SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0"

Transcript

1 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = , s n0 +2 = , s n = , n IN, n n 0. Se numeşte serie de numere reale (sau serie numerică) perechea {( ) n, (s n ) n } formată din şirurile ( ) n şi (s n ) n. se numeşte termenul general al seriei, iar (s n ) n se numeşte şirul sumelor parţiale asociat şirului ( ) n. Vom nota seria prin:, sau Definiţia 3.2. sumelor parţiale. Fie (n 0 IN) o serie numerică şi (s n ) şirul a) Seria se numeşte convergentă (sau seria converge) dacă (s n ) este convergent. În acest caz, limita şirului (s n) se numeşte suma seriei şi se notează prin.

2 b) Seria se numeşte divergentă (sau seria diverge) dacă nu este convergentă deci dacă (s n ) este divergent. Dacă limita şirului (s n ) este + sau, atunci se spune că suma seriei este + sau şi se notează = + sau =. Observaţia 3.3. (Serii remarcabile) a) Seria geometrică de raţie q: q n, q IR (q 0 = 1). Dacă q (, 1], atunci seria este divergentă. Dacă q ( 1, 1), atunci seria este convergentă şi are suma q n = 1 1 q. Dacă q 1, atunci seria este divergentă şi are suma q n = +. b) Seria armonică generalizată: n=1 1 n α, α IR. Dacă α > 1, atunci seria este convergentă. Dacă α 1, atunci seria este divergentă. Pentru α = 1, seria numeşte seria armonică. n=1 1 n se Observaţia 3.4. Fie seria α cu termen general = α IR, n IN (şirul ( ) este constant). Dacă α = 0, atunci seria este convergentă şi are suma 0. Dacă α 0, atunci seria este divergentă. Definiţia 3.5. Fie (b n ) n n0 (n 0 IN) un şir de numere reale. O serie de forma (b n b n 1 ) se numeşte serie telescopică. În acest caz, şirul +1 sumelor parţiale este s n = b n b n0, n IN, n n Definiţia 3.6. Dacă două serii şi b n (n 0 IN) au aceeaşi natură (adică sunt în acelaşi timp convergente sau divergente), atunci vom nota b n.

3 Teorema 3.7. (Condiţiecesară de convergenţă) Dacă seria (n 0 IN) este convergentă, atunci lim = 0. În consecinţă, rezultă: Corolar 3.8. Dacă ( ) n este convergent şi lim 0 sau dacă ( ) este divergent (ceea ce vom nota prin 0), atunci seria este divergentă. Propoziţia 3.9. (Proprietăţi generale ale seriilor convergente) i) Fie seria (n 0 IN). Dacă din şirul ( ) se elimină sau se adaugă un număr finit de termeni, atunci natura seriei nu se schimbă (dar în caz de convergenţă, suma seriei se modifică). Astfel, vom face convenţia de ota o serie prin atunci când ne va interesa doar natura seriei (nu şi suma seriei). ii) Dacă într-o serie convergentă se asociază termenii seriei în grupe finite, cu păstrarea ordinii termenilor, atunci se obţine tot o serie convergentă şi cu aceeaşi sumă. Dacă seria este divergentă, atunci rezultatul nu se mai păstrează. De exemplu, fie seria divergentă ( 1) n 1 şi seria: n=1 (1) [1 + ( 1)] + [1 + ( 1)] [1 + ( 1)] +... obţinută prin asocierea termenilor în grupe de câte doi termeni. Se observă că seria (1) este convergentă şi are suma 0. iii) Fie seria (n 0 IN) şi k IN. Atunci +k. În caz de convergenţă, dacă = s, atunci +k = s ( k 1). Invers, dacă +k = t, atunci = t + ( k 1). iv) Fie (n 0 IN) o serie numerică şi pentru orice p IN, fie seria. Atunci. În caz de convergenţă, se +p+1 +p+1

4 118 notează n=p+1 lim r p = 0. p =r p (numit restul de ordin p al seriei ) şi avem Teorema (Teorema lui Cauchy de caracterizare) O serie (n 0 IN) este convergentă dacă şi numai dacă ε > 0, N(ε) = N IN, astfel încât n N, n n 0 şi p IN, p < ε. Observaţia Dacă seria (n 0 IN) are proprietatea că 0, n n 0, atunci şirul sumelor parţiale este crescător. În acest caz, se spune că seria este cu termeni nenegativi. Teorema Fie o serie cu termeni nenegativi şi (s n ) şirul sumelor parţiale. Atunci seria este convergentă dacă şi numai dacă (s n ) este majorat. Observaţia a) O serie cu termeni nenegativi (n 0 IN) este divergentă dacă şi numai dacă (s n ) este nemajorat ceea ce este echivalent cu faptul că lim s n = +. b) O serie cu termeni nenegativi are întotdeauna sumă în [0, + ]. Teorema (Criteriul de comparaţie de specia I) Fie şi b n (n 0 IN) serii cu termeni nenegativi astfel încât b n, n n 0. i) Dacă seria b n converge, atunci seria converge. ii) Dacă seria diverge, atunci seria b n diverge. Teorema (Criteriul de comparaţie de specia a II-a) Fie seriile şi b n (n 0 IN) astfel încât > 0, b n > 0 şi +1 b n+1 b n pentru orice n n 0. i) Dacă seria b n este convergentă, atunci seria este convergentă.

5 ii) Dacă seria este divergentă, atunci seria b n este divergentă. lim Teorema (Criteriul de comparaţie cu limită) Fie şi b n serii cu termeni pozitivi astfel încât există limita = λ [0, + ]. b n i) Dacă λ (0, + ), atunci b n. ii) Pentru λ = 0, dacă seria b n converge, atunci seria converge; dacă seria diverge, atunci seria b n diverge. iii) Pentru λ = +, dacă seria converge, atunci seria b n converge; dacă seria b n diverge, atunci seria diverge. Corolar Fie seria b n (n 0 IN) unde > 0, b n > 0, n n 0. Dacă există limita lim b n = λ şi λ (0, + ), atunci b n. Teorema (Criteriul lui Cauchy de condensare) Fie o serie cu termeni nenegativi astfel încât şirul ( ) este descrescător. Atunci 2 n a 2 n. Teorema (Criteriul rădăcinii cu mărginire) Fie seria (n 0 IN) cu termeni nenegativi. i) Dacă există M < 1 astfel încât n M, n n 0, atunci seria converge. ii) Dacă există M 1 astfel încât n M, n n 0, atunci seria diverge. Teorema (Criteriul rădăcinii cu limită superioară) Fie o serie cu termeni nenegativi. i) Dacă lim sup ii) Dacă lim sup n an < 1, atunci seria este convergentă. n an > 1, atunci seria este divergentă. Teorema (Criteriul rădăcinii cu limită) Fie seria cu termeni nenegativi astfel încât există limita lim n an = α.

6 i) Dacă α < 1, atunci seria converge. ii) Dacă α > 1, atunci seria diverge. Teorema (Criteriul raportului cu mărginire) Fie (n 0 IN) o serie cu > 0 pentru orice n n 0. i) Dacă există M < 1 astfel încât +1 M, n n 0, atunci seria este convergentă. ii) Dacă există M 1 astfel încât +1 M, n n 0, atunci seria este divergentă. Teorema (Criteriul raportului cu limite extreme) Fie (n 0 IN) o serie cu > 0 pentru orice n n 0. i) Dacă lim sup ii) Dacă lim inf < 1, atunci seria converge. > 1, atunci seria diverge. Teorema (Criteriul raportului cu limită) Fie (n 0 IN) o serie cu > 0 pentru orice n n 0 astfel încât există limita lim +1 = α. i) Dacă α < 1, atunci seria este convergentă. ii) Dacă α > 1, atunci seria este divergentă. Teorema (Criteriul lui Raabe - Duhamel) Fie (n 0 IN) o serie cu > 0 pentru orice n n 0 astfel încât există ( ) limita lim n an 1 = β. +1 i) Dacă β > 1, atunci seria converge. ii) Dacă β < 1, atunci seria diverge. Teorema (Criteriul lui Gauss) Fie seria +1 (n 0 IN) cu > 0 pentru orice n n 0 astfel încât se a poate scrie în forma: n +1 = 1 + β n + xn, n n n 1+α 0, unde α, β IR, α > 0 şi (x n ) IR este un şir mărginit.

7 i) Dacă β > 1, atunci seria converge. ii) Dacă β 1, atunci seria diverge. Corolar (Gauss) Fie seria orice n n 0 având proprietatea: (n 0 IN) cu > 0 pentru = 1 + P 1(n) +1 Q 1 (n) + P 2(n) Q 2 (n) + + P k(n) Q k (n) + x n n 1+α, n n 0, unde P i, Q i sunt polinoame cu coeficienţi reali astfel încât: grad Q i grad P i = 1, i = 1, k, α (0, ) şi (x n ) IR este un şir mărginit. Notând cu b i respectiv c i, coeficientul dominant al polinomului P i respectiv al polinomului Q i, i = 1, k şi cu β = k i=1 pentru β > 1, seria converge, pentru β 1, seria diverge. b i c i, avem: Teorema (Criteriul lui Dirichlet) Fie seria b n (n 0 IN) care verifică condiţiile: i) seria are şirul sumelor parţiale (s n ) mărginit (adică există α 0 astfel încât s n α, n n 0 ), ii) (b n ) este un şir descrescător cu lim b n = 0. Atunci seria b n este convergentă. Teorema (Criteriul lui Abel) Fie b n o serie pentru care au loc afirmaţiile: i) seria este convergentă, ii) (b n ) este un şir monoton şi mărginit. Atunci seria b n este convergentă. Definiţia O serie numerică alternată dacă +1 < 0, n n 0. (n 0 IN) se numeşte serie În acest caz, se mai scrie în forma = ( 1) n b n pentru orice n n 0 sau = ( 1) n+1 b n pentru orice n n 0, unde b n > 0 pentru orice n n 0 (se observă că b n = pentru orice n n 0 ).

8 Teorema (Criteriul lui Leibniz) Fie ( 1) n b n (n 0 IN) o serie alternată (b n > 0, n n 0 ) astfel încât şirul (b n ) este descrescător şi lim b n = 0. Atunci seria ( 1) n b n este convergentă. Definiţia a) O serie se numeşte absolut convergentă dacă seria este convergentă. b) Seria se numeşte semiconvergentă (sau condiţionat convergentă) dacă seria este convergentă, iar seria este divergentă. Teorema Dacă o serie este absolut convergentă, atunci seria an este convergentă. Observaţia a) Reciproca teoremei 3.33 nu este adevărată (vezi problema ). b) Dacă se aplică criteriul raportului sau cel al rădăcinii pentru seria an şi aceasta este divergentă, atunci şi seria este divergentă (vezi problema 3.5). Teorema (Produs cu un scalar) Fie seria (n 0 IN) şi λ IR. Dacă λ 0, atunci (λ ) şi în caz de convergenţă avem (λ ) = λ. Teorema (Suma a două serii) Fie seriile şi b n (n 0 IN). i) Dacă ambele serii sunt convergente, atunci şi seria ( + b n ) este convergentă şi ( + b n ) = + b n. ii) Dacă seria converge şi seria b n diverge (sau invers), atunci seria ( + b n ) diverge. Definiţia (Produsul Cauchy al două serii) Fie seriile, b n şi fie (c n ) şirul definit prin: c 0 = a 0 b 0, c 1 = a 0 b 1 + a 1 b 0,

9 c 2 = a 0 b 2 + a 1 b 1 + a 2 b 0,..., c n = a 0 b n + a 1 b n b 0 = n a k b n k, n IN. Atunci seria c n se numeşte produs Cauchy al seriilor şi k=0 b n. Teorema (Mertens) Fie şi b n serii convergente. Dacă cel puţin una dintre serii este absolut convergentă, atunci seria produs Cauchy, ( )( c n = b n ). Dacă = b n, n IN, atunci vom nota c n, este convergentă şi ( )( ) ( ) 2. b n prin A ridica seria la pătrat înseamnă a efectua produsul Cauchy al seriei cu ea însăşi. Corolar (Teorema lui Cauchy) Dacă două serii şi b n sunt absolut convergente, atunci seria produs ( )( Cauchy, c n, este absolut convergentă şi c n = b n ). Observaţia (Calculul aproximativ al sumelor de serii) Fie o serie convergentă cu suma s. În acest caz, şirul sumelor parţiale s n = a 0 + a converge la s iar restul de ordin n al seriei, r n = k=n+1 a k = s s n, converge la 0. Pentru determinarea cu aproximaţie a sumei s, se poate folosi formula de aproximare: s = s n, fiind necesară o evaluare a erorii absolute r n = s s n. De exemplu: a) Presupunem că există n 0 IN şi λ (0, 1) astfel încât +1 λ pentru orice n n 0. Atunci +1 λ, +2 λ +1 λ 2,

10 +3 λ 3,, +p λ p, p IN. Conform problemei 3.19, s s n = r n = a k a k λ k λ = k=n+1 k=n+1 k=1 1 λ. Deci λ s s n 1 λ, n n 0. Să presupunem că vrem să calculăm s cu o aproximaţie dată ε > 0. Pentru aceasta, vom determina N IN, N minim şi N n 0 astfel încât λ 1 λ ε pentru n N. Atunci s = s N. b) Fie ( ) un şir descrescător de numere pozitive, cu 0 astfel încât seria ( 1) n este convergentă şi are suma s. Să arătăm că r n +1, n IN. Fixând n IN, pentru orice k IN avem: ( 1) k+1 +k + ( 1) k+2 +k Trecând la limită pentru k se obţine ( 1) n+1 r n +1. Rezultă s s n = r n +1, n IN. Dacă vrem să calculăm s cu o aproximaţie dată ε > 0, atunci vom determina N IN, N minim astfel încât +1 ε pentru orice n N. Atunci s = s N.

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I. ANALIZĂ MATEMATICĂ pentru exmenul licenţă, mnul vlbil începând cu sesiune iulie 23 Specilizre Mtemtică informtică coordontor: Dorel I. Duc Cuprins Cpitolul. Serii de numere rele. Noţiuni generle 2. Serii

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predare-învăţare-evaluare pentru

Διαβάστε περισσότερα

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs Aritmetică în domenii de integritate şi teoria modulelor Note de curs În prima parte a cursului, vom prezenta câteva clase remarcabile de domenii de integritate şi legăturile dintre acestea A doua parte

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Subiecte : 1. Proprietăţile mulţimilor. Mulţimi numerice importante. 2. Relaţii binare. Relaţii de ordine. Relaţii de echivalenţă. 3. Imagini directe şi imagini inverse

Διαβάστε περισσότερα

Seria Balmer. Determinarea constantei lui Rydberg

Seria Balmer. Determinarea constantei lui Rydberg Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei

Διαβάστε περισσότερα

2 Variabile aleatoare

2 Variabile aleatoare Variabile aleatoare În practică, variabilele aleatoare apar ca funcţii ce depind de rezultatul efectuării unui anumit experiment. Spre exemplu, la aruncarea a două zaruri, suma numerelor obţinute este

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ. Radu Gologan, Tania-Luminiţa Costache

PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ. Radu Gologan, Tania-Luminiţa Costache PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ Radu Gologan, Tania-Luminiţa Costache 2 * Prefaţă Textul de faţă este construit pe scheletul subiectelor date la examenul de Analiză Matematică în perioada

Διαβάστε περισσότερα

Calculul funcţiilor de matrice Exponenţiala matriceală

Calculul funcţiilor de matrice Exponenţiala matriceală Laborator 3 Calculul funcţiilor de matrice Exponenţiala matriceală 3.1 Tema Înţelegerea conceptului de funcţie de matrice şi însuşirea principalelor metode şi algoritmi de calcul al funcţilor de matrice.

Διαβάστε περισσότερα

MATEMATICI SPECIALE. Viorel PETREHUŞ, Narcisa TEODORESCU. Lecţii introductive pentru studenţii din anul al 2-lea din cadrul UTCB

MATEMATICI SPECIALE. Viorel PETREHUŞ, Narcisa TEODORESCU. Lecţii introductive pentru studenţii din anul al 2-lea din cadrul UTCB MATEMATICI SPECIALE Viorel PETREHUŞ, Narcisa TEODORESCU Lecţii introductive pentru studenţii din anul al 2-lea din cadrul UTCB Mai există erori care vor fi corectate în versiunea finală) Capitolul Introducere

Διαβάστε περισσότερα

Tehnici de Optimizare

Tehnici de Optimizare Tehnici de Optimizare Cristian OARA Facultatea de Automatica si Calculatoare Universitatea Politehnica Bucuresti Fax: + 40 1 3234 234 Email: oara@riccati.pub.ro URL: http://riccati.pub.ro Tehnici de Optimizare

Διαβάστε περισσότερα

DETERMINAREA CONSTANTEI RYDBERG

DETERMINAREA CONSTANTEI RYDBERG UNIVERSITATEA "POLITEHNICA" BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICA ATOMICA SI FIZICA NUCLEARA BN-03A DETERMINAREA CONSTANTEI RYDBERG DETERMINAREA CONSTANTEI RYDBERG. Scopul lucrării Determinarea

Διαβάστε περισσότερα

COPYRIGHT c 1997, Editura Tehnică Toate drepturile asupra ediţiei tipărite sunt rezervate editurii.

COPYRIGHT c 1997, Editura Tehnică Toate drepturile asupra ediţiei tipărite sunt rezervate editurii. FitVisible Aceasta este versiunea electronică a cărţii Metode Numerice publicată de Editura Tehnică. Cartea a fost culeasă folosind sistemul L A TEX a lui Leslie Lamport, o extindere a programului TEX

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα

Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM

Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM IAŞI 27 2 Cuprins 1 Integrle improprii 9 1.1 Introducere............................ 9 1.2 Definiţi integrlei improprii................... 1 1.3

Διαβάστε περισσότερα

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: (

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: ( Exemple e probleme rezolvate pentru curs 0 DEEA Recapitulare formule e calcul puteri ale numărului 0 n m n+ m 0 = 0 n n m =0 m 0 0 n m n m ( ) n = 0 =0 0 0 n Problema. Să se calculeze: a. 0 9 0 b. ( 0

Διαβάστε περισσότερα

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016 APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR Călinici Tudor 2016 OBIECTIVE EDUCAŢIONALE Prezentarea conceptelor fundamentale ale teoriei calculului probabilitaţilor Evenimente independente Probabilități

Διαβάστε περισσότερα

Statisticǎ - notiţe de curs

Statisticǎ - notiţe de curs Statisticǎ - notiţe de curs Ştefan Balint, Loredana Tǎnasie Cuprins 1 Ce este statistica? 3 2 Noţiuni de bazǎ 5 3 Colectarea datelor 7 4 Determinarea frecvenţei şi gruparea datelor 11 5 Prezentarea datelor

Διαβάστε περισσότερα

Exercitii : Lecţia 1,2,3

Exercitii : Lecţia 1,2,3 Exercitii : Lecţia 1,2,3 1.Notarea câmpurilor Tabla de şah are 64 de pătrăţele numite câmpuri. Fiecare câmp poate fi identificat de coloana şi linia pe care se află, orice câmp se află la intersecţia dintre

Διαβάστε περισσότερα

Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI

Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI 61 ECUAŢIA GENERALĂ A MIŞCĂRII RECTILINII A AUTOVEHICULULUI FRÂNAT Se consideră un autovehicul care se deplasează cu viteză variabilă pe un drum cu

Διαβάστε περισσότερα

i R i Z D 1 Fig. 1 T 1 Fig. 2

i R i Z D 1 Fig. 1 T 1 Fig. 2 TABILIZATOAE DE TENINE ELECTONICĂ Lucrarea nr. 5 TABILIZATOAE DE TENINE 1. copurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare

Διαβάστε περισσότερα

PROBLEME DE ELECTRICITATE

PROBLEME DE ELECTRICITATE PROBLEME DE ELECTRICITATE 1. Două becuri B 1 şi B 2 au fost construite pentru a funcţiona normal la o tensiune U = 100 V, iar un al treilea bec B 3 pentru a funcţiona normal la o tensiune U = 200 V. Puterile

Διαβάστε περισσότερα

AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU

AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU Cuprins CAPITOLUL 4 AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU...38 4. Introducere...38 4.2 Modelul la foarte joasă frecvenţă al amplficatorului operaţional...38 4.3 Amplificatorul neinversor.

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

Προσωπική Αλληλογραφία Επιστολή

Προσωπική Αλληλογραφία Επιστολή - Διεύθυνση Andreea Popescu Str. Reşiţa, nr. 4, bloc M6, sc. A, ap. 12. Turnu Măgurele Jud. Teleorman 06102. România. Ελληνική γραφή διεύθυνσης: Όνομα Παραλήπτη Όνομα και νούμερο οδού Ταχυδρομικός κώδικας,

Διαβάστε περισσότερα

CURSUL AL IV-LEA. Tabelul 1 Greutatea corporală a 1014 pacienţi cu diferite afecţiuni, pe clase din 5kg în 5kg

CURSUL AL IV-LEA. Tabelul 1 Greutatea corporală a 1014 pacienţi cu diferite afecţiuni, pe clase din 5kg în 5kg CURSUL AL IV-LEA 1 Reprezentarea grafică a datelor statistice - Consideraţii generale Sunt două metode de bază în statistică: numerică şi grafică. Folosind metoda numerică putem calcula statistici ca media

Διαβάστε περισσότερα

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare..

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare.. I. Modelarea funcţionării diodei semiconductoare prin modele liniare pe porţiuni În modelul liniar al diodei semiconductoare, se ţine cont de comportamentul acesteia atât în regiunea de conducţie inversă,

Διαβάστε περισσότερα

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M CLASA A XI-A Filiera teoretic`, profilul real, specializarea ]tiin\ele naturii (TC + CD) Filiera tehnologic`, toate calific`rile

Διαβάστε περισσότερα

Verificarea ipotezelor statistice 1 de I.Văduva

Verificarea ipotezelor statistice 1 de I.Văduva Verificarea ipotezelor statistice 1 de I.Văduva Notaţii si noţiuni preliminare Variabila aleatoare: X,Y,U,V,etc., descrisă de funcţie de repartiţie. Variabila aleatoare este asaociată unei populaţii statistice;

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme Capitolul Diode semiconductoare 3. În fig. 3 este preentat un filtru utiliat după un redresor bialternanţă. La bornele condensatorului

Διαβάστε περισσότερα

GENERATOR DE IMPULSURI DREPTUNGHIULARE. - exemplu de proiectare -

GENERATOR DE IMPULSURI DREPTUNGHIULARE. - exemplu de proiectare - GENERATOR DE IMPULSURI DREPTUNGHIULARE - exemplu de proiectare - Presupunem ca se doreste obtinerea unui oscilator cu urmatoarele date de proiectare: Frecventa de oscilatie reglabila in intervalul 2 5

Διαβάστε περισσότερα

1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE

1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE 1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE REZISTOARELOR 1.2. MARCAREA REZISTOARELOR MARCARE DIRECTĂ PRIN

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

Continue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3

Continue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3 Concurs Phi: Setul 1 - Clasa a VII-a Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a VII-a» Attempt 1 1 Pentru a deplasa uniform pe orizontala un corp de masa m = 18 kg se actioneaza asupra lui

Διαβάστε περισσότερα

4 Metode clasice de planificare şi control a activităţilor şi resurselor proiectului

4 Metode clasice de planificare şi control a activităţilor şi resurselor proiectului 4 Metode clasice de planificare şi control a activităţilor şi resurselor proiectului 4.1 Metoda Drumului Critic (C.P.M. Critical Path Metod) 4.1.1 Consideraţii generale Metodele şi tehnicile utilizate

Διαβάστε περισσότερα

De exemplu multimea oamenilor care cintaresc de kg nu are nici un element.

De exemplu multimea oamenilor care cintaresc de kg nu are nici un element. 1.Multimi Definitie Multimea este o colectie de obiecte/simboluri. Fiecare obiect dintr-o multime este un element al multimii si este scris/specificat o singura data. Mutimile se noteaza, de obicei cu

Διαβάστε περισσότερα

Capitolul 5 DINAMICA TRACŢIUNII AUTOVEHICULELOR CU ROŢI

Capitolul 5 DINAMICA TRACŢIUNII AUTOVEHICULELOR CU ROŢI Capitolul 5 DINAMICA TRACŢIUNII AUTOEHICULELOR CU ROŢI 5.1 ECUAŢIA GENERALĂ A MIŞCĂRII RECTILINII A AUTOEHICULELOR ŞI CONDIŢIA DE ÎNAINTARE A ACESTORA Se consideră cazul general al unui autovehicul care

Διαβάστε περισσότερα

Electronică Analogică. Redresoare -2-

Electronică Analogică. Redresoare -2- Electronică Analogică Redresoare -2- 1.2.4. Redresor monoalternanţă comandat. În loc de diodă, se foloseşte un tiristor sau un triac pentru a conduce, tirisorul are nevoie de tensiune anodică pozitivă

Διαβάστε περισσότερα

UTILIZAREA CIRCUITELOR BASCULANTE IN NUMARATOARE ELECTRONICE

UTILIZAREA CIRCUITELOR BASCULANTE IN NUMARATOARE ELECTRONICE COLEGIUL UCECOM SPIRU HARET BUCURESTI UTILIZAREA CIRCUITELOR BASCULANTE IN NUMARATOARE ELECTRONICE Elev : Popa Maria Clasa :a-xi-a A Indrumator:prof.Chirescu Emil APLICATII PRACTICE CE POT FI REALIZATE

Διαβάστε περισσότερα

4. POLARIZAREA TRANZISTOARELOR BIPOLARE

4. POLARIZAREA TRANZISTOARELOR BIPOLARE 4 POLAZAA ANZSOALO POLA ircuitul de polarizare are rolul de a poziţiona într-un punct de pe caracteristica statică, numit Punct Static de uncţionare (PS) ezultă că circuitul de polarizare trebuie să asigure

Διαβάστε περισσότερα

STUDIUL SI VERIFICAREA UNUI MULTIMETRU NUMERIC

STUDIUL SI VERIFICAREA UNUI MULTIMETRU NUMERIC Lucrarea nr. 3 STDIL SI VERIFICAREA NI MLTIMETR NMERIC I. INTRODCERE Aparatele de măsurare de tip multimetru permit măsurarea mărimilor electrice cele mai uzuale: tensiune, curent, rezistenţă. Primele

Διαβάστε περισσότερα

EPSICOM CIRCUIT DE AVERTIZARE DESCĂRCARE ACUMULATOR EP 0006... Ready Prototyping. Cuprins. Idei pentru afaceri. Hobby & Proiecte Educationale

EPSICOM CIRCUIT DE AVERTIZARE DESCĂRCARE ACUMULATOR EP 0006... Ready Prototyping. Cuprins. Idei pentru afaceri. Hobby & Proiecte Educationale EPSICOM Ready Prototyping Coleccț ția Home Automation EP 0006... Cuprins Prezentare Proiect Fișa de Asamblare 1. Funcționare 2 2. Schema 2 3. PCB 2 4. Lista de componente 2 5. Tutorial Dioda Zenner 3-8

Διαβάστε περισσότερα

STABILIZATOARE DE TENSIUNE REALIZATE CU CIRCUITE INTEGRATE ANALOGICE

STABILIZATOARE DE TENSIUNE REALIZATE CU CIRCUITE INTEGRATE ANALOGICE Cuprins CAPITOLL 8 STABILIZATOARE DE TENSINE REALIZATE C CIRCITE INTEGRATE ANALOGICE...220 8.1 Introducere...220 8.2 Stabilizatoare de tensiune realizate cu amplificatoare operaţionale...221 8.3 Stabilizatoare

Διαβάστε περισσότερα

ENCICLOPEDIA MATEMATICĂ A CLASELOR DE NUMERE ÎNTREGI

ENCICLOPEDIA MATEMATICĂ A CLASELOR DE NUMERE ÎNTREGI ENCICLOPEDIA MATEMATICĂ A CLASELOR DE NUMERE ÎNTREGI Marius Coman mariuscoman13@gmail.com 1 Copyright 2013 de Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614)

Διαβάστε περισσότερα

Termostat pentru acvarii

Termostat pentru acvarii Termostat pentru acvarii Pentru pastrarea in interiorul acvariilor a unei temperaturi de +26±1 C se poate realiza o schema electronica simpla, sigura in functionare si in acelasi timp ieftina. Alimentata

Διαβάστε περισσότερα

Structura matematicii

Structura matematicii Structura matematicii Oana Constantinescu March 21, 2014 Contents 1 Teorie deductiva. Generalitati 1 2 Geometria plana bazata pe notiunea de distanta 4 2.1 Motivatie............................... 4 2.2

Διαβάστε περισσότερα

Proiectarea unui amplificator

Proiectarea unui amplificator Proiectarea unui amplificator sl. dr. Radu Damian Notă importantă. În acest document nu există "informaţia magică" ascunsă în două rânduri de la mijlocul documentului. Trebuie parcurs pas cu pas fără a

Διαβάστε περισσότερα

ALGORITMI ŞI STRUCTURI DE DATE. Note de curs. (draft v1.1)

ALGORITMI ŞI STRUCTURI DE DATE. Note de curs. (draft v1.1) ALGORITMI ŞI STRUCTURI DE DATE Note de curs (draft v1.1) Prefaţă Când dorim să reprezentăm obiectele din lumea reală într-un program pe calculator, trebuie să avem în vedere: modelarea obiectelor din

Διαβάστε περισσότερα

Coduri grup - coduri Hamming

Coduri grup - coduri Hamming Capitolul 5 Coduri grup - coduri Hamming 5. Breviar teoretic Dacăîn capitolul precedent s-a pus problema codării surselor pentru eficientiezarea unei transmisiuni ce se presupunea a nu fi perturbată de

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

PROCESE TEHNOLOGICE ȘI PROTECȚIA MEDIULUI

PROCESE TEHNOLOGICE ȘI PROTECȚIA MEDIULUI PROCESE TEHNOLOGICE ȘI PROTECȚIA MEDIULUI Tema 3. Distilarea și extracția. Obiectivele cursului: În cadrul acestei teme vor fi discutate următoarele subiecte: - operația unitară de concentrare a amestecurilor

Διαβάστε περισσότερα

User s Manual Air Purifier with Ionizer. Εγχειρίδιο Χρήστη Η Λ Ε Κ Τ Ρ Ι Κ Ε Σ Σ Υ Σ Κ Ε Υ Ε Σ. Ιονιστής/Καθαριστής αέρα SPRING

User s Manual Air Purifier with Ionizer. Εγχειρίδιο Χρήστη Η Λ Ε Κ Τ Ρ Ι Κ Ε Σ Σ Υ Σ Κ Ε Υ Ε Σ. Ιονιστής/Καθαριστής αέρα SPRING Η Λ Ε Κ Τ Ρ Ι Κ Ε Σ Σ Υ Σ Κ Ε Υ Ε Σ SPRING User s Manual Air Purifier with Ionizer Εγχειρίδιο Χρήστη Ιονιστής/Καθαριστής αέρα Σας ευχαριστούµε για την επιλογή ηλεκτρικών συσκευών INVENTOR. Για την σωστή

Διαβάστε περισσότερα

ΕΥΡΩΠΑΪΚΑ ΣΥΜΒΟΥΛΙΑ ΕΡΓΑΖΟΜΕΝΩΝ (EΣE) ΚΑΙ Η ΝΕΑ ΟΔΗΓΙΑ 2009/38

ΕΥΡΩΠΑΪΚΑ ΣΥΜΒΟΥΛΙΑ ΕΡΓΑΖΟΜΕΝΩΝ (EΣE) ΚΑΙ Η ΝΕΑ ΟΔΗΓΙΑ 2009/38 ΕΥΡΩΠΑΪΚΑ ΣΥΜΒΟΥΛΙΑ ΕΡΓΑΖΟΜΕΝΩΝ (EΣE) ΚΑΙ Η ΝΕΑ ΟΔΗΓΙΑ 2009/38 Παναγιώτης Κατσαμπάνης Επιστημονικός συνεργάτης της ΟΒΕΣ Ημερίδα στη Σιναϊα στις 1 EUROPEAN RELATIONS MODELS ΜΟΝΤΕΛΛΑ ΕΥΡΩΠΑΙΚΩΝ ΕΡΓΑΣΙΑΚΩΝ

Διαβάστε περισσότερα

De la problemă la algoritm

De la problemă la algoritm De la problemă la algoritm Procesul dezvoltării unui algoritm, pornind de la specificaţia unei probleme, impune atât verificarea corectitudinii şi analiza detaliată a complexităţii algoritmului, cât şi

Διαβάστε περισσότερα

PVC. D oor Panels. + accessories. &aluminium

PVC. D oor Panels. + accessories. &aluminium PVC &aluminium D oor Panels + accessories 1 index panels dimensions accessories page page page page 4-11 12-46 48-50 51 2 Η εταιρία Dorland με έδρα τη Ρουμανία, από το 2002 ειδικεύεται στην έρευνα - εξέλιξη

Διαβάστε περισσότερα

CIRCUITE BASCULANTE BISTABILE

CIRCUITE BASCULANTE BISTABILE 6 CICUITE BACULANTE BITABILE 6. Introducere Circuitele basculante bistabile sau, mai scurt, circuitele bistabile sunt circuite care pot avea la ieşire două stări stabile: logic şi logic. Circuitul poate

Διαβάστε περισσότερα

Maşina sincronă. Probleme

Maşina sincronă. Probleme Probleme de generator sincron 1) Un generator sincron trifazat pentru alimentare de rezervă, antrenat de un motor diesel, are p = 3 perechi de poli, tensiunea nominală (de linie) U n = 380V, puterea nominala

Διαβάστε περισσότερα

Lucrarea Nr. 7 Tranzistorul bipolar Caracteristici statice Determinarea unor parametri de interes

Lucrarea Nr. 7 Tranzistorul bipolar Caracteristici statice Determinarea unor parametri de interes Lucrarea Nr. 7 Tranzistorul bipolar aracteristici statice Determinarea unor parametri de interes A.Scopul lucrării - Determinarea experimentală a plajei mărimilor eletrice de la terminale în care T real

Διαβάστε περισσότερα

Senzori de temperatură de imersie

Senzori de temperatură de imersie 1 781 1781P01 Symaro Senzori de temperatură de imersie QAE21... Senzori pasivi pentru determinarea temperaturii apei în conducte sau vase. Utilizare Senzorii de temperatură de imersie QAE21 sunt destinaţi

Διαβάστε περισσότερα

LUCRAREA 2 REDRESOARE ŞI MULTIPLICATOARE DE TENSIUNE

LUCRAREA 2 REDRESOARE ŞI MULTIPLICATOARE DE TENSIUNE CRAREA REDRESOARE ŞI MTIPICATOARE DE TENSINE 1 Prezentare teoretică 1.1 Redresoare Prin redresare înţelegem transformarea curentului alternativ în curent continuu. Prin alimentarea circuitelor electronice

Διαβάστε περισσότερα

AMPLIFICATORUL CU CIRCUIT ACORDAT DERIVATIE

AMPLIFICATORUL CU CIRCUIT ACORDAT DERIVATIE AMPLIFICATORL C CIRCIT ACORDAT DERIVATIE 4 M IN OT OT Analizor spectru IN Fiura 6 (). Comutatorul K este pe poziţia de R mare. Comutatorul K scurtcircuitează rezistenţa R a. Cunoscând valoarea L a bobinei

Διαβάστε περισσότερα

Elemente de mecanică şi aplicaţii în biologie

Elemente de mecanică şi aplicaţii în biologie Biofizică Elemente de mecanică şi aplicaţii în biologie Capitolul II. Elemente de mecanică şi aplicaţii în biologie Acest capitol are drept scop familiarizarea cititorului cu cele mai importante noţiuni

Διαβάστε περισσότερα

1. Elemente de bază ale conducţiei termice

1. Elemente de bază ale conducţiei termice 1. 1.1 Ecuaţiile diferenţiale ale conducţiei termice Calculul proceselor de schimb de căldură necesită cunoaşterea distribuţiei temperaturii în spaţiu şi timp. Distribuţia temperaturii se obţine prin rezolvarea

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

PROIECT ECONOMETRIE. Profesori coordinatori: Liviu-Stelian Begu și Smaranda Cimpoeru

PROIECT ECONOMETRIE. Profesori coordinatori: Liviu-Stelian Begu și Smaranda Cimpoeru PROIECT ECONOMETRIE Profesori coordinatori: LiviuStelian Begu și Smaranda Cimpoeru Proiect realizat de?, grupa?, seria? FACULTATEA DE RELAȚII ECONOMICE INTERNAȚIONALE, ASE, BUCUREȘTI 2015 CUPRINS Înregistrați

Διαβάστε περισσότερα

4. FAMILIA DE CIRCUITE INTEGRATE NUMERICE CMOS ( )

4. FAMILIA DE CIRCUITE INTEGRATE NUMERICE CMOS ( ) 4. FAMILIA DE CIRCUITE INTEGRATE NUMERICE CMOS (9.4.4) 4.. INTRODUCERE Familia de circuite integrate CMOS a fost dezvoltată aproximativ în aceeaşi perioadă cu familia TTL, dar iniţial a avut o extindere

Διαβάστε περισσότερα

Clasa a X-a, Producerea si utilizarea curentului electric continuu

Clasa a X-a, Producerea si utilizarea curentului electric continuu 1. Ce se întămplă cu numărul de electroni transportaţi pe secundă prin secţiunea unui conductor de cupru, legat la o sursă cu rezistenta internă neglijabilă dacă: a. dublăm tensiunea la capetele lui? b.

Διαβάστε περισσότερα

EPSICOM TDA7294 POWER AMPLIFIER EP Ready Prototyping. Cuprins. Idei pentru afaceri. Hobby & Proiecte Educationale

EPSICOM TDA7294 POWER AMPLIFIER EP Ready Prototyping. Cuprins. Idei pentru afaceri. Hobby & Proiecte Educationale EPSICOM Ready Prototyping Coleccţ ţia HI--FI I Sono & Lightt EP 0221... Cuprins Prezentare Proiect Fişa de Asamblare 1. Funcţionare 2 2. Schema 2 3. Lista de componente 3 4. PCB 3 5. Tutorial TDA7294 4-6

Διαβάστε περισσότερα

2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI

2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2.1. Consideraţii generale Utilizarea automobilului constă în transportul pe drumuri al pasagerilor, încărcăturilor sau al utilajului special montat pe

Διαβάστε περισσότερα

3.6. Formule de calcul pentru medie şi dispersie

3.6. Formule de calcul pentru medie şi dispersie Dragomirescu L., Drane J. W.,, Biostatisticã pentru începãtori. Vol I. Biostatisticã descriptivã. Editia a 6 revãzutã, Editura CREDIS, Bucureşti, 7p. ISB 78-7-74-46-8..6. Formule de calcul pentru medie

Διαβάστε περισσότερα

ARHITECTURA, FUNCŢIONAREA ŞI APLICAŢII ALE TEMPORIZATORULUI 555

ARHITECTURA, FUNCŢIONAREA ŞI APLICAŢII ALE TEMPORIZATORULUI 555 ARHITETURA, FUNŢIONAREA ŞI APLIAŢII ALE TEMPORIZATORULUI 555 1. Arhitectura temporizatorului 555 Temporizatorul 555 a fost folosit prima oară în 1971 de Signetics orporation şi a fost primul temporizator

Διαβάστε περισσότερα

Sisteme mecanice de criptare

Sisteme mecanice de criptare Prelegerea 3 Sisteme mecanice de criptare Sistemele de criptare pot fi aduse la un grad mai mare de complexitate şi securitate dacă se folosesc mijloace mecanice de criptare. Astfel de mecanisme special

Διαβάστε περισσότερα

ARHETIPURI 1. de Corrado Malanga. Traducere în limba română de Alexandra Blănaru

ARHETIPURI 1. de Corrado Malanga. Traducere în limba română de Alexandra Blănaru ARHETIPURI 1 de Corrado Malanga Traducere în limba română de Alexandra Blănaru Prefață De obicei nu îmi încep scrierile cu prefețe inutile, dar în acest caz trebuie să-l lămuresc pe cititor cu privire

Διαβάστε περισσότερα

Universitatea Tehnică din Cluj-Napoca Catedra de Maşini electrice

Universitatea Tehnică din Cluj-Napoca Catedra de Maşini electrice Universitatea Tehnică din Cluj-Napoca Catedra de Maşini electrice ÎNDRUMĂTOR DE PROIECTARE A MAŞINII ASINCRONE Pentru uz intern La baza acestui îndrumător stă un material elaborat de domnul dr.ing. Madescu

Διαβάστε περισσότερα

Continue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1.

Continue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1. Concurs Phi: Setul 1 - Clasa a X-a 1 of 2 4/14/2008 12:27 PM Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1 1 Un termometru cu lichid este gradat intr-o scara de temperatura liniara,

Διαβάστε περισσότερα

AMPLIFICATOARE DE MĂSURARE. APLICAŢII

AMPLIFICATOARE DE MĂSURARE. APLICAŢII CAPITOLL 4 AMPLIFICATOAE DE MĂSAE. APLICAŢII 4.. Noţiuni fundamentale n amplificator este privit ca un cuadripol. Dacă mărimea de ieşire este de A ori mărimea de intrare, unde A este o constantă numită

Διαβάστε περισσότερα

CIRCUITE DE REDRESARE ŞI FILTRARE

CIRCUITE DE REDRESARE ŞI FILTRARE LCAEA N.4 CICITE DE EDEAE ŞI FILTAE 1.Introducere edresarea este procesul de transformare a curentului alternativ în curent continuu. edresarea este necesară pentru mulţi consumatori electrici la care

Διαβάστε περισσότερα

Studiul unui variator static de tensiune alternativa echipat cu un triac, care este, comandat cu un circuit integrat PA 436

Studiul unui variator static de tensiune alternativa echipat cu un triac, care este, comandat cu un circuit integrat PA 436 Laborator: Electronică Industrială Lucrarea nr:... Studiul unui variator static de tensiune alternativa echipat cu un triac, care este, comandat cu un circuit integrat PA 4. Funcţionarea variatorului de

Διαβάστε περισσότερα

ΤΑ ΑΡΙΘΜΗΤΙΚΑ. 2. Τακτικά αριθμητικά

ΤΑ ΑΡΙΘΜΗΤΙΚΑ. 2. Τακτικά αριθμητικά ΤΑ ΑΡΙΘΜΗΤΙΚΑ Σύμφωνα με τη Γραμματική της Ρουμανικής Γλώσσας, τα αριθμητικά διακρίνονται σε: 1. Απόλυτα αριθμητικά α. Απλά: unu, doi, trei... (ένα, δύο, τρία) κ.λπ. β. Σύνθετα: doisprezece, treizeci...

Διαβάστε περισσότερα

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN Montajul Experimental În laborator este realizat un amplificator cu tranzistor bipolar în conexiune cu emitorul comun (E.C.) cu o singură

Διαβάστε περισσότερα

[Iulian Stoleriu] Statistică Aplicată

[Iulian Stoleriu] Statistică Aplicată [Iulian Stoleriu] Statistică Aplicată Statistică Aplicată (C1) 1 Elemente de Statistic teoretic (C1) Populaµie statistic O populaµie (colectivitate) statistic este o mulµime de elemente ce posed o trasatur

Διαβάστε περισσότερα

Supapa de siguranta cu ventil plat si actionare directa cu arc

Supapa de siguranta cu ventil plat si actionare directa cu arc Producator: BIANCHI F.LLI srl - Italia Supapa de siguranta cu ventil plat si actionare directa cu arc Model : Articol 447 / B de la ½ la 2 Cod Romstal: 40180447, 40184471, 40184472, 40184473, 40184474,

Διαβάστε περισσότερα

LUCRAREA NR. 9 STUDIUL POLARIZĂRII ROTATORII A LUMINII

LUCRAREA NR. 9 STUDIUL POLARIZĂRII ROTATORII A LUMINII LUCRAREA NR. 9 STUDIUL POLARIZĂRII ROTATORII A LUMINII Tema lucrării: 1) Determinarea puterii rotatorii specifice a zahărului 2) Determinarea concentraţiei unei soluţii de zahăr 3) Determinarea dispersiei

Διαβάστε περισσότερα

ANUL al V-lea Nr. 2/2015. Prezenţa elementelor de teoria probabilităţilor în programa de liceu

ANUL al V-lea Nr. 2/2015. Prezenţa elementelor de teoria probabilităţilor în programa de liceu DIDACTICA MATEMATICĂ SUPLIMENT AL GAZETEI MATEMATICE ANUL al V-lea Nr. 2/2015 Modele de lecţii Prezenţa elementelor de teoria probabilităţilor în programa de liceu de Eugen Păltănea Propunem o tematică

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Inițiere în simularea circuitelor electronice pasive

Inițiere în simularea circuitelor electronice pasive Inițiere în simularea circuitelor electronice pasive 1. Scopul lucrării: Iniţierea studenţilor cu proiectarea asistată de calculator (CAD) a unei scheme electrice în vederea simulării funcţionării acesteia;

Διαβάστε περισσότερα

OSCILOSCOPUL ANALOGIC

OSCILOSCOPUL ANALOGIC OSCILOSCOPUL ANALOGIC 1. Scopul aplicaţiei Se urmăreşte studierea osciloscopului analogic HM303-6 al firmei germane HAMEG. Lucrarea prezintă principiul de funcţionare al osciloscopului la nivel de schemă

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα