Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

6 Conjectures [Razumov, Stroganov 00] E 2n+1 (k 1) E 2n+1 (k) = E + 2n+1 (k 1) E + 2n+1 (k) = (2k 2)!(2k 1)!(2n + k)!(n k)! (k 1)!(3k 2)!(2n k + 1)!(n + k 1)! (2k 2)!(2k 1)!(2n + k)!(n k + 1)! (k 1)!(3k 2)!(2n k + 1)!(n + k)! E e 2n(k 1) E e 2n (k) = (2k 2)!(2k 1)!(2n + k 1)!(n k)! (k 1)!(3k 2)!(2n k)!(n + k 1)! E ẽ2n(k 1) = E ẽ2n (k) (2k 2)!(2k 1)!(2n + k 1)!(n k)! q (k 1)!(3k 3)!(3k 1)(2n k)!(n + k 1)! Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

7 Some partial results Asymptotics N [Maillet et al. 02] ( ) 3k 2 3 k lim E Γ(j 1/3)Γ(j + 1/3) N(k) = N 2 Γ(j 1/2)Γ(j + 1/2). j=1 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

8 Some partial results Asymptotics N [Maillet et al. 02] ( ) 3k 2 3 k lim E Γ(j 1/3)Γ(j + 1/3) N(k) = N 2 Γ(j 1/2)Γ(j + 1/2). j=1 Norm [Di Francesco et al. 06] E ± 2n+1 (n) = A HT (2n + 1) 1 = n j=1 (2j 1)! 2 (2j)! 2 (j 1)!j!(3j 1)!(3j)! E ẽ2n(n) = ( q) n A 2 n = ( q) n CSSC(2n) 1 where: A n = # of n n Alternating Sign Matrices A HT (2n + 1) = # of (2n + 1) (2n + 1) Half-Turn Symmetric Alternating Sign Matrices Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

9 CSSC(2n, k 1) E ẽ2n(k 1) CSSC(2n, k 1) E ẽ2n (k) = q CSSC(2n, k) CSSC(2n, k 1) = # of lozange tilings of a regular hexagon of side length 2n, which are invariant under a rotation of π/3 and have a star shaped frozen region of length k, (CSSC(2n) := CSSC(2n, 0) = CSSC(2n, 1)) 2n 3k Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

10 Integrability R-matrix with Twist matrix R i,j (z) = a(z) = a(z) b(z) c 1 (z) 0 0 c 2 (z) b(z) a(z) qz q 1 q q 1 z, b(x) = z 1 q q 1 z, c 1 (z) = (q q 1 )z q q 1 z, c 2(z) = (q q 1 ) q q 1 z. Ω(φ) = ( e iφ 0 0 e iφ ) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

11 R-Ω commutation [R i,j (x), Ω i (φ) Ω j (φ)] = 0 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

12 R-Ω commutation Yang-Baxter equation [R i,j (x), Ω i (φ) Ω j (φ)] = 0 R i,j (z i /z j )R i,k (z i /z k )R j,k (z j /z k ) = R j,k (z j /z k )R i,k (z i /z k )R i,j (z i /z j ) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

13 R-Ω commutation [R i,j (x), Ω i (φ) Ω j (φ)] = 0 Yang-Baxter equation R i,j (z i /z j )R i,k (z i /z k )R j,k (z j /z k ) = R j,k (z j /z k )R i,k (z i /z k )R i,j (z i /z j ) Transfer matrix T N (y z {1,...,N}, φ) = tr 0 [R 0,1 (y/z 1 )R 0,2 (y/z 2 )... R 0,N (y/z N )Ω 0 (φ)] Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

14 R-Ω commutation [R i,j (x), Ω i (φ) Ω j (φ)] = 0 Yang-Baxter equation R i,j (z i /z j )R i,k (z i /z k )R j,k (z j /z k ) = R j,k (z j /z k )R i,k (z i /z k )R i,j (z i /z j ) Transfer matrix T N (y z {1,...,N}, φ) = tr 0 [R 0,1 (y/z 1 )R 0,2 (y/z 2 )... R 0,N (y/z N )Ω 0 (φ)] Crucial idea! Consider the ground state with spectral parameters Ψ µ N Ψµ N (z), T N(y z {1,...,N}, φ)ψ µ N (z) = 1Ψµ N (z) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

