Stochastic Thermodynamics

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Stochastic Thermodynamics"

Transcript

1 Leiden, Hot nanostructures, October 213 Stochastic Thermodynamics Udo Seifert II. Institut für Theoretische Physik, Universität Stuttgart Review: U.S., Rep. Prog. Phys ,

2 Thermodynamics of macroscopic systems [19 th cent] λ W T λ t First law energy balance: W = E +Q = E +T S M Second law: S tot S + S M > W > E T S F W diss W F > 2

3 Stochastic thermodynamics for small systems W λ T, p λ t driving: mechanical (electro)chemical (bio)chemical First law: how to define work, internal energy and exchanged heat? fluctuations imply distributions: p(w; λ(τ))... entropy: distribution as well? 3

4 Stochastic thermodynamics applies to such systems where non-equilibrium is caused by mechanical or chemical forces ambient solution provides a thermal bath of well-defined T and µ i fluctuations are relevant due to small numbers of involved molecules Main idea: Energy conservation (1 st law) and entropy production (2 nd law) along an individual stochastic trajectory Precursors: notion stoch th dyn by Nicolis, van den Broeck mid 8s ( ensemble level) early fluct diss response relations: Hänggi & Thomas early 8 s stochastic energetics (1 st law) by Sekimoto late 9s work theorem(s): Jarzynski, Crooks late 9s, Imparato & Peliti early s fluct theorem: Evans, Cohen, Galavotti, Kurchan, Lebowitz & Spohn 9s quantities like stochastic entropy by Crooks, Qian, Gaspard in early s... 4

5 Paradigm for mechanical driving: x x 4 x 1 x 6 x 3 x 5 x 2 λ(τ) V (x, λ) λ(τ) x f(λ) V (x,λ) Langevin dyn s ẋ = µ[ V (x,λ)+f(λ)] }{{} F(x,λ) external protocol λ(τ) +ζ ζζ = 2µk B T δ(...) }{{} ( 1) First law [(Sekimoto, 1997)]: dw = du+dq applied work: dw = λ V(x,λ)dλ+f(λ)dx internal energy: du = dv dissipated heat: dq = dw du = F(x,λ)dx = Tds m 5

6 Experimental illustration: Colloidal particle in V(x, λ(τ)) [V. Blickle, T. Speck, L. Helden, U.S., C. Bechinger, PRL 96, 763, 26] work distribution non-gaussian distribution Langevin valid beyond lin response [T. Speck and U.S., PRE 7, 66112, 24] 6

7 Stochastic entropy [U.S., PRL 95, 462, 25] Fokker-Planck equation τ p(x,τ) = x j(x,τ) = x (µf(x,λ) D x )p(x,τ) [D = µk B T] Common non-eq ensemble entropy [k B 1] S(τ) dx p(x,τ)lnp(x,τ) Stochastic entropy for an individual trajectory x(τ) s(τ) lnp(x(τ),τ) with s(τ) = S(τ) s tot s m + s exp[ s tot ] = 1 s tot integral fluctuation theorem for total entropy production arbitrary initial state, driving, length of trajectory 7

8 Heat engines at maximal power Carnot (1824) Curzon-Ahlborn (1975) Q h T h Q h = α(t h T m h ) T m h T h W W T m c Qc η c 1 T c /T h but zero power Tc Qc = β(t m c Tc) efficiency at maximum power η ca 1 T c /T h Tc 8

9 Brownian heat engine at maximal power with universal bounds [T. Schmiedl and U.S., EPL 81, 23, (28)] V 1 V p a p b 1 V 4 T h T c 3 V 2 η α = 1/2 α = α CA α = 1 p a p b η C (T h T c )/T c η = η c 2 αη c with α 1 implies η c 2 η η c 2 η c Curzon-Ahlborn neither universal nor a bound cf. Esposito, Kawai, Lindenberg, vd Broeck, PRL 1,... 9

10 Experimental realization in the Stirling version H transition isochoric [V. Blickle and C. Bechinger, Nature phys. 8, 143, 212] 4 2 a W [k B T c ] W [k B T c ] 2 1 (1) (2) (1) (2) (1) (2) w n T =86 C h (3) (4) -8 (3) (4) (3) (4) (3) (4) -1 time[s] w n [k B T c ] 1 b time[s] 1 c position [µm] p isothermal expansion macroscopic Stirling cycle position [µm] cycle number n -1 1 p(w n ).2 (3).. isochoric transition (2) (2) (4) (1) V (1) P [k B T c /s] a w [k B T c ] T =22 C c position [µm] isothermal compression position [µm] Efficiency. b [s] 1

11 NESSs: Examples and common characteristics f(λ) V (x,λ) Time-independent driving beyond linear response regime Broken detailed-balance Persistent currents with permanent dissipation Stationary (non-boltzmann) distribution 11

12 Fluctuation theorem p( s tot )/p( s tot ) = exp( s tot ) long-time limit: Evans et al (1993), Gallavotti & Cohen (1995), Kurchan (1998), Lebowitz & Spohn (1999)... finite times: U.S., PRL 5 experimental data [Speck, Blickle, Bechinger, U.S., EPL (27)] ~ a ) t = 2 s t = 2 s f(λ) V (x,λ) b ) t = 2 s -25 t = 2 s t = ẋ = µ[ x V(x)+f]+ζ, to ta l e n tr o p y p r o d u c tio n s t o t [k B ] 12

13 F theorem and slow hidden degrees of freedom [J. Mehl, B. Lander, C. Bechinger, V. Blickle and U.S., PRL 18, 2261, 212] total entropy production in the NESS s tot t dτ[ x 1 ν 1 (x 1,x 2 )+ x 2 ν 2 (x 1,x 2 )] with ν 1 (x 1,x 2 ) x 1 x 1,x 2 x 1 x 2 (a) + - R f(λ) R f 1 V (x,λ) f(λ) V (x,λ) min.,15,165,18,195,21,225,24,255,27,285,3 max. +1 x ( R) obeys FT p( s tot )/p( s tot ) = exp s tot B x 1 (b) suppose x 2 is hidden: ν 1 (x 1 ) ν(x 1,x 2 )p(x 2 x 1 )dx 2 apparent entropy production s tot t dτx 1 ν 1 (x 1 ) obeys FT?? + - R potential (units of k B T) x U 1 R f 2 U x 1, x 2 ( R) (c) (d) x 1 ( R) x ( R) x ( R) 13

14 ~ ~ Experimental data with and without coupling [rarely:] p(ds tot )(1-2 ) ~ ~ Ds tot ln[p(ds tot )/p(-ds tot )] (c) ~ Ds tot ~ ~ ln[p(ds tot )/p(-ds tot )] ~ Ds tot (a) slope α 1,1 1, slope a,9,8,7 (a), G,5 1, 1,5 2, t(s) 14

15 Fluctuation-dissipation (response) theorem (FDT) in equilibrium perturbation with a field f : E E fb observable A T δa(t 2) δf(t 1 ) = t 1 A(t 2 )B(t 1 ) any variable A formalizes Onsager s regression hypothesis in a NESS often (phenomenologically) modified by an effective temp: T eff δa(t 2 ) δf(t 1 ) = t 1 A(t 2 )B(t 1 ) Culgiandolo, Kurchan & Peliti, 97 Berthier and Barrat,

16 Paradigm for an FDT in a NESS [T. Speck and U.S., Europhys. Lett. 74, 391, 26] f(λ) V (x,λ) FDT in eq: T δ ẋ(t 2) δf(t 1 ) f= = ẋ(t 2 )ẋ(t 1 ) eq extended FDT in non-eq: T δ ẋ(t 2) δf(t 1 ) f = ẋ(t 2 )ẋ(t 1 ) ness ẋ(t 2 )ν s (x(t 1 )) ness with ν s (x) ẋ x = j s /p s (x) additive modification (rather than multiplicative) 16

17 Integrated version: Generalized Einstein relation [Blickle, Speck, Lutz, U.S., Bechinger, PRL 98, 2161 (27)] f(λ) V (x,λ) δ ẋ(t 2 ) = ẋ(t 2 )ẋ(t 1 ) neq ẋ(t 2 )ν s (x(t 1 )) neq δf(t 1 ) f µ eff (f) = D eff (f) dt I(t) with I(t) ẋ(t)ν s(x()) ν s (x) v io la tio n in te g r a l m o b ility D cf giant diffusion [Reimann et al 21]

18 General FDT in a NESS [U.S and T. Speck, EPL 89: 17, 21] NESS : δa(t 2 ) δf(t 1 ) = A(t 2 ) f ṡ(t 1 ) = A(t 2 ) f ṡ m (t 1 ) }{{} ness + A(t 2 ) f ṡ tot (t 1 ) ness EQ : T δa(t 2) δf(t 1 ) = A(t 2 ) f Ė(t 1 ) eq stochastic entropy replaces energy add to eq form the term conj to total entropy production proof: (1) pert theory of FPE + (2) use of det bal in equilibrium 18

19 Sheared colloidal suspension with 3d Brownian dynamics [B. Lander, U.S. and T. Speck, EPL , 21; PRE 85, 2113, 212] driving: linear shear flow perturbating field: force on tagged particle 19

20 velocity-force FDT in a NESS 1.5 γ = 1., φ =.1 γ = 1., φ =.3 R ij (t) = δ v i(t) δf j () 1 C xx R xx C xx R xx C ij (t) = v i (t)v j () t t γ = 1., φ =.1 γ = 1., φ =.3 effective temperature? θ i C ii(t) R ii (t) 1+a γ2 works well at larger densities θ x θ y θ z γ θ x θ y θ z γ t t 2

21 effective confinement for moderate/large densities Cxx,Rxx m=1,k=1.25,θ x =2.6 A mc xx /θ x mr xx t/m effective temperature also for trapped particle? similar math. structure in confined suspensions C ii (t) θ i R ii (t)+ γ 2 β i I i (t) with max I i (t) = 1 βx Cxx,Rxx Cxx,Rxx 1. m=1,k=12.5,θ x =1.16 B t/m 1. m=.5,k=25,θ x =1.4 C t/m 3 D E 2 X x θ x k m=1 1 m=.1 θ x k γ 21

22 An isothermal nano-rotor: F1-ATP-ase [K. Hayashi,... H. Noji, PRL 14, (21)] kinetics vs thermodynamics first law? efficiency(ies)? 22

23 Hybrid model [E. Zimmermann and U.S., New J. Phys. 14, 1323, 212] probe particle ẋ = µ( y V(y)+f ex )+ζ with y(τ) n(τ) x(τ) motor w + /w = exp[ µ V(n+d,x) V(n,x)] local detailed balance condition 23

24 Simulated trajectories t [s] c ATP = M x [12 ] c ATP = M c ATP = M probe motor 24

25 F1-ATPase and the fluctuation theorem [K. Hayashi,... H. Noji, PRL 14, (21)] Γ θ = N +ζ ζ 1 ζ 2 ) = 2Γk B Tδ(τ 1 τ 2 ) ln[p( θ)/p( θ)] = N θ/k B T independent of friction coefficient cf f theorem for total entropy production time-dependence? ln[p( s tot )/p( s tot )] = s tot /k B 25

26 FT-slope from simulations vs experiment p( x) x [d] t = 1 ms t = 2 ms t = 5 ms t = 1 ms t = 2 ms c ATP = c ATP = c ATP = c ATP = α t 26

27 Efficiencies Thermodynamic efficiency [Parmeggiani et al, PRE 1999] η f ex v/ µ for f ex = : pseudo efficiency [Toyabe et al, PRL 21] η Q Q p / µ 27

28 Experimental determination of η Q [S. Toyabe et al, PRL 14, (21)] Harada-Sasa relation [PRL 26] µ Q P = v 2 + dω[cẋ(ω) 2k B T ReRẋ(ω)] from violation of fluc-diss-theorem 28

29 Comparison to experiment quite reasonable agreement for small θ + future: substeps of degrees 29

30 Efficiency of autonomous nano-machines at maximum power [U.S., PRL 16, 261, 211] output: w out = fd input: w in = µ mean currents: j ± local detailed balance: j /j + = exp( S) = exp(w out w in ) power: P out,in = (j + j ) w out,in = j + (w out,w in ) [1 exp(w in w out )] w out,in efficiency: η P out /P in (= w out /w in, for unicyclic) 3

31 Efficiency at maximum power (EMP) case I: fix w in ( µ), maximize P out with respect to w out ( f): EMP: η w out w in 1/2+(x out +1/2)w in. with x out dlnj + /dw out 1/2 universal in LR for strong coupling (Kedem and Caplan, 1965; vd Broeck and Esposito 25...) 1. x out 5 Η x out 1 2 x out Ω in 31

32 Efficiency at maximum power η case III: maximize P out with respect to w out ( f) and w in ( µ) three regimes (determined by two structural parameters) 32

33 Thermoelectrics [Snyder et al, Nat. Mat. 7 15, 28] 33

34 Paradigm for thermoelectrics: Single level quantum dot heat engine [Linke et al 22..., Esposito, vd Broeck et al 25...] particle current j = (w + 1 w+ 2 w 1 w 2 )/Σw th dynamic consistency: w + 1 /w 1 = exp(µ 1 E))/T 1, w + 2 /w 2 =... output power P out = (µ 2 µ 1 )j input power (heat from hot reservoir) P in = (E µ 1 )j efficiency η P out /P in = (µ 2 µ 1 )/(E µ 1 ) η C maximize P out wrt (µ 2 µ 1 ) at fixed T 2 T 1,E : η η C /2+O(η 2 C )... and with respect to E : η η C /2+η 2 C /8 34

35 Thermoelectrics with magnetic field μ L T L B C μ R T R speculation: Carnot efficiency at finite power? Benenti et al, PRL 211 linear response regime ( Jρ J q ) = ( Lρρ L ρq L qρ L qq )( Fρ F q ) fundamental constraints 2 nd law Onsager relations 4L ρρ L qq (L ρq +L qρ ) 2 L ρρ,l qq L ρq (B) = L qρ ( B) 35

36 Three-Terminal Model [K. Brandner, K. Saito, U.S., PRL , 213] effective Onsager matrix ( Lρρ L ρq L qρ L qq ) = L LL L LP L 1 PP L PL μ L T L μ P B T P C μ R T R multiterminal Landauer formula L AB = F(E) [ new bound de F(E) ( (E µ)e (E µ)e (E µ) 2 e 2 4k B hcosh 2 ( E µ k B T )] 1 ) (δab S AB(E,B) 2) 4L ρρ L qq (L ρq +L qρ ) 2 3(L ρq L qρ ) 2 36

37 Efficiency dimensionless parameters y L ρq L qρ /(L ρρ L qq L ρq L qρ ) x L ρq /L qρ η max/ηc bound on η max η max η C = bound on η(p max ) η (P max ) η C = x 2 x+1 x 1 x 2 x+1 x 1 x 2 4x 2 6x+4 η (Pmax)/ηC x x 37

38 Multi-terminal model [K. Brandner, U.S., NJP , 213] 1 μ 1 T 1.8 μ3 T3 μ 2 T 2 B μn T n ηmax(x)/ηc x μ4 T4.8 generalized bound 4L ρρ L qq (L ρq +L qρ ) 2 tan ( ) π n (L ρq L qρ ) 2 η (x)/ηc x 38

39 A classical Nernst engine [J. Stark, K. Brandner, K. Saito, U.S., arxiv: ] 5 B -βµ 2 5 A figure of merit ZT = L 2 ρq L ρρ L qq L 2 ρq = (NB)2 σt κ 2 nd law ZT 1 new bound ZT 1/2 η max η C = 1 1 ZT 1+ 1 ZT η(p max ) η C = ZT 4 2ZT 1/6 39

40 Summary and Perspectives Stochastic thermodynamics along individual trajectories formulation of the 1 st law refinement of the 2 nd law NESS extended FDT ( Green-Kubo for a NESS) emergence of an effective temperature in sheared suspensions Efficiency thermolectric transport molecular motors information machines (in cell biology) 4

Stochastic thermodynamics

Stochastic thermodynamics Boulder lectures, July 2009 Stochastic thermodynamics Udo Seifert II. Institut für Theoretische Physik, Universität Stuttgart thanks to: F. Berger, J. Mehl, T. Schmiedl and Th. Speck (theory) V. Blickle

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling Chris Jarzynski Ins&tute for Physical Science and Technology Department of Chemistry & Biochemistry Department of

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

NonEquilibrium Thermodynamics of Flowing Systems: 2

NonEquilibrium Thermodynamics of Flowing Systems: 2 *Following the development in Beris and Edwards, 1994, Section 9.2 NonEquilibrium Thermodynamics of Flowing Systems: 2 Antony N. Beris Schedule: Multiscale Modeling and Simulation of Complex Fluids Center

Διαβάστε περισσότερα

Thermodynamics of the motility-induced phase separation

Thermodynamics of the motility-induced phase separation 1/9 Thermodynamics of the motility-induced phase separation Alex Solon (MIT), Joakim Stenhammar (Lund U), Mike Cates (Cambridge U), Julien Tailleur (Paris Diderot U) July 21st 2016 STATPHYS Lyon Active

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling 1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

Optical Feedback Cooling in Optomechanical Systems

Optical Feedback Cooling in Optomechanical Systems Optical Feedback Cooling in Optomechanical Systems A brief introduction to input-output formalism C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum Stochastic differential

Διαβάστε περισσότερα

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction () () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)] d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6 1 Τ.Ε.Ι. ΑΘΗΝΑΣ / Σ.ΤΕ.Φ. ΤΜΗΜΑ ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΟΣ Οδός Αγ.Σπυρίδωνος,12210 Αιγάλεω,Αθήνα Τηλ.: 2105385355, email: ptsiling@teiath.gr H ΕΠΙΔΡΑΣΗ ΠΑΡΟΧΗΣ ΟΓΚΟΥ ΣΤΗΝ

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System Typical and guaranteed specifications vary versus frequency; see detailed data sheets for specification

Διαβάστε περισσότερα

Markov chains model reduction

Markov chains model reduction Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /

Διαβάστε περισσότερα

Non-Gaussianity from Lifshitz Scalar

Non-Gaussianity from Lifshitz Scalar COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,

Διαβάστε περισσότερα

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC ~ A File Name:IDLV65SPEC 07050 SPECIFICATION MODEL OUTPUT OTHERS NOTE DC VOLTAGE RATED CURRENT RATED POWER DIMMING RANGE VOLTAGE TOLERANCE PWM FREQUENCY (Typ.) SETUP TIME Note. AUXILIARY DC OUTPUT Note.

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table

SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table SMBJ SERIES SMBG Plastic-Encapsulate Diodes HD BK 7 Transient Suppressor Diodes Features P PP 6W V RWM 5.V- 44V Glass passivated chip Applications Clamping Marking SMBJ XXCA/XXA/XX XX : From 5. To 44 SMBG

Διαβάστε περισσότερα

Chapter 2. Stress, Principal Stresses, Strain Energy

Chapter 2. Stress, Principal Stresses, Strain Energy Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Free Energy and Phase equilibria

Free Energy and Phase equilibria Free Energy and Phase equilibria Thermodynamic integration 7.1 Chemical potentials 7.2 Overlapping distributions 7.2 Umbrella sampling 7.4 Application: Phase diagram of Carbon Why free energies? Reaction

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Scope -This specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. Features

Διαβάστε περισσότερα

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi

Διαβάστε περισσότερα

Thermoelectrics: A theoretical approach to the search for better materials

Thermoelectrics: A theoretical approach to the search for better materials Thermoelectrics: A theoretical approach to the search for better materials Jorge O. Sofo Department of Physics, Department of Materials Science and Engineering, and Materials Research Institute Penn State

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition MA MA Series Silicon planer e For stabilization of power supply ø.56. Unit : mm Features Color indication of VZ rank classification High reliability because of combination of a planer chip and glass seal

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Metal Oxide Leaded Film Resistor

Metal Oxide Leaded Film Resistor Features -Excellent Long-Time stability -High surge / overload capability -Wide resistance range : 0.1Ω~22MΩ -Controlled temperature coefficient -Resistance standard tolerance: ±5% (consult factory for

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Geodesic paths for quantum many-body systems

Geodesic paths for quantum many-body systems Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop:

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding

Διαβάστε περισσότερα

Systems with unlimited supply of work: MCQN with infinite virtual buffers A Push Pull multiclass system

Systems with unlimited supply of work: MCQN with infinite virtual buffers A Push Pull multiclass system Systems with unlimited supply of work: MCQN with infinite virtual buffers A Push Pull multiclass system Gideon Weiss University of Haifa Joint work with students: Anat (Anastasia) Kopzon Yoni Nazarathy

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Metal Oxide Leaded Film Resistor

Metal Oxide Leaded Film Resistor SURFACE TEMP. RISE ( ) Power Ratio(%) MOF0623, 0932, 1145, 1550, 1765, 2485 MOF Series Features -Excellent Long-Time stability -High surge / overload capability -Wide resistance range : 0.1Ω~10MΩ -Controlled

Διαβάστε περισσότερα

μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα