ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα"

Transcript

1 ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα Ολνκαηεπώλπκν: ΘΕΜΑ 1 A. Να δώζεηε ηνλ νξηζκό ηεο κεηαβιεηήο θαη λα αλαθέξεηε ηη ηύπνπ κεηαβιεηέο έρνπκε. (Μονάδες 3) Βηβιίν ζει.37 B. Με πνην ηξόπν κπνξεί λα πάξεη ηηκή κηα κεηαβιεηή; (Μονάδες 2) Με εληνιή εθρώξεζεο ηηκήο Υ 3 Με ηελ εληνιή ΓΗΑΒΑΔ, ΓΗΑΒΑΔ Υ Γ. Να αλαθέξεηε κε ηεθκεξίσζε πνηα από ηα θξηηήξηα δελ πιεξεί ν παξαθάησ αιγόξηζκνο: Αιγόξηζµνο Θεκα1Α δηάβαζε x αλ x > 0 ηόηε y 1/x Γξάςε y αιιηώο y 2*(z+10) ηέιoο_αλ Σέινο Θεκα1Α (Μονάδες 4) Δμνδνο: Γελ ππάξρεη ε εληνιή ΓΡΑΦΔ όηαλ ην Υ < 0 Απνηειεζκαηηθόηεηα: Γελ κπνξεί λα εθηειεζηεί ε εληνιή y 2*(z+10) γηαηί ην z δελ έρεη ηηκή Πξνζνρή: Γελ εκθαλίδεη θαζνξηζηηθόηεηα ε πξάμε y 1/x, γηαηί ην x δελ κπνξεί λα πάξεη ηελ ηηκή 0. Γ. Να γξαθεί κε εληνιέο αιγνξίζκνπ ε παξαθάησ καζεκαηηθή πξάμε: y = 2x x 3a + 1 (Μονάδες 3) y Σ_Ρ(2*x A_T(x^(3*α)+1))

2 Δ. Να γίλνπλ νη πξάμεηο: 1. (3^2+T_P(9))/2 2. A_T(10-5^2) mod 2+5^2 2 div 3 4. (3*2 div 2) mod 5 5. T_P(3^2+4^2)/(2+1) 6. 4 mod 5 1. (9+3)/2 = = = mod 5 = /3 = (Μονάδες 3) Σ. Να ραξαθηεξίζεηε σο ζσζηή () ή ιάζνο (Λ) θαζεκία από ηηο παξαθάησ πξνηάζεηο. 1 Έλαο αιγόξηζκνο κπνξεί λα κελ έρεη είζνδν. 2 Ζ ζύγθξηζε ΑΛΖΘΖ > ΑΛΖΘΔ δίλεη ηηκή ΦΔΤΓΖ. Λ 3 Ζ ηηκή κηαο κεηαβιεηήο θαη ν ηύπνο ηεο κπνξνύλ λα αιιάδνπλ θαηά ηελ Λ εθηέιεζε ελόο πξνγξάκκαηνο. 4 Αλ Α=2, Β=3, Γ=4 θαη Γ=ΑΛΖΘΖ, ηόηε ε ηηκή ηεο έθθξαζεο Λ (Β*Γ>Α+Β) ΚΑΗ (ΟΥΗ(Γ)) είλαη ΑΛΖΘΖ. 5 Καηά ηελ εθηέιεζε ηεο εληνιήο ΓΗΑΒΑΔ, ην πξόγξακκα δηαθόπηεη ηελ εθηέιεζή ηνπ θαη πεξηκέλεη ηελ εηζαγσγή ηηκώλ από ην πιεθηξνιόγην. 6 Οη εθθξάζεηο δηακνξθώλνληαη από ηνπο ηειεζηένπο θαη ηνπο ηειεζηέο. 7 Ζ ηεξαξρία ησλ ινγηθώλ ηειεζηώλ είλαη κηθξόηεξε ησλ ζπγθξηηηθώλ. 8 Σν div ππνινγίδεη ην αθέξαην ππόινηπν ηεο δηαίξεζεο δύν αθέξαησλ Λ αξηζκώλ. 9 Όηαλ ζέινπκε λα ππνινγίζνπκε ην αθέξαην κέξνο κηαο κεηαβιεηήο Υ, ρξεζηκνπνηνύκε ηελ ζπλάξηεζε ΑΜ(Υ) Λ 10 ε έλα δηάγξακκα ξνήο ηα ζρήκαηα πνπ ρξεζηκνπνηνύκε είλαη ν ξόκβνο, Λ ην νξζνγώλην παξαιιειόγξακκν, ν θύθινο θαη ην πιάγην παξαιιειόγξακκν. Ε. Να κεηαθέξεηε ζην ηεηξάδηό ζαο ηνλ παξαθάησ πίλαθα ζπκπιεξώλνληάο ηνλ κε ηνλ θαηάιιειν ηύπν θαη ην πεξηερόκελν ηεο κεηαβιεηήο. Δληνιή εθρώξεζεο Σύπνο κεηαβιεηήο Υ Σηκή κεηαβιεηήο Υ Υ ΑΛΖΘΖ ΥΑΡΑΚΣΖΡΔ ΑΛΖΘΖ Υ ΠΡΑΓΜΑΣΗΚΔ -2.0 Υ 7 > 4 ΛΟΓΗΚΔ ΑΛΖΘΖ Υ ΦΔΤΓΖ ΛΟΓΗΚΔ ΦΔΤΓΖ Υ 4 ΑΚΔΡΑΗΔ 4

3 Ζ. Γίλεηαη ην παξαθάησ ηκήκα αιγνξίζκνπ: Αλ Υ>1 Ή Υ<= -5 ηόηε Κ Φεπδήο Αιιηώο Κ Αιεζήο Να γξάςεηε ζην ηεηξάδηό ζαο ζπκπιεξσκέλε ηελ παξαθάησ εληνιή εθρώξεζεο, ώζηε λα έρεη ην ίδην απνηέιεζκα κε ην παξαπάλσ ηκήκα αιγνξίζκνπ. Κ... Κ Υ<=1 ΚΑΗ Υ> -5 ΘΕΜΑ 2 (Μονάδες 4) Α. Να μαλαγξάςεηε ηελ παξαθάησ εληνιή: Αλ ( Α < Β θαη C <> D ) θαη ( B > D ή Β =D ) ηόηε K 1 ρσξίο ηε ρξήζε ινγηθώλ ηειεζηώλ. (Μονάδες 3) Αλ Α < Β ηόηε Αλ C <> D ηόηε Αλ B >= Dηόηε K 1

4 Β. Ο παξαθάησ αιγόξηζκνο πξνηάζεθε γηα λα ειέγρεη θαη λα εθηππώλεη, αλ έλαο κε αξλεηηθόο αθέξαηνο αξηζκόο είλαη κνλνςήθηνο, δηςήθηνο ή ηξηςήθηνο. ηελ πεξίπησζε πνπ δνζεί αξηζκόο αξλεηηθόο ή κε πεξηζζόηεξα από 3 ςεθία ν αιγόξηζκνο πξέπεη λα εκθαλίδεη ην κήλπκα «Λάζνο Γεδνκέλα». Αλγόριθμος Φεθία Διάβαζε x Αν x >= 0 και x < 10 ηόηε εμθάνιζε Μνλνςήθηνο Αλλιώς_αν x < 100 ηόηε εμθάνιζε Γηςήθηνο Αλλιώς_αν x < 1000 ηόηε εμθάνιζε Σξηςήθηνο Αλλιώς εμθάνιζε Λάζνο Γεδνκέλα Τέλος_αν Τέλος Φεθία Ο παξαπάλσ αιγόξηζκνο έρεη ιάζνο. Γώζηε έλα παξάδεηγκα εηζόδνπ πνπ ζα θαηαδείμεη ην ιάζνο πνπ ππάξρεη ζηνλ αιγόξηζκν. ηε ζπλέρεηα λα γξάςεηε ηνλ αιγόξηζκν ζην ηεηξάδην ζαο θάλνληαο ηηο απαξαίηεηεο δηνξζώζεηο, έηζη ώζηε λα ιεηηνπξγεί ζσζηά i. ε πεξίπησζε πνπ δνζεί αξλεηηθόο αξηζκόο π.ρ. -10, ηόηε ζα γίλεη ΑΛΖΘΖ ε ζπλζήθε Αλλιώς_αν x < 100 ηόηε θαη ζα εκθαλίζεη Γηςήθηνο αληί ηνπ Λάζνο Γεδνκέλα πνπ είλαη ην ζσζηό. ii. Αλγόριθμος Φεθία Διάβαζε x Αν x >= 0 και x < 10 ηόηε εμθάνιζε Μνλνςήθηνο Αλλιώς_αν x>=10 και x < 100 ηόηε εμθάνιζε Γηςήθηνο Αλλιώς_αν x>=100 και x < 1000 ηόηε εμθάνιζε Σξηςήθηνο Αλλιώς εμθάνιζε Λάζνο Γεδνκέλα Τέλος_αν Τέλος Φεθία Γ. Να γξάςεηε ζην ηεηξάδηό ζαο: α. Έλα ζπγθξηηηθό ηειεζηή. β. Έλα ινγηθό ηειεζηή. γ. Έλαλ αξηζκεηηθό ηειεζηή. δ. Μία απιή ινγηθή έθθξαζε. ε. Μία ζύλζεηε ινγηθή έθθξαζε. α. > β. ΚΑΗ γ. + δ. Υ>10 ε. Υ>10 θαη Υ<100

5 Γ. Γίλνληαη νη ηηκέο ησλ κεηαβιεηώλ A=8 θαη Χ=4 θαη ε παξαθάησ έθθξαζε: (ΟΧΙ (9mod5 = 20-4*2^2)) H (A>Ω ΚΑΙ A > Ω ) Να ππνινγίζεηε ηελ ηηκή ηεο έθθξαζεο αλαιπηηθά, σο εμήο: α. Να αληηθαηαζηήζεηε ηηο κεηαβιεηέο κε ηηο ηηκέο ηνπο. β. Να εθηειέζεηε ηηο αξηζκεηηθέο πξάμεηο. γ. Να αληηθαηαζηήζεηε ηηο ζπγθξίζεηο κε ηελ ηηκή ΑΛΖΘΖ, αλ ε ζύγθξηζε είλαη αιεζήο, ή κε ηελ ηηκή ΦΔΤΓΖ, αλ ε ζύγθξηζε είλαη ςεπδήο. δ. Να εθηειέζεηε ηηο ινγηθέο πξάμεηο, ώζηε λα ππνινγίζεηε ηελ ηειηθή ηηκή ηεο έθθξαζεο. (Μονάδες 4) α. (ΟΥΗ (9mod5 = 20-4*2^2)) ή (8>4 θαη A > Χ ) β. (ΟΥΗ (4=4)) ή (8>4 θαη A > Χ ) γ. (ΟΥΗ (Α)) ή (Α θαη Φ) δ. Φ ή Φ = Φ Δ. Να γξαθεί πξόγξακκα ζε «ΓΛΧΑ», ην νπνίν λα δέρεηαη από ην πιεθηξνιόγην έλαλ αξηζκό (ζεσξήζηε όηη είλαη αθέξαηνο) θαη λα ειέγρεη εάλ είλαη δηςήθηνο θαη ζεηηθόο. ηε πεξίπησζε πνπ ηζρύεη λα ηππώλεηαη ην κήλπκα Θεηηθόο, Γηςήθηνο αξηζκόο, ελώ δηαθνξεηηθά λα ηππώλνληαη γηα θάζε πεξίπησζε Μόλν ζεηηθόο ή Μόλν δηςήθηνο ή Ούηε ζεηηθόο, νύηε δηςήθηνο. ΠΡΟΓΡΑΜΜΑ ζέκα2δ ΜΔΣΑΒΛΖΣΔ ΑΚΔΡΑΗΔ:αξ ΑΡΥΖ ΓΗΑΒΑΔ αξ ΑΝ αξ>=10 ΚΑΗ αξ<=99 ΣΟΣΔ ΓΡΑΦΔ ΘΔΣΗΚΟ, ΓΗΦΖΦΗΟ ΑΡΗΘΜΟ ΑΛΛΗΧ_ΑΝ αξ>0 ΣΟΣΔ ΓΡΑΦΔ ΜΟΝΟ ΘΔΣΗΚΟ ΑΛΛΗΧ_ΑΝ αξ>=-99 ΚΑΗ αξ<=-10 ΣΟΣΔ ΓΡΑΦΔ ΜΟΝΟ ΓΗΦΖΦΗΟ ΑΛΛΗΧ ΓΡΑΦΔ ΟΤΣΔ ΘΔΣΗΚΟ, ΟΤΣΔ ΓΗΦΖΦΗΟ ΣΔΛΟ_ΑΝ ΣΔΛΟ_ΠΡΟΓΡΑΜΜΑΣΟ

6 Σ. Να γξαθεί πξόγξακκα ην νπνίν λα δεηάεη έλα ηξηςήθην αξηζκό από ηνλ ρξήζηε θαη λα εκθαλίδεη αλ είλαη ηζνξξνπεκέλνο ή όρη. Ολνκάδνπκε έλαλ αξηζκό ηζνξξνπεκέλν, αλ ην κεγαιύηεξν ςεθίν ηνπ ηζνύηαη κε ην κηζό ηνπ αζξνίζκαηνο όισλ ησλ ςεθίσλ ηνπ αξηζκνύ. Γηα παξάδεηγκα, ν αξηζκόο 123 είλαη ηζνξξνπεκέλνο, δηόηη (1+2+3)/2=3, όπσο θαη ν αξηζκόο 473 δηόηη (4+7+3)/2=7 Πξόγξακκα ζέκα2σ Μεηαβιεηέο Αθέξαηεο:αξ,πξ,κεο,ηει,max,αζξ (Μονάδες 8) Αξρή Γηάβαζε αξ ηει αξ mod 10 κεο αξ div 10 mod 10 πξ αξ div 10 div 10 max πξ Αλ κεο>max ηόηε max κεο Σέινο_Αλ Αλ ηει>max ηόηε max ηει Σέινο_Αλ αζξ πξ + κεο + ηει Αν αζξ/2 = max ηόηε Γράψε Δίλαη ηζνξξνπεκέλνο Αλλιώς Γράψε Γελ είλαη ηζνξξνπεκέλνο Τέλος_αν Σέινο_πξνγξάκκαηνο

7 Ε. Γίλεηαη ην παξαθάησ δηάγξακκα ξνήο: Αξρή Γηάβαζε α,β Ναη α<β Όρη x<--α x<--β βξήθα<--φεπδήο Ναη α mod x<>0 Όρη x<--x-1 Ναη β mod x=0 Όρη βξήθα<--αιεζήο x<--x-1 Όρη βξήθα=αιεζήο Ναη Γξάςε x Σέινο Να ην κεηαηξέςεηε ζε κνξθή θσδηθνπνίεζεο. (Μονάδες 6)

8 Αλγόριθμος ΘΔΜΑ2Ε Διάβαζε α,β Αλ α<β ηόηε x a Αιιηώο x β βξήθα ΦΔΤΓΖ Αλ a mod x <>0 ηόηε x x-1 Αιιηώο Αλ β mod x = 0 ηόηε Βξήθα ΑΛΖΘΖ Αιιηώο x x 1 Αλ βξήθα=αλζθζ ηόηε Γξάςε x Τέλος ΘΔΜΑ2Ε

9 ΘΕΜΑ 3 Ζ πεληακειήο επηηξνπή ελόο ζρνιηθνύ ζπγθξνηήκαηνο ζα νξγαλώζεη κηα εθπαηδεπηηθή επηαήκεξε εθδξνκή ζηελ Ηηαιία. Κάπνην μελνδνρείν ηνπο πξόηεηλε ηελ πξνζθνξά πνπ παξνπζηάδεηαη ζηνλ παξαθάησ πίλαθα θαη αθνξά ηνπο καζεηέο πνπ ζα ζπκκεηάζρνπλ (ζπκπεξηιακβαλνκέλεο ηεο πεληακεινύο επηηξνπήο) θαη ηνπο ζπλόδνπο θαζεγεηέο. Αξηζκόο Μαζεηώλ Κόζηνο αλά άηνκν Πνζνζηό έθπησζεο ζε ζπλνδνύο θαη πεληακειή επηηξνπή Μέρξη 50 καζεηέο 30 ην άηνκν 10% Μέρξη 80 καζεηέο 25 ην άηνκν 15% Μέρξη 120 καζεηέο 20 ην άηνκν 25% Πεξηζζόηεξνη από 120 καζεηέο 17 ην άηνκν 50% Ο αξηζκόο ησλ θαζεγεηώλ πνπ πξέπεη λα ζπλνδέςνπλ ηνπο καζεηέο ζηελ εθδξνκή εμαξηάηαη από ην πιήζνο ησλ καζεηώλ. Έηζη κέρξη 50 καζεηέο ζπλνδεύνληαη από 4 θαζεγεηέο, κέρξη 120 καζεηέο ζπλνδεύνληαη από 7 θαζεγεηέο, ελώ απαηηνύληαη 10 θαζεγεηέο αλ νη καζεηέο ππεξβαίλνπλ ηνπο 120. Να γξάςεηε πξόγξακκα ην νπνίν: Α. Θα δέρεηαη ηνλ αξηζκό ησλ καζεηώλ πνπ ζα ζπκκεηάζρνπλ ζηελ εθδξνκή. (Μονάδες 2) Β. Θα εκθαλίδεη ην θόζηνο δηακνλήο γηα έλαλ καζεηή θαη γηα ην ζύλνιν ηεο πεληακεινύο επηηξνπήο. Γ. Αλ ηα έμνδα κεηαθνξάο είλαη 100 ην άηνκν, λα εκθαλίδεη έλα κήλπκα πνπ ζα πεξηιακβάλεη ην πιήζνο ησλ αηόκσλ (θαζεγεηέο θαη καζεηέο) πνπ ζπκκεηέρνπλ θαη ην ζπλνιηθό θόζηνο ηεο εθδξνκήο ηεο κνξθήο: «ηελ εθδξνκή ζπκκεηέρνπλ άηνκα θαη ην ζπλνιηθό θόζηνο είλαη επξώ». (Μονάδες 8)

10 ΠΡΟΓΡΑΜΜΑ ΘΔΜΑ3 ΜΔΣΑΒΛΖΣΔ ΑΚΔΡΑΗΔ:καζ,θαζ,Κνζηνοαηνκ,Αηνκα ΠΡΑΓΜΑΣΗΚΔ:Δθπη,Κόζηνοπελη,Κόζηνοθαζ,Κόζηνοεθδξ ΑΡΥΖ Διάβαζε καζ Αν καζ > 0 και καζ <= 50 ηόηε Καθ 4 Κόζηοςαηομ 300 Εκπη 0.1 Αλλιώς_αν καζ > 50 και καζ <= 80 ηόηε Καθ 7 Κόζηοςαηομ 250 Εκπη 0.15 Αλλιώς_αν καζ > 80 και καζ <= 120 ηόηε Καθ 7 Κόζηοςαηομ 200 Εκπη 0.25 Αλλιώς_αν καζ > 120 ηόηε Καθ 10 Κόζηοςαηομ 170 Εκπη 0.5 Τέλος_αν Γράψε Κόζηος μαθηηή, Κόζηοςαηομ Κόζηοςπενη Κόζηοςαηομ*5 Κόζηοςαηομ*5*Εκπη Γράψε Κόζηος πενηαμελούς επιηροπής, Κόζηοςπενη Αηομα μαθ + καθ Κόζηοςκαθ καθ*κόζηοςαηομ - καθ*κόζηοςαηομ*εκπη Κόζηοςεκδρ Αηομα*100 + (μαθ-5)*κόζηοςαηομ + Κόζηοςπενη + Κόζηοςκαθ Γράψε ηελ εθδξνκή ζπκκεηέρνπλ, Αηομα, άηνκα θαη ην ζπλνιηθό θόζηνο & είλαη,κόζηοςεκδρ, επξώ Τέλος_Προγράμμαηος

11 ΘΕΜΑ 4 Ο ΔΝΦΗΑ ππνινγίδεηαη κε βάζε ηα ηεηξαγσληθά κέηξα ελόο αθηλήηνπ. Δθαξκόδεηαη κλιμακωηή ρξέσζε ζύκθσλα κε ηνλ επόκελν πίλαθα: Σεηξαγσληθά Μέηξα Αθηλήηνπ Υξέσζε αλά ηεηξαγσληθό κέηξν Από 0 εώο θαη Από 81 εώο θαη Από 151 εώο θαη Από 291 θαη άλσ 250 ην πνζό πνπ πξνθύπηεη από ηελ ρξέσζε ππνινγίδεηαη ν ΦΠΑ κε ζπληειεζηή 23%. Σν ηειηθό πνζό πξνθύπηεη από ηελ άζξνηζε ηεο ρξέσζεο θαη ηνπ ΦΠΑ. Να γξάςεηε πξόγξακκα ην νπνίν: i. Θα δηαβάδεη ηα ηεηξαγσληθά κέηξα ηνπ αθηλήηνπ. (Μονάδες 2) ii. Θα ππνινγίδεη ρξέσζε ηνπ ΔΝΦΗΑ ζύκθσλα κε ηελ παξαπάλσ ηηκνινγηαθή πνιηηηθή. (Μονάδες 8) iii. Θα ππνινγίδεη θαη ζα εθηππώλεη ηνλ ΦΠΑ. iv. Θα ππνινγίδεη θαη ζα εθηππώλεη ην ηειηθό πνζό κε θαηάιιειν κήλπκα. Πξόγξακκα ζέκα4 Μεηαβιεηέο Αθέξαηεο:ηεη Πξαγκαηηθέο: Υξ,θπα,ηειρξ Αξρή Γηάβαζε ηεη Αλ ηεη>=0 θαη ηεη<=80 ηόηε Υξ ηεη*20 Αιιηώο_αλ ηεη>=81 θαη ηεη<=150 ηόηε Υξ 80*20+(ηεη-80)*40 Αιιηώο_αλ ηεη>=151 θαη ηεη<=290 ηόηε Υξ 80*20+70*40+(ηεη-150)*100 Αιιηώο_αλ ηεη>=291 ηόηε Υξ 80*20+70*40+140*100+(ηεη-290)*250 Σέινο_Αλ Φπα 23/100*ρξ Γξάςε θπα ηειρξ ρξ+θπα Γξάςε ηειρξ Σέινο_πξνγξάκκαηνο

ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα

ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα Ολνκαηεπώλπκν: ΘΕΜΑ 1 A. Να δώζεηε ηνλ νξηζκό ηεο κεηαβιεηήο θαη λα αλαθέξεηε ηη ηύπνπ κεηαβιεηέο έρνπκε. B. Με πνην ηξόπν κπνξεί λα πάξεη ηηκή κηα κεηαβιεηή; (Μονάδες 2)

Διαβάστε περισσότερα

ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα

ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα Ολνκαηεπώλπκν: ΘΕΜΑ 1 A. Nα αλαθέξεηε ηα θξηηήξηα πνπ πξέπεη λα πιεξνί έλαο αιγόξηζκνο (νλνκαζηηθά) Δίζνδνο, Έμνδνο, Πεξαηόηεηα, Καζνξηζηηθόηεηα, Απνηειεζκαηηθόηεηα B. Με

Διαβάστε περισσότερα

ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα

ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα ΑΕΠΠ 1o Επαναληπηικό Διαγώνιζμα Ολνκαηεπώλπκν: ΘΕΜΑ 1 A. Nα αλαθέξεηε ηα θξηηήξηα πνπ πξέπεη λα πιεξεί έλαο αιγόξηζκνο (νλνκαζηηθά) B. Με πνην ηξόπν κπνξεί λα πάξεη ηηκή κηα κεηαβιεηή; (Μονάδες 2) Γ. Να

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΠΟΛΤΣΗΡΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΠΑΡΑΚΕΤΗ 4 ΙΟΤΛΙΟΤ ΑΕΠΠ

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΠΟΛΤΣΗΡΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΠΑΡΑΚΕΤΗ 4 ΙΟΤΛΙΟΤ ΑΕΠΠ ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΠΟΛΤΣΗΡΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΝΙΑΙΟΤ ΛΤΚΕΙΟΤ ΠΑΡΑΚΕΤΗ 4 ΙΟΤΛΙΟΤ 2003 - ΑΕΠΠ ΘΕΜΑ 1ο Α. Γίλεηαη ε παξαθάησ αιιεινπρία εληνιώλ: Διάβαζε α, β Αν α > β ηόηε c α / (β - 2) Εκηύπφζε c α. Να

Διαβάστε περισσότερα

Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.

Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress. Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...

Διαβάστε περισσότερα

Αιγόξηζκνη Δνκή επηινγήο. Απιή Επηινγή ύλζεηε Επηινγή. Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ. introcsprinciples.wordpress.

Αιγόξηζκνη Δνκή επηινγήο. Απιή Επηινγή ύλζεηε Επηινγή. Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ. introcsprinciples.wordpress. Αιγόξηζκνη 2.2.7.3 Δνκή επηινγήο Απιή Επηινγή ύλζεηε Επηινγή Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ 1 Επηινγή ηελ πξάμε πνιύ ιίγα πξνβιήκαηα κπνξνύλ λα επηιπζνύλ κε ηνλ πξνεγνύκελν ηξόπν ηεο ζεηξηαθήο/αθνινπζηαθήο

Διαβάστε περισσότερα

ΑΠΟΛΤΣΖΡΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΔΠΔΡΗΝΟΤ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΠΑΡΑΚΔΤΖ 1 ΗΟΤΝΗΟΤ ΑΔΠΠ

ΑΠΟΛΤΣΖΡΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΔΠΔΡΗΝΟΤ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΠΑΡΑΚΔΤΖ 1 ΗΟΤΝΗΟΤ ΑΔΠΠ ΑΠΟΛΤΣΖΡΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΔΠΔΡΗΝΟΤ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΠΑΡΑΚΔΤΖ ΗΟΤΝΗΟΤ 007 - ΑΔΠΠ ΘΔΜΑ ο Α.. Ση είλαη νη ηειεζηέο θαη πνηεο είλαη νη θαηεγνξίεο ησλ ηειεζηώλ; Μνλάδεο 4 Α.. Παράγραθος.4., ζελίδα 3 αλλά και

Διαβάστε περισσότερα

ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΓΔΝΙΚΟΤ ΛΤΚΔΙΟΤ ΑΒΒΑΣΟ 23 MAΪΟΤ ΑΔΠΠ

ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΓΔΝΙΚΟΤ ΛΤΚΔΙΟΤ ΑΒΒΑΣΟ 23 MAΪΟΤ ΑΔΠΠ ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΓΔΝΙΚΟΤ ΛΤΚΔΙΟΤ ΑΒΒΑΣΟ 23 MAΪΟΤ 2009 - ΑΔΠΠ ΘΔΜΑ 1ο Α. Να ραξαθηεξίζεηε θάζε κία από ηηο πξνηάζεηο πνπ αθνινπζνύλ γξάθνληαο ζην ηεηξάδηό ζαο, δίπια από ηνλ αξηζκό θάζε

Διαβάστε περισσότερα

Αιγόξηζκνη Δθρώξεζε, Δίζνδνο θαη Έμνδνο ηηκώλ Γνκή αθνινπζίαο. Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Υ

Αιγόξηζκνη Δθρώξεζε, Δίζνδνο θαη Έμνδνο ηηκώλ Γνκή αθνινπζίαο. Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Υ Αιγόξηζκνη 2.2.7.1 Δθρώξεζε, Δίζνδνο θαη Έμνδνο ηηκώλ 2.2.7.2 Γνκή αθνινπζίαο Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Υ 1 Δληνιή Δθρώξεζεο Η γεληθή κνξθή ηεο εληνιήο εθρώξεζεο είλαη: Μεηαβιεηή Έθθξαζε

Διαβάστε περισσότερα

Δνκέο Επαλάιεςεο - Άιπηεο αζθήζεηο. 1. Να ζρεκαηίζεηε ηνλ πίλαθα ηηκώλ γηα ηα παξαθάησ ηκήκαηα αιγνξίζκσλ. Τί ζα εθηππσζεί ηειηθά;

Δνκέο Επαλάιεςεο - Άιπηεο αζθήζεηο. 1. Να ζρεκαηίζεηε ηνλ πίλαθα ηηκώλ γηα ηα παξαθάησ ηκήκαηα αιγνξίζκσλ. Τί ζα εθηππσζεί ηειηθά; Δνκέο Επαλάιεςεο - Άιπηεο αζθήζεηο 1. Να ζρεκαηίζεηε ηνλ πίλαθα ηηκώλ γηα ηα παξαθάησ ηκήκαηα αιγνξίζκσλ. Τί ζα εθηππσζεί β -5 Όζν β

Διαβάστε περισσότερα

Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ

Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Αιγόξηζκνη 2.2.7.4 Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Υ 1 Άζθεζε 34 ζει 53 Έλα ςεθηαθό θσηνγξαθηθό άικπνπκ έρεη απνζεθεπηηθό ρώξν N Mbytes. Να αλαπηύμεηε

Διαβάστε περισσότερα

ΔΞΑΛΑΙΖΞΡΗΘΔΠ ΑΞΝΙΡΖΟΗΔΠ ΔΜΔΡΑΠΔΗΠ Γ ΡΑΜΖΠ ΔΠΞΔΟΗΛΝ ΔΛΗΑΗΝ ΙΘΔΗΝ ΓΔΡΔΟΑ 11 ΗΝΙΗΝ ΑΔΞΞ

ΔΞΑΛΑΙΖΞΡΗΘΔΠ ΑΞΝΙΡΖΟΗΔΠ ΔΜΔΡΑΠΔΗΠ Γ ΡΑΜΖΠ ΔΠΞΔΟΗΛΝ ΔΛΗΑΗΝ ΙΘΔΗΝ ΓΔΡΔΟΑ 11 ΗΝΙΗΝ ΑΔΞΞ ΔΞΑΛΑΙΖΞΡΗΘΔΠ ΑΞΝΙΡΖΟΗΔΠ ΔΜΔΡΑΠΔΗΠ Γ ΡΑΜΖΠ ΔΠΞΔΟΗΛΝ ΔΛΗΑΗΝ ΙΘΔΗΝ ΓΔΡΔΟΑ 11 ΗΝΙΗΝ 2005 - ΑΔΞΞ ΘΔΚΑ 1ν Α. Λα γξάςεηε ζην ηεηξάδην ζαο ηνλ αξηζκό θαζεκηάο από ηηο παξαθάησ πξνηάζεηο 1 5 θαη δίπια ηε ιέμε

Διαβάστε περισσότερα

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί

Διαβάστε περισσότερα

ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΔΝΙΑΙΟΤ ΛΤΚΔΙΟΤ ΠΑΡΑΚΔΤΗ 6 ΙΟΤΝΙΟΤ ΑΔΠΠ

ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΔΝΙΑΙΟΤ ΛΤΚΔΙΟΤ ΠΑΡΑΚΔΤΗ 6 ΙΟΤΝΙΟΤ ΑΔΠΠ ΑΠΟΛΤΣΗΡΙΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΔΠΔΡΙΝΟΤ ΔΝΙΑΙΟΤ ΛΤΚΔΙΟΤ ΠΑΡΑΚΔΤΗ 6 ΙΟΤΝΙΟΤ 2003 - ΑΔΠΠ ΘΔΜΑ 1ο Α. Η «ζηνίβα» είλαη κηα δνκή δεδνκέλσλ. 1. Να πεξηγξάςεηε ηε «ζηνίβα» κε έλα παξάδεηγκα από ηελ θαζεκεξηλή δσή.

Διαβάστε περισσότερα

ΘΔΚΑ Α Α1. Πόηε έλα πξόβιεκα ραξαθηεξίδεηαη: α. επηιύζηκν β. δνκεκέλν γ. ππνινγηζηηθό. Κονάδες 6. Ιύζη ειίδα 16,17,18 ζρνιηθνύ βηβιίνπ καζεηή

ΘΔΚΑ Α Α1. Πόηε έλα πξόβιεκα ραξαθηεξίδεηαη: α. επηιύζηκν β. δνκεκέλν γ. ππνινγηζηηθό. Κονάδες 6. Ιύζη ειίδα 16,17,18 ζρνιηθνύ βηβιίνπ καζεηή ΔΞΑΛΑΙΖΞΡΗΘΔΠ ΞΑΛΔΙΙΖΛΗΔΠ ΔΜΔΡΑΠΔΗΠ Γ ΡΑΜΖΠ ΖΚΔΟΖΠΗΝ ΓΔΛΗΘΝ ΙΘΔΗΝ ΞΔΚΞΡΖ 9 ΗΝΛΗΝ 2011 ΔΜΔΡΑΕΝΚΔΛΝ ΚΑΘΖΚΑ: ΑΛΑΞΡΜΖ ΔΦΑΟΚΝΓΩΛ ΠΔ ΞΟΝΓΟΑΚΚΑΡΗΠΡΗΘΝ ΞΔΟΗΒΑΙΙΝΛ ΡΔΣΛΝΙΝΓΗΘΖΠ ΘΑΡΔΘΛΠΖΠ ΘΔΚΑ Α Α1. Πόηε έλα πξόβιεκα

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:

Διαβάστε περισσότερα

ΑΔΠΠ Δπαναληπτικό Γιαγώνισμα

ΑΔΠΠ Δπαναληπτικό Γιαγώνισμα ΑΔΠΠ Δπαναληπτικό Γιαγώνισμα Ολνκαηεπώλπκν: ΘΔΜΑ Α Α1. Να γπάψεηε ζηο ηεηπάδιό ζαρ ηον απιθμό καθεμιάρ από ηιρ παπακάηω πποηάζειρ 1-4και, δίπλα, ηη λέξη ΣΩΣΤΟ, αν η ππόηαζη είναι ζωζηή, ή ηη λέξη ΛΑΘΟΣ,

Διαβάστε περισσότερα

ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών

ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 2 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ

Διαβάστε περισσότερα

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000. ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε

Διαβάστε περισσότερα

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.

Διαβάστε περισσότερα

Μνλνδηάζηαηνη Πίλαθεο Λπκέλεο Αζθήζεηο. Άζθεζε 1. Πνηά ζα είλαη ηα πεξηερόκελα ηνπ πίλαθα Α κεηά ηελ εθηέιεζε ηνπ παξαθάησ αιγνξίζκνπ;

Μνλνδηάζηαηνη Πίλαθεο Λπκέλεο Αζθήζεηο. Άζθεζε 1. Πνηά ζα είλαη ηα πεξηερόκελα ηνπ πίλαθα Α κεηά ηελ εθηέιεζε ηνπ παξαθάησ αιγνξίζκνπ; Μνλνδηάζηαηνη Πίλαθεο Λπκέλεο Αζθήζεηο Άζθεζε 1. Πνηά ζα είλαη ηα πεξηερόκελα ηνπ πίλαθα Α κεηά ηελ εθηέιεζε ηνπ παξαθάησ αιγνξίζκνπ; Αιγόξηζκνο Γεκηνπξγία_Πίλαθα Γηα i από 1 κέρξη 5 Α[i] i Γηα i από 2

Διαβάστε περισσότερα

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12 ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα

Διαβάστε περισσότερα

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο : ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη

Διαβάστε περισσότερα

ΘΔΜΑ 1 ο Μονάδες 5,10,10

ΘΔΜΑ 1 ο Μονάδες 5,10,10 ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο

Διαβάστε περισσότερα

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ. Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,

Διαβάστε περισσότερα

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή

Διαβάστε περισσότερα

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KRNUGH Γηα λα θάλνπκε απινπνίεζε κηαο ινγηθήο ζπλάξηεζεο κε πίλαθα (ή ράξηε) Karnaugh αθνινπζνύκε ηα παξαθάησ βήκαηα:. Η ινγηθή ζπλάξηεζε ζα πξέπεη λα είλαη ζε πιήξε

Διαβάστε περισσότερα

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη

Διαβάστε περισσότερα

Δομή επανάλητηρ Ενηολή Όζο

Δομή επανάλητηρ Ενηολή Όζο Αιγόξηζκνη 2.2.7.4 Δομή επανάλητηρ Ενηολή Όζο Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Υ 1 Λίγνη αιγόξηζκνη ρξεζηκνπνηνύλ κόλν ηηο δνκέο αθνινπζίαο θαη επηινγήο. Σηα ξεαιηζηηθά πξνβιήκαηα ρξεηάδεηαη ζπλήζσο

Διαβάστε περισσότερα

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12 Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις) ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.

Διαβάστε περισσότερα

Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ

Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:

Διαβάστε περισσότερα

Β) Αλ x=12, ς=18 θαη σ=4 λα βξεζεί ζε θάζε πεξίπησζε ε ηηκή ηεο ινγηθήο κεηαβιεηήο Α:

Β) Αλ x=12, ς=18 θαη σ=4 λα βξεζεί ζε θάζε πεξίπησζε ε ηηκή ηεο ινγηθήο κεηαβιεηήο Α: 55 Υρόνια ΦΡΟΝΣΙΣΗΡΙΑ ΜΔΗ ΔΚΠΑΙΓΔΤΗ ΑΒΒΑΪΓΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΣΙ : Φιλολάοσ & Δκθανηίδοσ 26 : Σηλ.: 2107601470 ΓΙΑΓΧΝΙΜΑ : ΑΝΑΠΣΤΞΗ ΔΦΑΡΜΟΓΧΝ Γ ΛΤΚΔΙΟΤ 2015 ΘΕΜΑ 1 ο Α). Να γξάςεηε ζην ηεηξάδην ζαο ηνλ

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ (Δλδεηθηηθέο Απαληήζεηο) ΘΔΜΑ Α Α1. α. Σωζηό β. Λάζνο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη

Διαβάστε περισσότερα

Α Ν Α Π Σ Τ Ξ Ζ Δ Φ Α Ρ Μ Ο Γ Χ Ν Δ Π Ρ Ο Γ Ρ Α Μ Μ Α Σ Η Σ Η Κ Ο Π Δ Ρ Η Β Α Λ Λ Ο Ν Σ Δ Υ Ν Ο Λ Ο Γ Η Κ Ζ Κ Α Σ Δ Τ Θ Τ Ν Ζ Γ Λ Τ Κ Δ Η Ο Τ

Α Ν Α Π Σ Τ Ξ Ζ Δ Φ Α Ρ Μ Ο Γ Χ Ν Δ Π Ρ Ο Γ Ρ Α Μ Μ Α Σ Η Σ Η Κ Ο Π Δ Ρ Η Β Α Λ Λ Ο Ν Σ Δ Υ Ν Ο Λ Ο Γ Η Κ Ζ Κ Α Σ Δ Τ Θ Τ Ν Ζ Γ Λ Τ Κ Δ Η Ο Τ Α Π Α Ν Σ Ζ Δ Η Θ Δ Μ Α Σ Χ Ν Π Α Ν Δ Λ Λ Α Γ Η Κ Χ Ν Δ Ξ Δ Σ Α Δ Χ Ν 2 0 1 4 Α Ν Α Π Σ Τ Ξ Ζ Δ Φ Α Ρ Μ Ο Γ Χ Ν Δ Π Ρ Ο Γ Ρ Α Μ Μ Α Σ Η Σ Η Κ Ο Π Δ Ρ Η Β Α Λ Λ Ο Ν Σ Δ Υ Ν Ο Λ Ο Γ Η Κ Ζ Κ Α Σ Δ Τ Θ Τ Ν

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ιήμεο 11.00 Κάπνηνο άξρηζε λα δηαβάδεη έλα βηβιίν ηελ 1 ε Δεθεκβξίνπ. Κάζε κέξα δηάβαδε ηνλ ίδην αξηζκό ζειίδσλ

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη

Διαβάστε περισσότερα

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013 ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά):

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά): Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά): blogsschgr/iordaniskos/ Επιμελητής: Ιορδάνης Κόσογλου blogsschgr/pavtryfon/ Επιμελητής: Παύλος Τρύφων eisatoponblogspotgr/ Επιμελητής: Σωκράτης Ρωμανίδης

Διαβάστε περισσότερα

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν

Διαβάστε περισσότερα

ΓΗΑΓΩΝΗΜΑ ΣΖΝ ΠΛΖΡΟΦΟΡΗΚΖ

ΓΗΑΓΩΝΗΜΑ ΣΖΝ ΠΛΖΡΟΦΟΡΗΚΖ ΓΗΑΓΩΝΗΜΑ ΣΖΝ ΠΛΖΡΟΦΟΡΗΚΖ Ον/μο:.. Γ Λσκείοσ Ύλη:1-2Κεθάλαιο Σετν. Καη. 18-12-11 ΘΔΜΑ 1 ο Α. Αλαπηύμεηε ηηο παξαθάησ εξσηήζεηο. 1. Πνηεο θαηεγνξίεο ηειεζηώλ γλσξίδεηε; 2. Πνηνη ιόγνη καο νδήγεζαλ λα αλαζέζνπκε

Διαβάστε περισσότερα

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ

Διαβάστε περισσότερα

ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 133. Ύλη: Σσναρηήζεις-Σηαηιζηική Θέμα 1

ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 133. Ύλη: Σσναρηήζεις-Σηαηιζηική Θέμα 1 ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 1 Ον/μο:.. Γ Λσκείοσ Ύλη: Σσναρηήζεις-Σηαηιζηική Γεν. Παιδείας 9-1-1 Θέμα 1 Α. Αο ππνζέζνπκε όηη x 1,x,...,x k είλαη νη ηηκέο κηαο κεηαβιεηήο x πνπ αθνξά ηα άηνκα ελόο δείγκαηνο

Διαβάστε περισσότερα

ΑΞΝΙΡΖΟΗΔΠ ΔΜΔΡΑΠΔΗΠ Γ ΡΑΜΖΠ ΔΠΞΔΟΗΛΝ ΔΛΗΑΗΝ ΙΘΔΗΝ ΓΔΡΔΟΑ 7 ΗΝΛΗΝ ΑΔΞΞ

ΑΞΝΙΡΖΟΗΔΠ ΔΜΔΡΑΠΔΗΠ Γ ΡΑΜΖΠ ΔΠΞΔΟΗΛΝ ΔΛΗΑΗΝ ΙΘΔΗΝ ΓΔΡΔΟΑ 7 ΗΝΛΗΝ ΑΔΞΞ ΑΞΝΙΡΖΟΗΔΠ ΔΜΔΡΑΠΔΗΠ Γ ΡΑΜΖΠ ΔΠΞΔΟΗΛΝ ΔΛΗΑΗΝ ΙΘΔΗΝ ΓΔΡΔΟΑ 7 ΗΝΛΗΝ 2004 - ΑΔΞΞ ΘΔΚΑ 1ο Α. ηνλ πξνγξαµµαηηζµό ρξεζηµνπνηνύληαη δνµέο δεδνµέλσλ. 1. Ση είλαη δπλαµηθή δνµή δεδνµέλσλ; Μνλάδεο 3 2. Ση είλαη

Διαβάστε περισσότερα

2.4 Βαζικές ζσνιζηώζες/ ενηολές ενός αλγορίθμοσ

2.4 Βαζικές ζσνιζηώζες/ ενηολές ενός αλγορίθμοσ 2.4 Βαζικές ζσνιζηώζες/ ενηολές ενός αλγορίθμοσ 1 Τι καλείηαι ως «ηύπος δεδομένων»; ια ηα δεδνκέλα πνπ επεμεξγάδνληαη νη ππνινγηζηέο δελ είλαη ίδηα. Γηα λα κπνξέζεη ν ππνινγηζηήο λα ηα επεμεξγαζηεί, ηα

Διαβάστε περισσότερα

www.algorithmos.eu Κεθάλαιο 2

www.algorithmos.eu Κεθάλαιο 2 Κεθάλαιο 2 1. Ο αιγόξηζκνο είλαη απαξαίηεηνο κόλν γηα ηελ επίιπζε πξνβιεκάησλ Πιεξνθνξηθήο 2. Ο αιγόξηζκνο απνηειείηαη από έλα πεπεξαζκέλν ζύλνιν εληνιώλ 3. Ο αιγόξηζκνο κπνξεί λα πεξηιακβάλεη θαη εληνιέο

Διαβάστε περισσότερα

Αντισταθμιστική ανάλυση

Αντισταθμιστική ανάλυση Θεσξήζηε έλαλ αιγόξηζκν Α πνπ ρξεζηκνπνηεί κηα δνκή δεδνκέλσλ Γ : Καηά ηε δηάξθεηα εθηέιεζεο ηνπ Α ε Γ πξαγκαηνπνηεί κία αθνινπζία από πξάμεηο. Παξάδεηγκα: Θπκεζείηε ην πξόβιεκα ηεο εύξεζεο-έλσζεο Δίρακε

Διαβάστε περισσότερα

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2 ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.

Διαβάστε περισσότερα

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x) ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()

Διαβάστε περισσότερα

Δνκή Αθνινπζίαο. Αζθ1. Πνηά από ηα θάησ αιθαξηζκεηηθά είλαη απνδεθηά σο νλόκαηα κεηαβιεηώλ ζε έλαλ αιγόξηζκν

Δνκή Αθνινπζίαο. Αζθ1. Πνηά από ηα θάησ αιθαξηζκεηηθά είλαη απνδεθηά σο νλόκαηα κεηαβιεηώλ ζε έλαλ αιγόξηζκν Δνκή Αθνινπζίαο Αζθ1. Πνηά από ηα θάησ αιθαξηζκεηηθά είλαη απνδεθηά σο νλόκαηα κεηαβιεηώλ ζε έλαλ αιγόξηζκν i. Σηκή Απνδεθηό ii. Σηκή-1 iii. Σηκή_2 iv. Υαζξηνπζ v. Σηκή.δ vi. η Με απνδεθηόο ν ραξαθηήξαο

Διαβάστε περισσότερα

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 .1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε

Διαβάστε περισσότερα

Ενδεικτικά Θέματα Στατιστικής ΙΙ

Ενδεικτικά Θέματα Στατιστικής ΙΙ Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ: έζησ έλαο κηγαδηθόο αξηζκόο. αληίζηξνθνο ηνπ κηγαδηθνύ αξηζκνύ a b είλαη ν αξηζκόο Παπάδειγμα: έζησ.αληίζηξνθνο ηνπ αξηζκνύ : Μέηπο μιγαδικού απιθμού: αλ κέηξν δηαλύζκαηνο OM. b ή απόιπηε

Διαβάστε περισσότερα

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή

Διαβάστε περισσότερα

Λύση 1. Σωστό 2. Σωστό 3. Λάθος 4. Λάθος 5. Λάθος

Λύση 1. Σωστό 2. Σωστό 3. Λάθος 4. Λάθος 5. Λάθος ΞΑΛΔΙΙΖΛΗΔΠ ΔΜΔΡΑΠΔΗΠ Γ ΡΑΜΖΠ ΔΠΞΔΟΗΛΝ ΓΔΛΗΘΝ ΙΘΔΗΝ ΓΔΡΔΟΑ 23 ΚΑΪΝ 2011 ΔΜΔΡΑΕΝΚΔΛΝ ΚΑΘΖΚΑ: ΑΛΑΞΡΜΖ ΔΦΑΟΚΝΓΩΛ ΠΔ ΞΟΝΓΟΑΚΚΑΡΗΠΡΗΘΝ ΞΔΟΗΒΑΙΙΝΛ ΡΔΣΛΝΙΝΓΗΘΖΠ ΘΑΡΔΘΛΠΖΠ (ΘΘΙΝ ΞΙΖΟΝΦΝΟΗΘΖΠ ΘΑΗ ΞΖΟΔΠΗΩΛ) ΠΛΝΙΝ

Διαβάστε περισσότερα

Να μεταφέρετε τον συμπληρωμένο αλγόριθμο στο γραπτό σας (Μονάδες 10) Μονάδες 25

Να μεταφέρετε τον συμπληρωμένο αλγόριθμο στο γραπτό σας (Μονάδες 10) Μονάδες 25 ΘΕΜΑ Β Β1. Δίνονται οι δύο παρακάτω αλγόριθμοι. Αλγόριθμος 1 Διάβασε Α, Β Α Α + Β Β Α - Β Α Α - Β Εμφάνισε Α, Β Αλγόριθμος 2 Διάβασε Α, Β Χ Α Α Β Β Χ Εμφάνισε Α, Β Να απαντήσετε στο γραπτό σας στις παρακάτω

Διαβάστε περισσότερα

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε.

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε. ΑΝΟΙΓΜΑ ΝΔΑ ΥΡΗΗ 1. Γεκηνπξγείηε ηε λέα ρξήζε από ηελ επηινγή «Παξάκεηξνη/Παξάκεηξνη Δηαηξίαο/Γηαρείξηζε Δηαηξηώλ». Πιεθηξνινγείηε ηνλ θσδηθό ηεο εηαηξίαο ζαο θαη παηάηε Enter. Σηελ έλδεημε «Υξήζεηο» παηάηε

Διαβάστε περισσότερα

x x x x tan(2 x) x 2 2x x 1

x x x x tan(2 x) x 2 2x x 1 ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ 1. ρεδίαζε πλδπαζηηθνύ Κπθιώκαηνο Έλα ζπλδπαζηηθό θύθισκα (Κ) έρεη ηξεηο εηζόδνπο A, B θαη C θαη κία έμνδν Y Y=A B+AC Να θαηαζθεπάζεηε ην ράξηε Karnaugh. B 0

Διαβάστε περισσότερα

Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής

Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΣΟΜΟ Α Mάθημα 5: To παραγωγής σναρηήζεις κόζηοσς Η ζπλάξηεζε ζπλνιηθνύ θόζηνπο C FC VC Όπνπ FC= ην ζηαζεξό θόζηνο (ην θόζηνο γηα ηνλ ζηαζεξό παξαγσγηθό ζπληειεζηή) θαη VC= ην κεηαβιεηό

Διαβάστε περισσότερα

ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών

ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 1 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ

Διαβάστε περισσότερα

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 06 79 ΑΘΖΝΑ Τει. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou

Διαβάστε περισσότερα

Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ

Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage

Διαβάστε περισσότερα

4) Να γξάςεηε δηαδηθαζία (πξόγξακκα) ζηε Logo κε όλνκα θύθινο πνπ ζα ζρεδηάδεη έλα θύθιν. Λύζε Γηα θύθινο ζηθ επαλάιαβε 360 [κπ 1 δε 1] ηέινο

4) Να γξάςεηε δηαδηθαζία (πξόγξακκα) ζηε Logo κε όλνκα θύθινο πνπ ζα ζρεδηάδεη έλα θύθιν. Λύζε Γηα θύθινο ζηθ επαλάιαβε 360 [κπ 1 δε 1] ηέινο Λσμένες αζκήζεις ζηη Logo Στεδίαζη ζτημάηων με ηη τελώνα 1) Να γξάςεηε δηαδηθαζία (πξόγξακκα) ζηε Logo κε όλνκα ηεηξάγσλν πνπ ζα ζρεδηάδεη έλα ηεηξάγσλν κε πιεπξά 120. Γηα ηεηξάγσλν επαλάιαβε 4 [κπ 120

Διαβάστε περισσότερα

Γηζδηάζηαηνη Πίλαθεο

Γηζδηάζηαηνη Πίλαθεο Γηζδηάζηαηνη Πίλαθεο Άζθεζε 1. Να αλαπηύμεηε αιγόξηζκν ν νπνίνο κε δεδνκέλα ηα ζηνηρεία δπν δηζδηάζηαησλ πηλάθσλ αξηζκώλ ηδίσλ δηαζηάζεσλ ζα εμεηάδεη αλ νη πίλαθεο είλαη ίζνη, ελώ ζηελ πεξίπησζε πνπ δελ

Διαβάστε περισσότερα

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access) Έρνπκε απνζεθεύζεη κηα ζπιινγή αξρείσλ ζε κηα ζπλδεδεκέλε ιίζηα, όπνπ θάζε αξρείν έρεη κηα εηηθέηα ηαπηνπνίεζεο. Μηα εθαξκνγή παξάγεη κηα αθνινπζία από αηηήκαηα πξόζβαζεο ζηα αξρεία ηεο ιίζηαο. Γηα λα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και

Διαβάστε περισσότερα

1. (Epp 30) Γξάςηε ηελ άξλεζε ησλ παξαθάησ ινγηθώλ πξνηάζεσλ:

1. (Epp 30) Γξάςηε ηελ άξλεζε ησλ παξαθάησ ινγηθώλ πξνηάζεσλ: 1. (Epp 30) Γξάςηε ηελ άξλεζε ησλ παξαθάησ ινγηθώλ πξνηάζεσλ: Α) Ο Γηάλλεο έρεη ύςνο 1,80 κέηξα θαη δπγίδεη ηνπιάρηζηνλ 90 θηιά. Β) Τν ιεσθνξείν άξγεζε ή ην ξνιόη ηνπ Νίθνπ πήγαηλε πίζσ. Α) Ο Γηάλλεο δελ

Διαβάστε περισσότερα

ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά:

ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά: ΑΝΤΗΛΙΑΚΑ Η Μηκή θαη ν Νηίλνο αλαξσηήζεθαλ πνην αληειηαθό πξντόλ παξέρεη ηελ θαιύηεξε πξνζηαζία ζην δέξκα ηνπο. Τα αληειηαθά πξντόληα έρνπλ έλα δείθηε αληειηαθήο πξνζηαζίαο (SPF), ν νπνίνο δείρλεη πόζν

Διαβάστε περισσότερα

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις) ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα Ηοσνίοσ 9 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α.α) Οξηζκόο ζρνιηθνύ βηβιίνπ ζει 5. Έζησ Α έλα ππνζύλνιν ηνπ.

Διαβάστε περισσότερα

Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016

Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε

Διαβάστε περισσότερα

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε

Διαβάστε περισσότερα

2. ΑΚΗΗ Κατατώρηση βαθμών 10 υοιτητών σε 4 μαθήματα (τρήση αμσντικού προγραμματισμού) και εύρεση και εμυάνιση τοσ Μέσοσ Όροσ καθενός

2. ΑΚΗΗ Κατατώρηση βαθμών 10 υοιτητών σε 4 μαθήματα (τρήση αμσντικού προγραμματισμού) και εύρεση και εμυάνιση τοσ Μέσοσ Όροσ καθενός 1. ΑΚΗΗ Να γξαθηεί πξόγξακκα ζε C++ πνπ ζα δηαβάδεη 10 ζηεζαίεο δηακέηξνπο ζε πίλαθα πξαγκαηηθώλ αξηζκώλ (float). Οη ηηκέο ησλ ζηεζαίσλ δηακέηξσλ ζα εηζάγνληαη θάλνληαο ηνλ εμήο έιεγρν: Όζν νη ηηκέο ησλ

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου

ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου ΕΞΙΣΩΣΕΙΣ Α. Πρωτοβάθμιεσ Εξιςώςεισ. 1. Να λυκεί θ εξίςωςθ (x - 4) (x +5) x -5 5(x +1) - - = - - x 4 6. Να λυκεί θ εξίςωςθ x (x+1)+x(x+1)+x+1=0. Να λυκεί θ εξίςωςθ x(x -4)-x +x =0 4. Να λυκεί θ εξίςωςθ

Διαβάστε περισσότερα

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα

Διαβάστε περισσότερα

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr Τν εθπαηδεπηηθό πιηθό ηεο Φξνηηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαέκεηαη δσξεά απνθιεηζηηθά από ην ςεθηαθό ηόπν ηνπ schooltime.gr Η έα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ )α.

Διαβάστε περισσότερα

Διαηιμήζεις για Αιολικά Πάρκα. Κώδικες 28, 78 και 84

Διαηιμήζεις για Αιολικά Πάρκα. Κώδικες 28, 78 και 84 Διαηιμήζεις για Αιολικά Πάρκα Κώδικες 28, 78 και 84 Διαηιμήζεις για Αιολικά Πάρκα Οη Διαηιμήζεις για Αιολικά Πάρκα εθαξκόδνληαη γηα ηελ απνξξνθνύκελε ελέξγεηα από Αηνιηθά Πάξθα πνπ είλαη ζπλδεδεκέλα ζην

Διαβάστε περισσότερα

242 - Ειζαγωγή ζηοσς Η/Υ

242 - Ειζαγωγή ζηοσς Η/Υ 1 242 - Ειζαγωγή ζηοσς Η/Υ Τμήμα Μαθημαηικών, Πανεπιζηήμιο Ιωαννίνων Ακαδημαϊκό Έηος 2015-2016 Άρηια Α.Μ. (0-2-4-6-8) 2 Βαζικές αρτές ζσζηημαηικού και δομημένοσ προγραμμαηιζμού Δηαγξάκκαηα ξνήο πξνγξάκκαηνο

Διαβάστε περισσότερα

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε

Διαβάστε περισσότερα

(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.

(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W. ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη

Διαβάστε περισσότερα

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ: ΓΙΑΙΡΔΣΟΣΗΣΑ Οπιζμόρ 1: Έζηω,. Λέκε όηη ν δηαηξεί ηνλ (ζπκβνιηζκόο: ) αλ ππάξρεη c ηέηνην ώζηε c. Θεώπημα : Γηα,,m,α,b ηζρύνπλ: i), (άξα ) ii) 1, 1 iii) 0 iv) 0 0 v) m m m vi) α bm vii) α (άξα ) viii)

Διαβάστε περισσότερα

Αιγόξηζκνη Δληνιέο θαη δνκέο αιγνξίζκνπ. Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Τ. introcsprinciples.wordpress.com. Αζαλάζηνο Ι.

Αιγόξηζκνη Δληνιέο θαη δνκέο αιγνξίζκνπ. Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Τ. introcsprinciples.wordpress.com. Αζαλάζηνο Ι. Αιγόξηζκνη 2.2.7 Δληνιέο θαη δνκέο αιγνξίζκνπ Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Τ 1 Η δηαηύπσζε ελόο αιγνξίζκνπ ζηελ Φεπδνγιώζζα είλαη: Αλγόριθμος όνομα_αλγορίθμοσ Εντολές Τέλος όνομα_αλγορίθμοσ

Διαβάστε περισσότερα

Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ

Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ Κεθάλαιο 7 Πξνζθνξά ηνπ θιάδνπ 1 Προζθορά ανηαγωνιζηικού κλάδοσ Πώο πξέπεη λα ζπλδπαζηνύλ νη απνθάζεηο πξνζθνξάο ησλ πνιιώλ επηκέξνπο επηρεηξήζεσλ ελόο αληαγσληζηηθνύ θιάδνπ γηα λα βξνύκε ηελ θακπύιε πξνζθνξάο

Διαβάστε περισσότερα

Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα

Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Κοιμωμικά δίκτυα (multiplex network) Έρεηε ινγαξηαζκό ζην Facebook? Έρεηε ινγαξηαζκό ζην LinkedIn? Έρεηε ινγαξηαζκό ζην Twitter? Αεροπορικές γραμμές της Ευρώπης(multiplex

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα

Διαβάστε περισσότερα

Τν Πξόγξακκα ζα αλαθνηλσζεί, ακέζσο κεηά ηηο γηνξηέο ηνπ Πάζρα.

Τν Πξόγξακκα ζα αλαθνηλσζεί, ακέζσο κεηά ηηο γηνξηέο ηνπ Πάζρα. Οι Πανελλαδικέρ Δξεηάζειρ για ηην ειζαγωγή ζηην ηπιηοβάθμια εκπαίδεςζη θα ππαγμαηοποιηθούν ππιν ηιρ απολςηήπιερ ενδοζσολικέρ εξεηάζειρ ηων μαθηηών και ηων μαθηηπιών. Τν Πξόγξακκα ζα αλαθνηλσζεί, ακέζσο

Διαβάστε περισσότερα

5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη

5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη 5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη Σηα πιαίζηα ηεο πέκπηεο εξγαζηεξηαθήο άζθεζεο ζα ρξεζηκνπνηεζεί απνθιεηζηηθά ην πεξηβάιινλ αλάπηπμεο νινθιεξσκέλσλ θπθισκάησλ IDL-800 Digital

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii) . Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.

Διαβάστε περισσότερα

Ανάπηςξη Δθαπμογών ζε Ππογπαμμαηιζηικό Πεπιβάλλον

Ανάπηςξη Δθαπμογών ζε Ππογπαμμαηιζηικό Πεπιβάλλον Μάθημα 10 ( 2.4.2, 8.1, 8.1.1) Ανάπηςξη Δθαπμογών ζε Ππογπαμμαηιζηικό Πεπιβάλλον Δπγαζία 9 Α. Να βπεθεί η ηιμή πος θα έσει η μεηαβληηή Φ μεηά ηην εκηέλεζη καθεμιάρ από ηιρ παπακάηυ ενηολέρ εκσώπηζηρ. Οι

Διαβάστε περισσότερα

Δομή ππογπάμμαηορ ζηη C++

Δομή ππογπάμμαηορ ζηη C++ Δομή ππογπάμμαηορ ζηη C++ #include Πξσηόηππν ζπλάξηεζεο int main( ) Δειώζεηο κεηαβιεηώλ Εθηειέζηκεο εληνιέο Δήισζε ζπλάξηεζεο Δειώζεηο κεηαβιεηώλ Εθηειέζηκεο εληνιέο Η εληνιή #include δεηάεη

Διαβάστε περισσότερα

Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή. Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε.

Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή. Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε. Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε. Παξάκεηξνη πξνο αμηνιόγεζε Ννκνζεηηθή ζσξάθηζε Κνηλόο Σύιινγνο Ακνηβή Καηαγγειία/Λύζε

Διαβάστε περισσότερα

Λύζεης ΘΕΜΑΑ Α1. 1. Λ 2. Λ 3. Λ Α2. 1. Λ 2. Λ Λ 6.

Λύζεης ΘΕΜΑΑ Α1. 1. Λ 2. Λ 3. Λ Α2. 1. Λ 2. Λ Λ 6. Λύζεης ΘΕΜΑΑ Α.. Λ 2. Λ 3. Λ 4. 5. Α2.. Λ 2. Λ. 3. 4. 5. Λ 6. Α3. Γίλεηαη ηο παραθάηφ ηκήκα αιγορίζκοσ: ΓΗΑΓΗΚΑΗΑ ΓΗΑΓ(Α,Β) ΜΔΣΑΒΛΖΣΈ ΑΚΔΡΑΗΔ: Α,Β ΌΟ Α=3 ΔΠΑΝΑΛΑΒΔ Α Α+ Β Β- ΣΔΛΟ_ΓΗΑΓΗΚΑΗΑ Α4. α.ο

Διαβάστε περισσότερα

Κεθάιαην 20. Ελαχιστοποίηση του κόστους

Κεθάιαην 20. Ελαχιστοποίηση του κόστους Κεθάιαην 0 Ελαχιστοποίηση του κόστους Ειαρηζηνπνίεζε ηνπ θόζηνπο Μηα επηρείξεζε ειαρηζηνπνηεί ην θόζηνο ηεο αλ παξάγεη νπνηνδήπνηε δεδνκέλν επίπεδν πξντόληνο y 0 ζην κηθξόηεξν δπλαηό ζπλνιηθό θόζηνο. Τν

Διαβάστε περισσότερα