15 quantum Knizhnik Zamolodchikov (qkz) equations [Razumov, Stroganov & Zinn-Justin 07] The ground state satisfies a specialization q = e 2πi/3 of the U q (sl 2 ) qkz equations Ř i,i+1 (z i+1 /z i )Ψ µ N (..., z i, z i+1,... ) = Ψ µ N (..., z i+1, z i,... ) With σψ µ N (z 1, z 2,..., z N 1, z N ) = DΨ µ N (z 2,..., z N 1, z N, sz 1 ). σ(v 1 v 2 v N 1 v N ) = v 2 v N 1 v N v 1 Ř i,i+1 (z) = P i,i+1 R i,i+1 (z) P i,j (e µ i e ν j ) = e ν i e µ j, s = q 6, D = q 3N q 3(sz N +1)/2. Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

16 Inhomogenous EFP Using the solution of the U q (sl 2 ) qkz equations at level 1. we define an inhomogenous version of the EFP E µ N (k; y {1,...,2k}; z {1,...,N k} ) (P N,k (z)(ψ µ N (q 6 y {k+1,...,2k} ;z)), k i=1 p+ i Ψ µ N (y {1,...,k};z)) 1 i<j k (qy i q 1 y j )(qy i+k q 1 y j+k ) with P N,k (z) = N i=k+1 (z ip + i + p i ). and of the Pseudo EFP E ẽn (k; y {1,...,2k}; z {1,...,N k} ) ( Ψ µ N (k;q 6 y 1 {k+1,...,2k} ;z 1 ), k ) i=1 p+ i Ψ µ N (k;y {1,...,k};z) 1 i<j k (qy i q 1 y j )(qy i+k q 1 y j+k ) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

17 Inhomogenous EFP Using the solution of the U q (sl 2 ) qkz equations at level 1. we define an inhomogenous version of the EFP E µ N (k; y {1,...,2k}; z {1,...,N k} ) (P N,k (z)(ψ µ N (q 6 y {k+1,...,2k} ;z)), k i=1 p+ i Ψ µ N (y {1,...,k};z)) 1 i<j k (qy i q 1 y j )(qy i+k q 1 y j+k ) with P N,k (z) = N i=k+1 (z ip + i + p i ). and of the Pseudo EFP E ẽn (k; y {1,...,2k}; z {1,...,N k} ) ( Ψ µ N (k;q 6 y 1 {k+1,...,2k} ;z 1 ), k ) i=1 p+ i Ψ µ N (k;y {1,...,k};z) 1 i<j k (qy i q 1 y j )(qy i+k q 1 y j+k ) We shall compute these and then take the specialization z i = y j = 1. Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

18 Properties of E µ N (k; y; z) and of E ẽ2n (k; y; z) 1 Symmetries under z i z j, y i y j. Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

19 Properties of E µ N (k; y; z) and of E ẽ2n (k; y; z) 1 Symmetries under z i z j, y i y j. 2 Specialization z i = 0 or z i lim z 2n 2n+1 E 2n+1 (k; y; z) E z 2n+1 2n(k; e y; z \ z 2n+1 ) E e 2n+2(k; y; z) z2n+2 =0 E + 2n+1 (k; y; z \ z 2n+2) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

20 Properties of E µ N (k; y; z) and of E ẽ2n (k; y; z) 1 Symmetries under z i z j, y i y j. 2 Specialization z i = 0 or z i lim z 2n 2n+1 E 2n+1 (k; y; z) E z 2n+1 2n(k; e y; z \ z 2n+1 ) E e 2n+2(k; y; z) z2n+2 =0 E + 2n+1 (k; y; z \ z 2n+2) 3 Recursion relation for z j = q ±2 z i z i 2k l=1 qy l q 1 z i q q 1 E µ N (k; y; z) z j =q 2 z i E µ N 2 (k; y; z \ {z i, z j }) 1 l N k l i,j (qz l q 1 z i )(q 3 z i q 1 z l ) (q q 1 ) 2 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

21 Properties of E µ N (k; y; z) and of E ẽ2n (k; y; z) 1 Symmetries under z i z j, y i y j. 2 Specialization z i = 0 or z i lim z 2n 2n+1 E 2n+1 (k; y; z) E z 2n+1 2n(k; e y; z \ z 2n+1 ) E e 2n+2(k; y; z) z2n+2 =0 E + 2n+1 (k; y; z \ z 2n+2) 3 Recursion relation for z j = q ±2 z i 2k l=1 qy l q 1 z i q q 1 E ẽ2n(k; y; z) zj =q 2 z i E ẽ2n 2 (k; y; z \ {z i, z j }) 1 l 2n k l i,j (qz l q 1 z i )(q 3 z i q 1 z l ) (q q 1 ) 2 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

22 Properties of E µ N (k; y; z) and of E ẽn (k; y; z) 4 Factorized cases E e/ẽ (qz i q 1 z j )(qz j q 1 z i ) 2k (k; y; z) = (q q 1 ) 2 1 i<j k E + 2k+1 (k + 1; y; z) = E 2k+1 (k; y; z) = 1 i<j k 1 i<j k+1 (qz i q 1 z j )(qz j q 1 z i ) (q q 1 ) 2 k i=1 (qz i q 1 z j )(qz j q 1 z i ) (q q 1 ) 2. z 2 i Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

23 Properties of E µ N (k; y; z) and of E ẽn (k; y; z) 4 Factorized cases E e/ẽ (qz i q 1 z j )(qz j q 1 z i ) 2k (k; y; z) = (q q 1 ) 2 1 i<j k E + 2k+1 (k + 1; y; z) = E 2k+1 (k; y; z) = 1 i<j k 1 i<j k+1 (qz i q 1 z j )(qz j q 1 z i ) (q q 1 ) 2 k i=1 (qz i q 1 z j )(qz j q 1 z i ) (q q 1 ) 2. z 2 i These properties completely determine E µ N (k; y; z) and E ẽ2n(k; y; z)! Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

24 Combinatorial point q = e 2πi/3 Let ρ, σ be strictly increasing infinite sequences of nonnegative integers. Introduce the following matrices z ρ 1 1 z ρ z ρr+s z ρ 1 2 z ρ z ρr+s z ρ 1 r z ρ 2 r... zr ρr+s z σ 1 1 z σ z σr+s 1 M ( ρ, σ) (r, s; y; z) = z σ 1 2 z σ z σr+s z σ 1 r z σ 2 r... zr σr+s y ρ 1 1 y ρ y ρr+s 1 y σ 1 1 y σ y σr+s y ρ 1 2s y ρ 2 2s... y ρr+s 2s y σ 1 2s y σ 2 2s... y σr+s 2s Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

25 Combinatorial point q = e 2πi/3 Define the following polynomials S ( ρ, σ) (r, s; y; z) = det M ( ρ, σ) (r,s;y;z) 1 i<j r (z i z j ) 2 1 i<j 2s (y i y j ). 1 i r (z i y j ) 1 j 2s Using the Laplace expansion along the first r + s columns we can write S ( ρ, σ) (r, s; y; z) as a bilinear in Schur polynomials I {1,...2s} I =s S ( ρ, σ) (r, s; y; z) = ( 1) ɛ(i ) i<j I (y i y j ) i<j I c (y i y j ) 1 i<j 2s (y i y j ) S ρ(r+s) (z, y I )S σ(r+s) (z, y I c), Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

26 Combinatorial point q = e 2πi/3 Now let us introduce the following family of integer sequences λ i (r) = 3i 3 + r, 2 λ(0) = {0, 1, 3, 4, 6, 7,... } λ(1) = {0, 2, 3, 5, 6, 8,... } λ(2) = {1, 2, 4, 5, 7, 8,... } We claim that E 2n+1 (k; y; z) S( λ(0), λ(1)) (2n + 1 k, k; y; z) E + 2n+1 (k; y; z) S( λ(1), λ(2)) (2n + 1 k, k; y; z) E2n(k; e y; z) S ( λ(0), λ(1)) (2n k, k; y; z) E ẽ2n(k; y; z) S ( λ(0), λ(2)) (2n k, k; y; z) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

27 t specialization Setting and z = {z 1 = t 0, z 2 = t 1,..., z N k = t N k 1 } y = {y 1 = t N k,..., y 2k = t N+k 1 } the functions E µ N (k; y; z) and E ẽ2n(k; y; z), as rational functions of t, have simple factors. Using the usual t-numbers and t-factorial [i] t = ti 1 t 1 and [n] t! = n [i] t. i=1 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

28 t specialization: result E2n(k e 1; t) E2n e (k; t) [2n + k 1] t![n k] t3![2k 1] t3![2k 2] t3! [2n k] t![n + k 1] t 3![k 1] t 3![3k 2] t! E ẽ2n(k 1; t) ( q)e ẽ2n (k; t) [2n + k 1] t![n k] t3![2k 1] t3![2k 2] t3! [2n k] t![n + k 1] t 3![k 1] t 3![3k 3] t![3k 1] t E 2n+1 (k 1; t) E 2n+1 (k; t) [2n + k] t![n k] t 3![2k 1] t 3![2k 2] t 3! [2n k + 1] t![n + k 1] t 3![k 1] t 3![3k 2] t! E + 2n+1 (k 1; t) E + 2n+1 (k; t) [2n + k] t![n k + 1] t3![2k 1] t3![2k 2] t3! [2n k + 1] t![n + k] t 3![k 1] t 3![3k 2] t! ( ) k 1 The coefficients in front are of the form t β [3]t 3 1. t 1 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

29 What if q is generic? We have found a multiresidua formula n k {qz i } l=1 E µ 2n ɛ(µ) (k; y; z) dw l w α(µ) 2k j=1 (w l y j ) 2πi 2n k ɛ(µ) i=1 (w l qz i )(w l q 1 z i ) K n k(w) where ɛ(±) = ±1, ɛ(e) = ɛ(ẽ) = 0, α(+) = α(e) = 0, α(ẽ) = 1, α( ) = 2 and K N (w) = (w i w j ) 2 (qw i q 1 w j )(qw j q 1 w i ). 1 i<j N Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

30 Perspectives Consider other correlation functions. Other boundary conditions (e.g. open chain with diagonal K matrices) Higher spins or also U q (sl N ) spin chain. Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

31 Thank you! Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, / 21

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Two generalisations of the binomial theorem

Two generalisations of the binomial theorem 39 Two generalisations of the binomial theorem Sacha C. Blumen Abstract We prove two generalisations of the binomial theorem that are also generalisations of the q-binomial theorem. These generalisations

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

3+1 Splitting of the Generalized Harmonic Equations

3+1 Splitting of the Generalized Harmonic Equations 3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Product Identities for Theta Functions

Product Identities for Theta Functions Product Identities for Theta Functions Zhu Cao April 7, 008 Defining Products of Theta Functions n 1 (a; q) 0 = 1, (a; q) n = (1 aq k ), n 1, k=0 (a; q) = lim (a; q) n, q < 1. n Jacobi s triple product

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

The form factor program - a review and new results - the nested SU(N)-off-shell Bethe ansatz - 1/N expansion

The form factor program - a review and new results - the nested SU(N)-off-shell Bethe ansatz - 1/N expansion The form factor program - a review and new results - the nested SU(N-off-shell Bethe ansatz - 1/N expansion H. Babujian, A. Foerster, and M. Karowski Yerevan-Tbilisi, October 2007 Babujian, Foerster, Karowski

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα