Περιγραφική στατιστική

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιγραφική στατιστική"

Transcript

1 Περιγραφική στατιστική Ιστογράμματα Mέτρα θέσης και διασποράς Κατανομές δεδομένων Γεωργία Σαλαντή Επικ. Καθηγήτρια Εργαστήριο Υγιεινής και Επιδημιολογίας

2 Στατιστική 1. Εκτιμήσεις Μεγέθη και διαστήματα εμπιστοσύνης 2. Έλεγχοι υποθέσεων Τεστ, P-values

3 Project Υπολογίστε το μέσο ύψος για τους Έλληνες μ Ε

4 Η στατιστική βασίζεται στην εκτίμηση Εκτίμηση του μέσου ύψους αληθινό μέσο ύψους του πληθυσμού Εκτίμηση (από ένα δείγμα)

5 Εκτίμηση m Αλήθεια m Εκτίμηση μέγιστης πιθανοφάνειας Παράμετρος (π.χ. μέσος μ Ε ) Μελέτη 1 Μελέτη 2 Μελέτη 3 Μελέτη 4

6 Εκτίμηση Πάρετε ένα δείγμα από 10 Έλληνες και μετρήστε το μέσο όρο τού ύψους τους Φυσικά, αυτό δεν είναι το μέσο ύψος όλων των Ελλήνων αλλά ελπίζουμε να είναι κάτι πολύ κοντά του μ Ε =194 cm!!

7 Εκτίμηση 1= 194 cm (10 μετρήσεις) Εκτίμηση 2= 180 cm (100 μετρήσεις) Αληθινό μ Ε = 178 cm (10.66 εκατομμύρια) Εκτίμηση 3= 177 cm (1000 μετρήσεις)

8 μετρήσεις Όσο πιο πολλούς ανθρώπους μετράμε, τόσο βεβαιότεροι είμαστε για την εκτίμηση του αληθινού ύψος του πληθυσμού μετρήσεις 1000 μετρήσεις Ο βαθμός της βεβαιότητας μας εκφράζεται στο διάστημα εμπιστοσύνης ΔΕ Confidence Interval

9 Η στατιστική ασχολείται Όχι με τις μετρήσεις μόνο, αλλά κυρίως με την αβεβαιότητα στις μετρήσεις!!!!!

10 Μέτρα διασποράς Τυπική απόκληση τ.α. (standard deviation=sd) Διασπορά ή διακύμανση (variance) Τυπικό σφάλμα τ.σ.(standard error, SE)

11 Εμπιστοσύνη και διασπορά Πόσο διασκορπισμένες είναι οι παρατηρήσεις; Διασπορά παρατηρήσεων = (τυπική απόκλιση)

12 Τυπική απόκλιση.. i 1,... N x i N i 1 ( x m) N 1 παρατήρηση μ μέσος όρος διασπορά.. i 2 2 παρατηρήσεις

13 Παράδειγμα Μετρήσαμε 5 άτομα 180,160,165,155,195 cm Μέσος= Τυπική απόκλιση= Διασπορά=

14 Παράδειγμα Μετρήσαμε 5 άτομα 180,160,165,155,195 cm Μέσος=171 Τυπική απόκλιση=16.36 Διασπορά=267.5

15 Εμπιστοσύνη και διασπορά Πόσο αβέβαιος είναι ο μέσος; Τυπικό σφάλμα μέσου Διασπορά μέσου=τ.σ 2 =τ.α 2 /N

16 SOS Για τον μέσο όρο Τυπικό σφάλμα μέσου τ.σ = τ.α/ N Διασπορά μέσου = τ.σ 2 Διασπορά μέσου = Διασπορά παρατηρήσεων/ν

17 Παράδειγμα Μετρήσαμε 5 άτομα 180,160,165,155,195 cm Μέσος=171 Διασπορά=267.5 Τυπικό σφάλμα μέσου=

18 Παράδειγμα Μετρήσαμε 5 άτομα 180,160,165,155,195 cm Μέσος=171 Διασπορά=267.5 Τυπικό σφάλμα μέσου=7.3

19 Διαστήματα εμπιστοσύνης

20 Ο χρυσός κανόνας για διαστήματα εμπιστοσύνης Για μεγέθη που ακολουθούν την κανονική κατανομή, το 95% διάστημα εμπιστοσύνης (95% Confidence Interval) για το κατι κατι ± 1.96 τ.σ.(κατι)

21 Παράδειγμα Μέτρηση 100 νεογέννητων μωρών από μητέρες που κάπνιζαν. Μέσο βάρος=2.7kgr και τ.α=1.1 Μέτρηση 90 νεογέννητων μωρών από μητέρες που δεν κάπνιζαν. Μέσο βάρος=3.1kgr και τ.α=1.2 Σχετίζεται το κάπνισμα με χαμηλότερο βάρος;

22 Παράδειγμα : διαστήματα εμπιστοσύνης Καπνιστές: τ.σ.=1.1/10= % ΔΕ: ( , ) 95% ΔΕ: (2.48, 2.92) Μη καπνιστές: τ.σ.=1.2/9.49= % ΔΕ: ( , ) 95% ΔΕ: (2.85, 3.35) Δεν υπάρχει διαφορά

23 Διάστημα εμπιστοσύνης Εκφράζει διακύμανση και μέγεθος δείγματος = το πιθανό διάστημα της αλήθειας (μ Ε ) -Πόσο πιθανό; -95% πιθανό Το δεδομένο διάστημα έχει πιθανότητα 95% να περιέχει την αλήθεια

24 Πάμε πίσω στο Project Μετά από 1000 μετρήσεις: Έλληνες: μ Ε =177cm, 95% ΔΕ = [176,178] Σουηδοί: μ Σ =183cm, 95% ΔΕ = [182,184] Ποιοι είναι πιο ψηλοί;

25 Διάστημα εμπιστοσύνης μέσου (184cm,186cm) 95% των Ελλήνων έχουν ύψος μεταξύ (184,186) Ο μέσος Έλληνας έχει ύψος μεταξύ (184,186) Κατά μέσο όρο ο ελληνικός πληθυσμός έχει μέσο ύψος μεταξύ (184,186)

26 Διάστημα εμπιστοσύνης και μέγεθος δείγματος Διάστημα εμπιστοσύνης και εμπιστοσύνη μέσος σ.α. δείγμα εμπιστοσύνη Δ.Ε % % % Διάστημα εμπιστοσύνης και μέγεθος δείγματος μέσος σ.α. δείγμα εμπιστοσύνη Δ.Ε % % %

27 Ιστογράμματα Διάγραμμα τιμών συχνότητας (=πιθανότητας) Histogram

28 Ιστόγραμμα συχνοτήτων του βάρους των ατόμων σε ένα χωριό

29 Συχνότητες Διάστημα τιμών Τιμή Απόλυτη συχνότητα Σχετική συχνότητα Απόλυτη αθροιστική συχνότητα Σχετική αθροιστική συχνότητα

30 Ιστόγραμμα συχνοτήτων του βάρους των ατόμων σε ένα χωριό

31 Κατανομές Το ιστόγραμμα ίσως να μοιάζει με κάποια από τις θεωρητικές κατανομές Συνεχείς κατανομές: Κανονική t student

32 Κανονική κατανομή Ν(μ,σ 2 ) : μέσος, διασπορά Όσο πιο μεγάλο το σ 2, τόσο πιο απλωτή είναι η κατανομή Η τυπική κανονική κατανομή είναι Ν(0,1) Πολλά μεγέθη ακολουθούν την κανονική κατανομή (βάρος, ύψος, πίεση )

33 Κανονική κατανομή

34 Το διάστημα μ±σ περιλαμβάνει το 68.2% των παρατηρήσεων Το διάστημα μ±2σ περιλαμβάνει το 95.4% των παρατηρήσεων Το διάστημα μ±1.96σ περιλαμβάνει το 95 % των παρατηρήσεων

35 t κατανομή (student) Για μεγάλο μέγεθος δείγματος η κατανομή t είναι ίδια με την κανονική Μέσος = 0 Όσο πιο πολλοί βαθμοί ελευθερίας, τόσο πιο «ψιλόλιγνη» είναι

36

37 Περιγραφική στατιστική δεδομένων Για δεδομένα που ακολουθούν συμμετρική κατανομή (κανονική, t) για να τα περιγράψουμε χρησιμοποιούμε Θέση: Μέσος Αβεβαιότητα: διασπορά τυπική απόκλιση

38 Μέσος=48.4 τ.α= Βάρος

39 Μέσος=48.4 τ.α=16.2 Για τις παρατηρήσεις % CI: μέσος+/- 1.96τ.α % των παρατηρήσεων Βάρος

40 Μέσος=48.4 τ.α=16.2 Για τον μέσο (πραγματικό) % ΔΕ του μέσου Βάρος

41 Μη συμμετρική κατανομή δεδομένων Μπορεί να δημιουργηθεί από ακραίες παρατηρήσεις Έστω ότι υπάρχει και ένας παχύσαρκος 150 kgr Η κατανομή θα αποκτήσει ασυμμετρία Ο μέσος επηρεάζεται από ακραίες τιμές και δεν αντιπροσωπεύει καλά τα δεδομένα

42 Μέσος = 48 τ.α = 16 Διάμεσος = Μέσος = 49 τ.α = 19 Διάμεσος = Μέσος = 52 τ.α = 32 Διάμεσος = Βάρος

43 Διάμεσος Η παρατήρηση για την οποία 50% των τιμών είναι μικρότερες της, και 50% είναι μεγαλύτερες της Για συμμετρικές κατανομές μέσος=διάμεσος

44 Ασύμμετρες κατανομές Τις περιγράφουμε με την διάμεσο και το ενδοτεταρτημοριακό εύρος

45 0.020 Ενδ. Εύρος (35, 62) Διάμεσος Μέσος = 52 τ.α = 32 Διάμεσος = Βάρος

46 Box-plot

47 Συμμετρικά δεδομένα: πως τα κρίνουμε; Ο μέσος και ο διάμεσος συμπίπτουν Το ιστόγραμμα και το box-plot είναι συμμετρικά

48 Συμμετρικά/κανονικά δεδομένα: Για θετικά μεγέθη πως τα κρίνουμε; μέσος < τ.α 1.64 ΑΣΥΜΜΕΤΡΙΑ Για μεγέθη που έχουν ελάχιστο ή μέγιστο αντίστοιχα μέσος ελάχιστο < τ.α 2 ΑΣΥΜΜΕΤΡΙΑ

49 Μέτρα θέσης Συμμετρικά δεδομένα: Μέσος Ασύμμετρα δεδομένα: Διάμεσος

50 Μέτρα διασποράς Συμμετρικά δεδομένα: Τυπική απόκλιση, Διασπορά (=διακύμανση), τυπικό σφάλμα μέσου, διαστήματα εμπιστοσύνης Ασύμμετρα δεδομένα: Ενδοτεταρτημοριακό εύρος

51 Ο χρυσός κανόνας για διαστήματα εμπιστοσύνης Για μεγέθη που ακολουθούν την κανονική κατανομή, το 95% διάστημα εμπιστοσύνης (95% Confidence Interval) για το κατι κατι ± 1.96 τ.σ.(κατι)

52 Κατανομή Χ 2 Χ 2 με κ βαθμούς ελευθερίας (degrees of freedom) Όσο πιο πολλοί βαθμοί ελευθερίας, τόσο πιο «κοντή» η κατανομή

53

54 t κατανομή (student) Για μεγάλο μέγεθος δείγματος η κατανομή t είναι ίδια με την κανονική Μέσος = 0 Όσο πιο πολλοί βαθμοί ελευθερίας, τόσο πιο «ψιλόλιγνη» είναι

55

56 F κατανομή Έχει ένα ζευγάρι βαθμών ελευθερίας d1, d2

57

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008 Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 8 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 9.9.8. [] Μια βιομηχανία τροφίμων προμηθεύεται νωπά κοτόπουλα από τρεις διαφορετικούς παραγωγούς Α, Β, Γ. Το % των κοτόπουλων

Διαβάστε περισσότερα

Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Μέρος 1: Βασικές έννοιες Μια σύντομη εισαγωγή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 1 Τι είναι η Στατιστική;

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 1 Τι είναι η Στατιστική; ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΚΛΙΝΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ VS ΣΤΑΤΙΣΤΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ Ι 1. Η στατιστική σημαντικότητα αντανακλά την επίδραση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Πίνακας-1 Επίπεδο εκπαίδευσης πατέρα 2

Πίνακας-1 Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε αναφέρει, στόχος της Περιγραφικής Στατιστικής είναι, «η ανάπτυξη μεθόδων για τη συνοπτική και την αποτελεσματική παρουσίαση των δεδομένων» Για το σκοπό αυτό, έχουν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Έλεγχοι Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Το ρυθμό απελευθέρωσης του φαρμάκου από το σκεύασμα Έλεγχο ταυτότητας και καθαρότητας της πρώτης ύλης και των εκδόχων( βάση προδιαγραφών)

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 2 Περιγραφικές Τεχνικές

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 2 Περιγραφικές Τεχνικές ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Το κάπνισμα στην Ελλάδα

Το κάπνισμα στην Ελλάδα Εθνική Μελέτη Νοσηρότητας και Παραγόντων Κινδύνου (Ε.ΜΕ.ΝΟ.) Το κάπνισμα στην Ελλάδα Καρακατσάνη Άννα Αναπληρώτρια Καθηγήτρια Πνευμονολογίας Β Πνευμονολογική Κλινική ΕΚΠΑ ΠΓΝ«ΑΤΤΙΚΟΝ» Ε.ΜΕ.ΝΟ Είναι η πρώτη

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ SPSS 15

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ SPSS 15 ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ SPSS 15 STTISTICL PCKGE for the SOCIL SCIENCES ΤΣΑΓΡΗΣ ΜΙΧΑΗΛ BSc in Statistics Email: mtsagris@yahoo.gr ΑΘΗΝΑ 2008 2 Περιεχόμενα 1.1 Σύντομη εισαγωγή στη Στατιστική...4

Διαβάστε περισσότερα

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39 41 Περιεχόμενα Ξενάγηση στο βιβλίο 25 Ξενάγηση στο συνοδευτικό CD 27 Εισαγωγή 29 Ευχαριστίες 33 Οι βασικές διαφορές μεταξύ του SPSS 16 και των προηγούμενων εκδόσεων 35 Μέρος 1 Εισαγωγή στο SPSS 37 1 Βασικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμηματικό e-mal : dap_ode@yahoo.gr www.dap-pape.gr

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

2013-14 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ. http://cutemaths.wordpress.

2013-14 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ. http://cutemaths.wordpress. 3-4 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ Βαγγέλης Α Νικολακάκης Μαθηματικός ttp://cutemats.wordpress.com/ ΛΙΓΑ ΛΟΓΙΑ Η παρούσα εργασία

Διαβάστε περισσότερα

Σ Ε Μ Ι Ν Α Ρ Ι Ο ΤΙΤΛΟΣ ΕΡΓΑΣΙΑΣ: ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΧΡΗΣΤΟΥ ΚΩΝΣΤΑΝΙΝΟΣ. Υπεύθυνες Εκπόνησης Εργασίας ΟΝΟΜΑ: ΦΩΤΕΙΝΗ ΕΠΩΝΥΜΟ: ΛΙΟΣΗ Α.

Σ Ε Μ Ι Ν Α Ρ Ι Ο ΤΙΤΛΟΣ ΕΡΓΑΣΙΑΣ: ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΧΡΗΣΤΟΥ ΚΩΝΣΤΑΝΙΝΟΣ. Υπεύθυνες Εκπόνησης Εργασίας ΟΝΟΜΑ: ΦΩΤΕΙΝΗ ΕΠΩΝΥΜΟ: ΛΙΟΣΗ Α. Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Κ Ρ Η Τ Η Σ Π Α Ι Δ Α Γ Ω Γ Ι Κ Ο Τ Μ Η Μ Α Δ Η Μ Ο Τ Ι Κ Η Σ Ε Κ Π Α Ι Δ Ε Υ Σ Η Σ Σ Ε Μ Ι Ν Α Ρ Ι Ο ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ (Β06Σ03) ΤΙΤΛΟΣ

Διαβάστε περισσότερα

.. .. . .. . ... ), ς, . αυτά, .. A) , . .. . στον επιπολασμό (prevalence) και στη σοβαρότητα απώλειας ακοής σε . .... . . Γράφημα 4: Μέση ηλικία ασθενών

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9

Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9 ΚΕΦΑΛΑΙΟ 9 Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Η κανονική κατανομή ανακαλύφθηκε γύρω στο 720 από τον Abraham De Moivre στην προσπάθειά του να διαμορφώσει Μαθηματικά που να εξηγούν την τυχαιότητα. Γύρω στο 870, ο Βέλγος

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100 1. (Εξεταστ. Φεβ. 2004) Μια µεγάλη εταιρία θέλει να εξετάσει εάν το εκπαιδευτικό πρόγραµµα που ακολουθήσανε οι 100 πωλητές της ήταν αποτελεσµατικό (δηλαδή εάν αυξήθηκαν οι πωλήσεις). Οι δύο παρακάτω πίνακες

Διαβάστε περισσότερα

Περιγραφική απεικόνιση μη-στάσιμων χρηματοοικονομικών χρονοσειρών

Περιγραφική απεικόνιση μη-στάσιμων χρηματοοικονομικών χρονοσειρών Περιγραφική απεικόνιση μη-στάσιμων χρηματοοικονομικών χρονοσειρών Xωρικές κατανομές και χρόνος παραμονής Δημήτριος Θωμάκος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πελοποννήσου Περίληψη Στο άρθρο

Διαβάστε περισσότερα

Η ελληνική κοινή γνώμη απέναντι στην υπόθεση της Χρυσής Αυγής & το ρόλο της τηλεόρασης. Οκτώβριος 2013

Η ελληνική κοινή γνώμη απέναντι στην υπόθεση της Χρυσής Αυγής & το ρόλο της τηλεόρασης. Οκτώβριος 2013 Η ελληνική κοινή γνώμη απέναντι στην υπόθεση της Χρυσής Αυγής & το ρόλο της τηλεόρασης Οκτώβριος 2013 ΓΝΩΜΗ ΓΙΑ ΤΗΝ ΠΡΟΦΥΛΑΚΙΣΗ ΤΟΥ Γ.Γ. ΤΗΣ ΧΡΥΣΗΣ ΑΥΓΗΣ, Ν.ΜΙΧΑΛΟΛΙΑΚΟΥ Όπως ίσως γνωρίζετε ή έχετε ακούσει,

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις. Μια μηχανή εμφιάλωσης κρασιού γεμίζει φιάλες του μισού κιλού με ποσότητα κρασιού η οποία είναι κανονική τυχαία μεταβλητή

Διαβάστε περισσότερα

22 Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας

22 Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας Χρήστος Κατσάνος και Νικόλαος Αβούρης Πανεπιστήµιο Πατρών Σκοπός Το παρόν κεφάλαιο, συµπληρωµατικό του κυρίως υλικού του βιβλίου, περιλαµβάνει

Διαβάστε περισσότερα

Σημειώσεις Στατιστικής

Σημειώσεις Στατιστικής + εφαρμογή με το LibreOffice Calc και το R Project Επαμεινώνδας Διαμαντόπουλος Νοέμβριος 0, Ξάνθη. Επικοινωνία : epdiamantopoulos@yahoo.gr Ιστοσελίδα : http://users.sch.gr/epdiaman/! Κατάλογος περιεχομένων

Διαβάστε περισσότερα

ISBN 978-960-456-278-7

ISBN 978-960-456-278-7 ISBN 978-960-456-278-7 Copyright: Δ. Iωαννίδης, Eκδόσεις Zήτη, Μάϊος 2011, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται κατά τις διατάξεις του Eλληνικού νόμου (N.2121/1993 όπως έχει

Διαβάστε περισσότερα

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 Ηλίας Αθανασιάδης Αναπληρωτής καθηγητής Π.Τ..Ε. Παν. Αιγαίου 1.8. Αθροιστική κα τα νο μή Σε ορισμένες κατανομές παρουσιάζει ενδιαφέρον να παρακολουθούμε πώς

Διαβάστε περισσότερα

Μεθοδολογία Εκπαιδευτικής Έρευνας Nic_nicolaou@hotmail.com www.nikolas-nikolaou.net

Μεθοδολογία Εκπαιδευτικής Έρευνας Nic_nicolaou@hotmail.com www.nikolas-nikolaou.net 1 Μεθοδολογία Εκπαιδευτικής Έρευνας Nic_nicolaou@hotmail.com www.nikolas-nikolaou.net Ορισμοί Research is the systematic, controlled, empirical and critical investigation of hypothetical propositions about

Διαβάστε περισσότερα

Εμπιστοσύνη στους Θεσμούς, 2008

Εμπιστοσύνη στους Θεσμούς, 2008 Εμπιστοσύνη στους Θεσμούς, 2008 Αθήνα 17- Δεκεμβρίου 2008 0875/ Διάγραμμα 1 Η ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΕΡΕΥΝΑΣ ΕΤΑΙΡΕΙΑ: ΑΝΑΘΕΣΗ: PUBLIC ISSUE(Α.Μ. ΕΣΡ: 8) Μέλος ESOMAR, WAPOR, ΣΕΔΕΑ / ΠΕΣΣ ΚΑΘΗΜΕΡΙΝΗ ΤΗΣ ΚΥΡΙΑΚΗΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

1.1. Η Χρησιμότητα της Στατιστικής

1.1. Η Χρησιμότητα της Στατιστικής ε ν ό τ η τ α 1 1.1. Η Χρησιμότητα της Στατιστικής Οι εφαρμογές των μεθόδων της στατιστικής είναι ευρείες. Πριν την αναφορά μας για τη χρησιμότητα της στατιστικής, είναι σκόπιμο να παραθέσουμε τους παρακάτω

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ .Φουσκάκης- Περιγραφική Στατιστική ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Οι µεταβλητές µιας στατιστικής έρευνας αποτελούνται συνήθως από ένα µεγάλο πλήθος στοιχείων που αφορούν τον πληθυσµό που µας ενδιαφέρει. Για να

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(55) Κορρέ Πελαγία(580) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εαρινό εξάμηνο 0 Ρέθυμνο, 5/6/0 ΠΕΡΙΕΧΟΜΕΝΑ:. Εισαγωγή.

Διαβάστε περισσότερα

Mεταπτυχιακά Εκπαιδευτικά Σεμινάρια Ακαδημαϊκής Περιόδου 2013-14. Θεματικές Ενότητες

Mεταπτυχιακά Εκπαιδευτικά Σεμινάρια Ακαδημαϊκής Περιόδου 2013-14. Θεματικές Ενότητες ΕΛΛΗΝΙΚΟ ΕΠΙΣΤΗΜΟΝΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΟΙΚΟΝΟΜΙΚΗΣ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ & ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ www. inoek.gr Email: info@inoek.gr Mεταπτυχιακά Εκπαιδευτικά Σεμινάρια Ακαδημαϊκής Περιόδου 2013-14 1 ον. Εισαγωγή στην Οικονομική

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ ΙΒΜ SPSS 22

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ ΙΒΜ SPSS 22 ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ ΙΒΜ SPSS 22 STATISTICAL PACKAGE for the SOCIAL SCIENCES ΤΣΑΓΡΗΣ ΜΙΧΑΗΛ Email: mtsagris@yahoo.gr ΑΘΗΝΑ και Nottingham Μάρτιος 2014 2 Περιεχόμενα Ένας μικρός πρόλογος...

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 22559 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1561 17 Αυγούστου 2007 ΑΠΟΦΑΣΕΙΣ Αριθμ. 85038/Γ2 Αναλυτικό Πρόγραμμα Σπουδών του Τομέα Οικονομικών και Διοικητικών Υπηρεσιών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΕΦΟΔΙΑΣΜΟΥ ΠΑΡΑΡΤΗΜΑ ΘΗΒΑΣ ΤΕΙ ΧΑΛΚΙΔΑΣ Πέμπτη, 21/2/2013 ΑΝΑΚΟΙΝΩΣΗ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΕΦΟΔΙΑΣΜΟΥ ΠΑΡΑΡΤΗΜΑ ΘΗΒΑΣ ΤΕΙ ΧΑΛΚΙΔΑΣ Πέμπτη, 21/2/2013 ΑΝΑΚΟΙΝΩΣΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΕΦΟΔΙΑΣΜΟΥ ΠΑΡΑΡΤΗΜΑ ΘΗΒΑΣ ΤΕΙ ΧΑΛΚΙΔΑΣ Πέμπτη, 21/2/2013 ΑΝΑΚΟΙΝΩΣΗ Οι επι πτυχίω φοιτητές (με αριθμό μητρώου ΣΕΒ08 ή παλαιότερο, δηλαδή που διανύουν το 8 ο εξάμηνο ή μεγαλύτερο

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ Μαρία Γιαννακούρου ΤΕΙ Αθηνών, Σχολή Τεχνολογίας Τροφίμων και Διατροφής, Τμήμα Τεχνολογίας Τροφίμων Νικόλαος Γ. Στοφόρος Γεωπονικό

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΥΛΗ ΕΞΕΤΑΣΕΩΝ klzxcvλοπbnαmqwertyuiopasdfghjklz ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ xcvbnmσγqwφertyuioσδφpγρaηsόρ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική Ο μεγάλος Γάλλος μαθηματικός Laplace έγραψε ότι οι Πιθανότητες δεν είναι τίποτα άλλο παρά η μετατροπή της κοινής λογικής σε μαθηματικές εκφράσεις. Η χρήση

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

Πανελλήνια έρευνα για τη χρήση εξαρτησιογόνων ουσιών στους μαθητές Έρευνα ESPAD 2011 Αποτελέσματα για το Ν. Γρεβενών

Πανελλήνια έρευνα για τη χρήση εξαρτησιογόνων ουσιών στους μαθητές Έρευνα ESPAD 2011 Αποτελέσματα για το Ν. Γρεβενών Ερευνητικό Πανεπιστημιακό Ινστιτούτο Ψυχικής Υγιεινής Πανελλήνια έρευνα για τη χρήση εξαρτησιογόνων ουσιών στους μαθητές Έρευνα ESPAD 2011 Αποτελέσματα για το Ν. Γρεβενών Σε συνεργασία με το Κέντρο Πρόληψης

Διαβάστε περισσότερα

ιαχρονική παρακολούθηση της υγείας των Ελληνοπαίδων από τη γέννηση ως τα 18 χρόνια Χρύσα Μπακούλα Καθηγήτρια Παιδιατρικής Πανεπιστηµίου Αθηνών

ιαχρονική παρακολούθηση της υγείας των Ελληνοπαίδων από τη γέννηση ως τα 18 χρόνια Χρύσα Μπακούλα Καθηγήτρια Παιδιατρικής Πανεπιστηµίου Αθηνών ιαχρονική παρακολούθηση της υγείας των Ελληνοπαίδων από τη γέννηση ως τα 18 χρόνια Χρύσα Μπακούλα Καθηγήτρια Παιδιατρικής Πανεπιστηµίου Αθηνών Η εκκίνηση... Α Πανελλήνια Περιγεννητική Έρευνα όλοι ανεξαιρέτως

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

8ο Φροντιστηριο ΗΥ217

8ο Φροντιστηριο ΗΥ217 8ο Φροντιστηριο ΗΥ217 Επιµέλεια : Γ. Καφεντζής 10 Ιανουαρίου 2014 Ασκηση 0.1 Εστω ότι η τ.µ. X ακολουθεί Γκαουσιανή κατανοµή µε µέση τιµή 10 και διασπορά σ 2 = 4, δηλαδή X N( 10, 4). Να υπολογίσετε τις

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Μακροοικονομικές προβλέψεις για την κυπριακή οικονομία

Μακροοικονομικές προβλέψεις για την κυπριακή οικονομία Μακροοικονομικές προβλέψεις για την κυπριακή οικονομία Οι μακροοικονομικές προβλέψεις για την ανάπτυξη της κυπριακής οικονομίας έχουν αναθεωρηθεί σημαντικά προς τα κάτω τόσο για το 2012 όσο και για το

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ

ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ Α. ΕΜΒΑΛΩΤΗΣ Α. ΚΑΤΣΗΣ Γ. ΣΙΔΕΡΙΔΗΣ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ Α ΕΚΔΟΣΗ ΙΩΑΝΝΙΝΑ 2006 Α. Εμβαλωτής: Επίκουρος Καθηγητής Πανεπιστημίου Ιωαννίνων Α. Κατσής: Επίκουρος Καθηγητής Πανεπιστημίου

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΠΕΙΡΑΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΕΙΡΑΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΗΜΗΤΡΙΟΣ Π. ΚΟΜΙΛΗΣ Λέκτορας ΞΑΝΘΗ 6 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 3. Επιστημονική

Διαβάστε περισσότερα