Transformate pentru semnale multidimensionale

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Transformate pentru semnale multidimensionale"

Transcript

1 Transformate pentru semnale multidimensionale Semnale 1D: s(t) Unele caracteristici ale semnalului pot fi ușor descrise în domeniul frecvență Transformata Fourier: s(t) S(ω) (sau s(t) S(f t )) unde t este timpul în secunde; f t este frecvența temporală în Hz (cicluri/s) f t măsoară variații temporale ale amplitudinii lui s(t) ω = 2πf t este frecvența unghiulară temporală în 1/s=Hz

2 Transformate pentru semnale multidimensionale semnalele sinusoidale s(t) = Acos(2πft + φ) sunt importante pentru că pot fi folosite pentru a sintetiza orice semnal: st ( ) = Akcos(2 π ft k ) k= orice semnal poate fi descompus în multe semnale sinusoidale de diferite f și diferite A în loc de cos putem folosi exponențiale: serii Fourier j2π ft e = π ft + j π f cos(2 ) sin(2 ) j2π ft k () = Ae k k= st

3 Transformate pentru semnale multidimensionale st ( ) = Akcos(2 π ft k ) k= Suma semnalelor de mai sus

4 Transformate pentru semnale multidimensionale cum putem observa f din forma de undă în timp? constantă în timp componentă pe f= (DC) sinusoidă o singură componentă pe frecvența f semnal periodic frecvență fundamentală și armonici semnal variabil lent conține doar frecvențe joase semnal variabil rapid conține frecvențe înalte estimarea celei mai mari frecvențe: inversul celui mai scurt interval între două minime sau maxime ale semnalului

5 Transformate pentru semnale multidimensionale Avantajul reprezentării în domeniul frecvență arată clar compunerea semnalului în frecvență se poate schimba amplitudinea oricărei componente prin filtrare FTJ netezire, eliminarea zgomotului FTS detecția variațiilor/tranzițiilor/contururilor FTB păstrarea unui interval de frecvențe amplif. fr. înalte intensificarea variațiilor/tranzițiilor/contururilor

6 Transformate pentru semnale multidimensionale Semnale 2D (imagini): I(x,y) Frecvența spațială măsoară cât de repede se modifică intensitatea imaginii în planul imaginii Frecvența spațială caracterizată prin frecvențe de variație pe două dimensiuni ortogonale pe orizontală: f x : cicluri/unitatea de distanță pe orizontală pe verticală: f y : cicluri/unitatea de distanță pe verticală Poate fi specificată și prin: 2 2 amplitudine: fm = fx + fy unghi de variație: θ = arctg( f / f ) y x

7 Transformate pentru semnale multidimensionale Ixy (, ) = sin(1 π x) Ixy (, ) = sin(1πx+ 2 πy) (fx,fy)=(,) (fx,fy)=(,1) fx= înseamnă că avem cinci cicluri pe fiecare rând

8 Transformate pentru semnale multidimensionale Semnale 3D (video): s(x,y,t) Frecvențe spațiale f x și f y Frecvență temporală f t Măsoară variația temporală a intensității pixelului Depinde de poziția spațială (fiecare punct poate varia diferit) Cauzată de mișcarea obiectului sau camerei şi condiţiile de iluminare

9 Transformate pentru semnale 1D Semnale continue deterministe x(t) Transformata Fourier Transformata Laplace Transformata Cosinus Transformata Wavelet j2π ft X( f ) x() t e dt = st X() s = x() t e dt 2 X( f ) = x( t)cos(2 π ft) dt π

10 Transformate pentru semnale 1D Transformate Fourier 1D importante

11 Transformate pentru semnale 1D Semnale discrete x(n), n=,1,,n-1 Transformata Fourier Discretă Transformata Z N 1 n= k j2π n N Xk ( ) = xne ( ), k=,1,..., N 1 Transformata Cosinus Discretă ( 2n+ 1) N 1 Xz () = xnz () n= N 1 kπ Xk ( ) = αk xn ( )cos, k=,1,..., N 1 n= 2N 1, pentru k = N αk = 2 Transformata Wavelet Discretă, pentru 1 k N 1 N n

12 Transformate pentru semnale 2D (imagini) Semnal 2D discret (imagine): I(x,y) 1. Transformata Fourier Discretă 2D N 1 M 1 ux vy j2π + N M Fuv (, ) = Ixye (, ), u=,1,..., N 1, v=,1,..., M 1 x= y= FFT-2D - metodă numerică de calcul a DFT-2D Funcții Matlab: fft2, ifft2

13 Transformate pentru semnale 2D 1. Transformata Fourier Discretă 2D Fuv (, ) pentru diferite imagini (spectru centrat pe mijloc) f(x,y) Fuv (, )

14 Transformate pentru semnale 2D 1. Transformata Fourier Discretă 2D Fuv (, ) pentru diferite imagini f(x,y) Fuv (, )

15 Transformate pentru semnale 2D 1. Transformata Fourier Discretă 2D Fuv (, ) pentru diferite imagini f(x,y) Fuv (, )

16 Transformate pentru semnale 2D 1. Transformata Fourier Discretă 2D Fuv (, ) pentru diferite imagini f(x,y) Fuv (, )

17 Transformate pentru semnale 2D 1. Transformata Fourier Discretă 2D Fuv (, ) pentru diferite imagini f(x,y) Fuv (, )

18 Transformate pentru semnale 2D 1. Transformata Fourier Discretă 2D Fuv (, ) pentru o imagine reală (spectru centrat pe mijloc)

19 Transformate pentru semnale 2D 2. Transformata Cosinus Discretă 2D N 1M 1 π x= y= blocuri de 8x8 pixeli: ( 2 + 1) ( 2 + 1) x u y vπ Cuv (, ) = kk u v Ixy (, )cos cos, 2N 2M k u ( 2 + 1) π ( 2 + 1) u=,1,..., N 1 v=,1,..., M 1 1 1, pentru u=, pentru v= N M = kv = 2 2, pentru 1 u N 1, pentru 1 v M 1 N M 7 7 x u y vπ Cuv (, ) = kk u v Ixy (, )cos cos x= y= , pentru uv, = k, 2 2 u kv = 1, în rest 2

20 Transformate pentru semnale 2D 2. Transformata Cosinus Discretă 2D C(,) - coeficient DC, reprezintă frecvenţa spaţială (,) sau media ponderată a valorilor pixelilor din bloc ceilalţi coeficienţi - coeficienţi AC şi reprezintă frecvenţele spaţiale orizontale şi verticale din bloc funcţii Matlab: dct2, idct2

21 Transformate pentru semnale 2D 2. Transformata Cosinus Discretă 2D Orice bloc 8x8 este aproximat cu o combinație liniară a celor 64 de blocuri de bază De la stânga la dreapta și de sus în jos frecvența crește cu. cicluri

22 Transformate pentru semnale 2D 2. Transformata Cosinus Discretă 2D Distribuția energiei coeficienților în imagini reale: Varianță coeficienți DCT Indici coef. zig-zag Scanare zig-zag

23 Transformate pentru semnale 2D 2. Transformata Cosinus Discretă 2D Imagine originală I(x,y) în locul fiecărui bloc de 8x8 pixeli este reprezentat blocul de coeficienți DCT

24 Transformate pentru semnale 2D 2. Transformata Cosinus Discretă 2D Imagine originală I(x,y) Fiecare sub-imagine e obținută din coeficienții DCT de la poziția corespunzătoare (ceilalți coef =)

25 Transformate pentru semnale 3D (video) Semnal 3D discret (secvență video): s(x,y,t) 1. Transformata Cosinus Discretă a) 2D-DCT pe fiecare cadru video b) 3D-DCT pe întreaga secvență video (sau grup de cadre) integrează şi dimensiunea temporală eliminară corelaţia intra-cadru, cât şi inter-cadru efort de calcul mare

26 Transformate pentru semnale 3D (video) 2D-DCT pe blocuri 2D din fiecare cadru timp 3D-DCT pe blocuri 3D timp

27 Transformata Wavelet 1D semnal 1D: f(t) descompune semnalul într-un set de funcții Wavelet f(t) = combinație liniară de funcții f t = s k Φ t = () ( ) jk, () k = s ( k) Φ () t + d ( k) Ψ () t = k 1 1 j 1, k j 1, k k j s ( k) = f () t Φ () t dt coeficienți de scalare j d ( k) = f () t Ψ jk, () t dt coeficienți de detaliu (Wavelet) și j i s k j j, k t d k j ik, t = ( ) Φ () + ( ) Ψ () jk, k k i= 1 j Φ jk, () t Ψ jk, () t

28 Transformata Wavelet 1D Φ, () t jk sunt funcţiile de scalare, care se obţin prin scalarea şi translatarea unei funcţii de scalare de bază (tată) Φ() t : Φ j j jk, ( t ) = 2 Φ (2 t k ) Ψ, () t jk sunt funcţiile Wavelet, care se obţin prin scalarea şi translatarea unei funcţii Wavelet de bază (mamă) Ψ() t : Ψ, ( t ) = j j jk 2 Ψ (2 t k )

29 Transformata Wavelet 1D Exemple: 1 Functia de scalare de baza Haar Functia Wavelet mama Haar

30 Transformata Wavelet 1D Exemple: Functia de scalare de baza Dauberchies de ordin Functia Wavelet mama Dauberchies de ordin

31 Transformata Wavelet Discretă 1D Coeficienții s și d se pot obține în mod iterativ prin filtrare numerică şi decimare folosind bancuri de filtre de analiză: ( * ) j+ 1 2 j s = h s ( * ) j+ 1 2 j d = g s hn ( ) = h( n) gn ( ) = g( n)

32 Transformata Wavelet Discretă 1D Semnalul original poate fi refăcut din coeficienţi prin interpolare şi filtrare numerică folosind bancuri de filtre de sinteză: s = h* s + g* d j 2 j+ 1 2 j+ 1

33 Transformata Wavelet Discretă 2D imagine digitală: I(x,y) aplicăm DWT-1D mai întâi pe linii şi apoi pe coloane: I II III IV I Imaginea filtrată trece-jos pe linii şi coloane, notată LL II Imaginea filtrată trece-sus pe linii şi trece-jos pe coloane, notată HL III Imaginea filtrată trece-jos pe linii şi trece-sus pe coloane, notată LH IV Imaginea filtrată trece-sus pe linii şi coloane, notată HH

34 Transformata Wavelet Discretă 2D Exemplu de aplicare a DWT-2D pe trei nivele de rezoluție Prima descompunere A doua descompunere A treia descompunere LL 3 HL 3 LL 1 HL 1 LL 2 HL 2 HL 1 LH 3 HL 2 HL 2 HH 2 HL HL 1 1 LH 2 HH 2 LH 2 HH 2 HH 3 LH 1 HH 1 LH 1 HH 1 LH 1 HH 1 LH 1 HH 1

35 Transformata Wavelet Discretă 2D DWT-2D pentru o imagine de 8x8 pixeli descompusă pe 3 nivele 3 s 1,1 j d x x, y j y d x, y x j y d xy, este coeficientul descalare la nivelul de rezoluţie 3 este coeficientul Wavelet la nivelul de rezoluţie j şi de la poziţia (x,y) din subbanda LH coeficientul Wavelet la nivelul de rezoluţie j şi de la poziţia (x,y) din subbanda HL coeficientul Wavelet la nivelul de rezoluţie j şi de la poziţia (x,y) din subbanda HH

36 vector 1D Noţiuni de bază în prelucrarea numerica a semnalelor video X - coeficienţii de scalare DWT implementare 1D O coeficienţi de detaliu (Wavelet) vor fi aplicate diferite filtre Wavelet în funcţie de tipul coeficientului (de scalare sau de detaliu) Vectorul va fi transformat de log2 n ori numărul de Transformări Wavelet = nivel de descompunere coeficienţii de scalare = noul vector coeficienţii Wavelet sunt ignoraţi la o transformare următoare

37 DWT implementare 1D Exemplu: vector de 8 eșantioane nivel 1 nivel 2 nivel 3 numărul de transformări, în care a fost implicat fiecare coeficient

38 DWT implementare 2D abordare 2D: I(x,y) matrice 2D în locul unui vector coeficienţii de scalare şi Wavelet sunt impărţiţi în ambele dimensiuni un sfert dintre ei disponibili pentru următoarea transformare

39 DWT implementare 2D Exemplu: matrice de 8x8 pixeli

40 DWT familia Haar calculează media fiecărei perechi de 2 eșantioane calculează diferența dintre primul eșantion din grup și medie umple prima jumătate cu medii umple a doua jumătate cu diferențe repetă algoritmul pe prima jumătate pasul 1: [ ] mediere diferență [ ]

41 DWT familia Haar pasul 2 [ ] mediere diferență [ ] ex. (4 + 6)/2 = 4 - = -1

42 DWT familia Haar pasul 3 [ ] medie diferență [ ] media vectorului ex. ( + 7)/2 = 6-6 = -1

43 DWT familia Haar A = aplicăm DWT-1D primului rând nivel 1 nivel 2 nivel 3 [ ] [ ] [ ]

44 DWT-1D aplicată fiecărui rând DWT familia Haar Coeficienți de scalare (media rândurilor) Coeficienți de detaliu

45 DWT familia Haar DWT-1D aplicată fiecărei coloane coeficient de scalare (media matricii)

46 DWT - 2D Aplicare DWT-2D Pas 1: înlocuiește fiecare rând cu transf. sa DWT-1D Pas 2: înlocuiește fiecare coloană cu transf. sa DWT-1D Pas 3: repetă pașii 1 & 2 pe sub-banda LL Pas 4: repetă pasul 3 până la nivelul de rezoluție dorit L H LL LH HL HH LH HL HH original nivel 1 nivel 2

47 DWT - 2D Descompunerea imaginii Lena pe două nivele de rezoluţie original DWT-2D Haar nivel 1 DWT-2D Haar nivel 2

48 DWT - 2D scalare Detalii orizontale Detalii diagonale Detalii verticale

49 DWT-1D implementare Matlab Descompunere DWT-1D [C,L] = WAVEDEC(X,N,'wname') descompune semnalul X la nivelul N, folosing familia Wavelet 'wname C = vector ce conține coeficienții de scalare și de detaliu L = vector ce conține nr. de coeficienți de la fiecare nivel C = [coef.scalare(n) coef.detaliu(n)... coef.detaliu(1)] L(1) = lungime coef.scalare (N) L(i) = lungime coef.detaliu (N-i+2) pentru i = 2,...,N+1 L(N+2) = lungime(x) Pentru 'wname vezi wfilters

50 DWT-1D implementare Matlab

51 Sinteză DWT-1D Noţiuni de bază în prelucrarea numerica a semnalelor video DWT-1D implementare Matlab X = WAVEREC(C,L,'wname') reconstruiește semnalul X din structura de descompunere wavelet [C,L]

52 DWT-2D implementare Matlab [C,S] = WAVEDEC2(X,N,'wname') C = [ A(N) H(N) V(N) D(N)... H(N-1) V(N-1) D(N-1)... H(1) V(1) D(1) ]. A = coef. de scalare, H = coef. de detaliu oriz. V = coef. de detaliu vert. D = coef. de detaliu diag. S(1,:) = dim. coef. sclare(n) S(i,:) = dim. coef. detaliu(n-i+2) for i = 2,...,N+1 si S(N+2,:) = size(x)

53 DWT-2D implementare Matlab

54 DWT-2D implementare Matlab Sinteză DWT-1D X = WAVEREC2(C,S,'wname ) Altă pereche de funcții Matlab: Analiză DWT-1D: dwt2 Sinteză DWT-1D: idwt2

55 Transformate pentru semnale 3D (video) 2. Transformata Wavelet Discretă a) 2D-DWT pe fiecare cadru video b) 3D-DWT pe întreaga secvență video (sau grup de cadre)

56 Transformate pentru semnale 3D (video) 2D-DCT pe fiecare cadru timp 3D-DWT pe grup de cadre timp

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Captura imaginilor. este necesară o sursă de lumină (λ: lungimea de undă a sursei)

Captura imaginilor. este necesară o sursă de lumină (λ: lungimea de undă a sursei) Captura imaginilor este necesară o sursă de lumină (λ: lungimea de undă a sursei) E(x, y, z, λ): lumina incidentă într-un punct (x, y, z coordonatele spațiale) fiecare punct din scenă are o funcție de

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Tratarea numerică a semnalelor

Tratarea numerică a semnalelor LUCRAREA 5 Tratarea numerică a semnalelor Filtre numerice cu răspuns finit la impuls (filtre RFI) Filtrele numerice sunt sisteme discrete liniare invariante în timp care au rolul de a modifica spectrul

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Procesarea Semnalelor

Procesarea Semnalelor Procesarea Semnalelor Sumar Introducere Transformata Fourier Discreta Aplicatii Rezultate demonstrative Intuitie Sa se reprezinte un esantion finit de semnal intr-un spatiu cu suficient de multe dimensiuni,

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Analiza și Prelucrarea Digitală a Semnalelor Video

Analiza și Prelucrarea Digitală a Semnalelor Video Analiza și Prelucrarea Digitală a Semnalelor Video Conf. dr. ing. Radu Ovidiu Preda radu@comm.pub.ro Ș.l. dr. ing. Ionuţ Pirnog ionut@comm.pub.ro Site disciplină: www.comm.pub.ro/preda/apdsv Analiza și

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2)

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2) Lucrarea 6 Zgomotul în imagini BREVIAR TEORETIC Zgomotul este un semnal aleator, care afectează informaţia utilă conţinută într-o imagine. El poate apare de-alungul unui lanţ de transmisiune, sau prin

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER 2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Tehnici de imbunatatire si restaurare a imaginilor

Tehnici de imbunatatire si restaurare a imaginilor Tehnici de imbunatatire si restaurare a imaginilor Tehnici de imbunatatire si restaurare a imaginilor... 1 I. Tehnici de imbunatatire si restaurare in domeniul spatial... 3 1. Conversia nivelelor de gri...

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Electronică anul II PROBLEME

Electronică anul II PROBLEME Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Compresia de imagini. Standardul JPEG

Compresia de imagini. Standardul JPEG Tehnici de Compresie a Semnalelor Multimedia Lucrare de laborator Compresia de imagini. Standardul JPEG I. Obiectivul lucrării Lucrarea îşi propune familiarizarea cu metodele şi algoritmii utilizaţi în

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

4. CODAREA SEMNALELOR VIDEO

4. CODAREA SEMNALELOR VIDEO 4. CODAREA SEMNALELOR VIDEO 4.1. Semnale video - concepte de bază Proprietăţile sistemelor video se bazează pe proprietăţile de percepţie ale ochiului. Cel mai mic detaliu ce poate fi reprodus într-o imagine

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)

Διαβάστε περισσότερα

4. CODAREA SEMNALELOR VIDEO

4. CODAREA SEMNALELOR VIDEO 4. CODAREA SEMNALELOR VIDEO 4.1. Semnale video - concepte de bază Proprietăţile sistemelor video se bazează pe proprietăţile de percepţie ale ochiului. Cel mai mic detaliu ce poate fi reprodus într-o imagine

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

OSCILOSCOPUL NUMERIC

OSCILOSCOPUL NUMERIC OSCILOSCOPUL NUMERIC apărut din necesitatea de a face şi acest instrument apt pentru a fi inclus într-un sistem automat de măsură controlat de un calculator iniţial ca un instrument destinat doar vizualizării

Διαβάστε περισσότερα

Calculul şi utilizarea Transformatei Fourier Discrete

Calculul şi utilizarea Transformatei Fourier Discrete Laboratorul Calculul şi utilizarea Transformatei Fourier Discrete. Tema Utilizarea transformatei Fourier discrete (TFD) pentru calculul spectrului unui semnal cu suport finit. Implementarea algoritmului

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

Seminar 3. Problema 1. a) Reprezentaţi spectrul de amplitudini şi faze pentru semnalul din figură.

Seminar 3. Problema 1. a) Reprezentaţi spectrul de amplitudini şi faze pentru semnalul din figură. Seminar 3 Problema 1. a) Reprezentaţi spectrul de amplitudini şi faze pentru semnalul din figură. b) Folosind X ( ω ), determinaţi coeficienţii dezvoltării SFE pentru semnalul () = ( ) xt t x t kt şi reprezentaţi

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

Seria Fourier. Analiza spectrală a semnalelor periodice

Seria Fourier. Analiza spectrală a semnalelor periodice Seria Fourier. Analiza spectrală a semnalelor periodice Daca descompunem semnalul de intrare periodic intr-o serie de componente mai simple, putem calcula raspunsul la fiecare componenta si face sinteza

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Realizat de: Ing. mast. Pintilie Lucian Nicolae Pentru disciplina: Sisteme de calcul în timp real Adresă de

Realizat de: Ing. mast. Pintilie Lucian Nicolae Pentru disciplina: Sisteme de calcul în timp real Adresă de Teorema lui Nyquist Shannon - Demonstrație Evidențierea conceptului de timp de eșantionare sau frecvență de eșantionare (eng. sample time or sample frequency) IPOTEZĂ: DE CE TIMPUL DE EȘANTIONARE (SAU

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6) SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru

Διαβάστε περισσότερα

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Seria Balmer. Determinarea constantei lui Rydberg

Seria Balmer. Determinarea constantei lui Rydberg Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

Interpolarea funcţiilor.

Interpolarea funcţiilor. Interpolarea funcţiilor.. Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice, 2017-2018 1/52 Cuprins Introducere 1 Introducere

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Sisteme de Recunoastere a Formelor Laborator 3-4 Histograma Orientarilor Gradientilor

Sisteme de Recunoastere a Formelor Laborator 3-4 Histograma Orientarilor Gradientilor Sisteme de Recunoastere a Formelor Laborator 3-4 Histograma Orientarilor Gradientilor 1. Obiectie Descriptorii de tip histograma a orientarii gratientilor, sau descriptori HOG, sunt descriptori de trasatori

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

Capitolul 2: Sisteme

Capitolul 2: Sisteme Prelucrarea semnalelor Capitolul 2: Sisteme Bogdan Dumitrescu Facultatea de Automatică şi Calculatoare Universitatea Politehnica Bucureşti PS cap. 2: Sisteme p. 1/64 Sisteme discrete Sistem discret: transformă

Διαβάστε περισσότερα