Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή"

Transcript

1 Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

2 Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά είδη αντικαταθλιπτικών Την τιμή ενός μεγέθους και αν αυτή ισούται με μια θεωρητική τιμή Η διαφορά δύο μέσων είναι 0 Το RR είναι 1

3 Μηδενική υπόθεση Μία υπόθεση που θέλουμε να ελέγξουμε Αναφέρεται σε κάποια χαρακτηριστικά των δειγμάτων που εξετάζουμε εκφρασμένα σε στατιστικές ποσότητες Η 0 : M 1 =M 2 (η μέση αρτηριακή πίεση είναι ίδια σε δύο ομάδες) Η 1 : M 1 >M 2 Η 1 : M 1 <M 2 Η 1 : M 1 >M 2 ή M 1 <M 2

4 Ποιο τέστ θα χρησιμοποιήσω; Συνεχή ή διχότομα δεδομένα; Αν είναι συνεχή, ακολουθούν κανονική κατανομή ή όχι; Για κανονική κατανομή: z-test, t-test Για μη κανονική κατανομή: Mann Whitney test, Wilcoxon test Για διχότομα δεδομένα: Χ 2 test, Fisher test. McNemar test

5 Τεστ για συνεχή δεδομένα

6 Παράδειγμα Σε ένα δείγμα 100 ατόμων 50 ετών μετρήθηκε η συστολική πίεση Μέση τιμή (δείγματος) μ =124 mmhg SD =15 mmhg (υποθέτουμε ότι είναι ίδια στον πληθυσμό και το δείγμα ) α =120 Είναι πολύ υψηλά αυτά τα επίπεδα; Δεν μπορούμε να πούμε αν το 124 είναι μεγάλο σε σχέση με το 120, και γι αυτό θα μετασχηματίσουμε τα δεδομένα σε ένα μέγεθος για το οποίο μπορούμε να αποφανθούμε εαν είναι μεγάλο ή μικρό Μετασχηματισμός Ζ

7 Z-test Μέση τιμή του πληθυσμού Μ Μέση τιμή του δείγματος μ Μέγεθος δείγματος n Tυπική απόκλιση SD H 0 : M=α H 1 : α>μ ή α<μ

8 Μετασχηματισμός Ζ μ-α μ-α z= SD SE n Η τιμή του z ακολουθεί κανονική κατανομή με μέσο 0 και SD 1 και άρα ξέρουμε αν είναι μεγάλη ή μικρή

9 Παράδειγμα Σε ένα δείγμα 100 ατόμων 50 ετών μετρήθηκε η συστολική πίεση Μέση τιμή (δείγματος) μ =124 mmhg SD =15 mmhg (υποθέτουμε ότι είναι ίδια στον πληθυσμό και το δείγμα ) α =120 Θα μετασχηματίσουμε τα δεδομένα σε ένα μέγεθος για το οποίο μπορούμε να αποφανθούμε εαν είναι μεγάλο ή μικρό Η 0 :M=α, η μέση πίεση στο δείγμα δεν διαφέρει από αυτή στον γενικό πληθυσμό

10 Παράδειγμα: υπολογισμός Ζ-test z Το 2.67 θα το συγκρίνουμε με την πρότυπη κανονική κατανομή

11 Πρότυπη κανονική κατανομή Ν(0,1) Ακραίες τιμές Ακραίες τιμές 0.1 Εμβαδόν: πιθανότητα 2.5 % Εμβαδόν: πιθανότητα 2.5 %

12 Ζ-τεστ Εάν η τιμή του z είναι μεγαλύτερη του 1.96 σημαίνει οτι έιναι ακραία ή μεγάλη τιμή Άρα το εύρημα είναι «στατιστικά σημαντικό» Άρα απορρίπτω την μηδενική υπόθεση α=μ Συνεπώς, το 124 δεν είναι στατιστικώς συγκρίσημο με το 120

13 P-value του z-test Βρίκαμε z=2.67 P-value είναι η πιθανότητα να βρω μιά ακόμα πιο ακραία τιμή Η p-value υπολογίζεται σαν το εμβδαδόν που βρίσκεται πάνω απο z και κάτω απο -z στην κανονική κατανομή Εμβαδόν: πιθανότητα για z=2.67 η p-value είναι 0.8% 2*(1-NORMSDIST(z)) (στο excel) Εμβαδόν: πιθανότητα

14 P-value: ερμηνεία Εάν επαναλάβω αυτή τη μέτρηση σε άλλα 100 άτομα θα βρω το ίδιο; Εάν το επαναλάβω πολλές φορές (πχ 1000 φορές) σε δείγματα του ιδίου μεγέθους, πόσες φορές θα βρω κάτι τόσο ακραίο όπως μέση πίεση 124; x/1000 φορές = p-value p-value=το εμβαδόν στην πρότυπη κανονική κατανομή που είναι έξω από το διάστημα (-z,z)

15 P-value: ερμηνεία Εάν η τιμή του δείγματος δεν είναι στο 5% των πιο ακραίων τιμών, τότε το εύρημα θεωρείται στατιστικά μη σημαντικό και δεν απορρίπτουμε την Η 0 Εάν είναι στο 5%, τότε απορρίπτουμε την Η 0 P-value<0.05: απορρίπτουμε την Η 0, το εύρημα που έχουμε (δηλ. μια μέση πίεση 124) δεν μπορεί να εξηγηθεί «από την τύχη»

16 Πώς υπολογίζουμε p-values 2*(1-NORMSDIST(z)) (στο excel) 2*(1-NORMSDIST(2.67)) = Αφού η p-value είναι μικρότερη του 5% λέμε οτι έχουμε ένα «στατιστικά σημαντικό» αποτέλεσμα Απορρίπτουμε τη μηδενική υπόθεση

17 Αμφίπλευρα και μονόπλευρα τεστ Τα μονόπλευρα τεστ κοιτάνε μόνο ένα απο τα δύο άκρα της κατανομής H 0 : α=μ με H 1 : α>μ ή α<μ z=1.7, p-value=0.09 στατιστικά μή σημαντικό H 0 : α=μ με H 1 : α>μ z=1.7, p-value=0.045 στατιστικά σημαντικό Τα αμφίπλευρα τεστ είναι πιο συντηρητικά (= δεν απορρίπτουν τόσο εύκολα τη μηδενική υπόθεση)

18 Ζ-τεστ: Προϋποθέσεις εφαρμογής Η κατανομή του μεγέθους που μετράμε πρέπει να είναι κανονική Η τυπική απόκλιση στον πληθυσμό να είναι η ίδια με αυτή στο δείγμα Πχ στο παράδειγμα ήταν SD=15 που είναι μάλλον μικρή τ.α. Ποιο θα ήταν το αποτέλεσμα του τεστ αν η SD ήταν μεγαλύτερη;

19 Παράδειγμα Υπάρχει διαφορά οσον αφορά στον πόνο ανάμεσα στις δύο μεθόδους; Πόνος Ναι Όχι Σύνολο Ενδοσκοπική Ανοιχτή Μηδενική υπόθεση H 0 : RR=1 ή lnrr=0

20 Παράδειγμα: λύση 10 RR= 100 =0.71, lnrr=ln(0.71)= μ-μ z= 0.87 SE SE lnrr = P-value για z=0.87 είναι 2*(1-NORMSDIST(0.87))=0.38. Άρα το έυρημα είναι στατιστικά μή σημαντικό και δεν μπορούμε να ισχυριστούμε οτι υπάρχει διαφορά μεταξύ των δύο ομάδων Δεν απορρίπτουμε τη μηδενική υπόθεση Το 95% ΔΕ για το RR ήταν (0.33, 1.52)

21 t-test για ανεξάρτητα δείγματα Όταν θέλουμε να συγκρίνουμε δυο μέσους από δύο δείγματα Προϋπόθεση: ότι οι δύο πληθυσμοί από όπου προέρχονται τα δείγματα έχουν τις ίδιες διασπορές και ότι τα δείγματα προέρχονται από την κανονική κατανομή Η 0 : Μ 1 =Μ 2 Η 1 : Μ 1 >Μ 2 ή Μ 1 <Μ 2 (αμφίπλευρος έλεγχος)

22 t-test: τύποι μ -μ t= 1 2 s Δείγμα 1: μέσος μ 1 με SD 1 (n 1 μετρήσεις) Δείγμα 2: μέσος μ 2 με SD 2 (n 1 μετρήσεις) s είναι μια απο κοινού τυπική απόκλιση 2 2 SD 1+SD2 s=,n =n n (n1-1)sd 1+(n2-1)SD s= + n 1+n2-2 n1 n2 t κατανομή με n 1 +n 2-2 βαθμούς ελευθερίας

23 Παράδειγμα μ 1 =15, SD 1 2 διασπορά 1 =4.6, n 1 =8 μ 2 =14, SD 2 2 διασπορά 1 =6.6, n 2 = t= = Το 0.85 είναι μεγάλο ή μικρό; Πάμε στην t κατανομή με n 1 +n 2-2=14 βαθμούς ελευθερίας

24 t κατανομή (student) κ οι βαθμοί ελευθερίας (degrees of freedom df) ορίζονται από το μέγεθος του συνολικού δείγματος. Όσο πιο πολλοί βαθμοί ελευθερίας, τόσο πιο «ψιλόλιγνη» είναι Για μέγεθος δείγματος>20 η t κατανομή είναι παρόμοια με την Ν(0,1) Μέσος = 0 p-value = TDIST(t,df,2)=TDIST(0.85,14,2)= 0.41 Τι σημαίνει αυτό; Δεν απορρίπτουμε την Η 0 Εμβαδον=0.205

25 t-test: προϋποθέσεις εφαρμογής Είναι τα δείγματα από κανονική κατανομή; Πώς το ελέγχω; Κοιτάμε τις κατανομές των δεδομένων να «μοιάζουν» με κανονικές Ελέγχουμε: Kolmogorov-Smirnov test ή shapiro-wilk (H 0 : το δείγμα προέρχεται από την κανονική κατανομή) Είναι οι διασπορές ίδιες; Πώς το ελέγχω; Ελέγχουμε: με το levene F τεστ (H 0 : οι δύο διασπορές είναι ίδιες) Όταν έχω μεγάλα δείγματα, μπορώ να το υπολογίσω σαν z-test

26 Παράδειγμα t-test και έλεγχος προυποθέσεων μ 1 =15, SD 2 1=4.6, n 1 =8 μ 1 =14, SD 2 2=6.6, n 2 =8 1. Ελέγχουμε εάν τα δείγματα αναφέρονται σε κανονική κατανομή P-value (K-S test)>0.05 για να μην απορρίψω την υπόθεση της κανονικότητας 2. Ελέγχουμε εάν οι διασπορές είναι ίδιες P-value (F test)>0.05 για να μην απορρίψω την υπόθεση της ισότητας 3. Υπολογίζουμε το t-test P-value (t test)<0.05 απορρίπτουμε την υπόθεση ισότητας

27 Mann Whitney test Όταν τα δεδομένα δεν προέρχονται από την κανονική κατανομή Τριγλυκερίδια Η μέση τιμή δεν αντιπροσωπεύει επιτυχώς τα δεδομένα - καλύτερη η διάμεσος Για να ελέγξω αν η ομάδα 1 είναι συγκρίσιμη με την ομάδα 2 στα τριγλυκερίδια ελέγχω την Η 0 : τα δύο δείγματα προέρχονται από την ίδια κατανομή

28 Ομάδα 1 Κατανομή: τριγλυκερίδια (mg/dl) σε δύο δείγματα (προφανώς δεν είναι κανονική) Ομάδα τριγλυκερίδια (mg/dl)

29 Γιατί όχι t-test; Ομάδα 1: διάμέσος=136, μέσος=237 Ομάδα 2: διαμέσος=191, μέσος=442 t-test: p-value=0.009 Mann Whitney: p-value=0.14

30 Ζευγαρωτές παρατηρήσεις (Paired data) Ζευγαρωτές παρατηρήσεις: μετράμε τα ίδια άτομα πριν και μετά π.χ. μέση πίεση πριν την αγωγή 154, μετά την αγωγή 145 Χρησιμοποιούμε παραλλαγές των τεστ (paired t-test and Wilcoxon) Ασθενής Πρίν Μετά

31 t-test για ζευγαρωτές παρατηρήσεις Υπολογίζουμε τις διαφορές (πρίν και μετά) Ασθενής Πρίν Μετά Διαφορά Μέση διαφορά μ D =4.5 mmhg Μηδενική υπόθεση Μ D =0 Paired t-test μ -0 D t= SE D t κατανομή με n-1 βαθμούς ελευθερίας

32 Ισχύς ενός τεστ Η δύναμη που έχει ένα τεστ να απορρίπτει τη μηδενική υπόθεση (=να δίνει p-value<0.05) όταν αυτή δεν ισχύει Πραγματικότητα Η 0 σωστή Η 0 λάθος τεστ Η 0 απορρίπτεται Σφάλμα τύπου Ι =0.05 Ισχύς Η 0 δεν απορρίπτεται Σφάλμα τύπου ΙΙ

33 Ισχύς Εξαρτάται από το μέγεθος του δείγματος Όσο πιο μεγάλο, τόσο πιο μεγάλη η ισχύς Εξαρτάται από τη διαφορά ανάμεσα στις δύο ομάδες Όσο πιο μεγάλη η διαφορά, τόσο πιο μεγάλη η ισχύς

34 Ισχύς και μέγεθος δείγματος μ 1 = 5 in n 1 =10 and μ 2 =6 in n 2 =10 t-test p-value=0.13 μ 1 = 5 in n 1 =20 and μ 2 =6 in n 2 =20 t -test p-value=0.03 Άρα, όταν έχουμε μια p-value στατιστικά μη σημαντική, πρέπει να έχουμε στο νου μας ότι αυτό μπορεί να οφείλεται στο μικρό δείγμα!

35 Υπολογισμός μεγέθους δείγματος Πρέπει από πριν να καθορίσουμε Το τεστ που θα χρησιμοποιήσουμε Την προσδοκώμενη διαφορά ανάμεσα στις δύο ομάδες Την ισχύ που θέλουμε (Χ%, π.χ. 80% πιθανότητα αν η Η 0 είναι λάθος το τεστ να μπορέσει να την απορρίψει) Έπειτα υπολογίζουμε το απαιτούμενο μέγεθος δείγματος για να έχουμε ισχύ Χ%

36 Παράδειγμα Από μια κλινική δοκιμή που τυχαιοποίησε τους ασθενείς σε 2 ομάδες των 100 ατόμων προέκυψαν τα παρακάτω αποτελέσματα Δίαιτα 1, μέσο βάρος 80 κιλά, SD 30 Δίαιτα 2, μέσο βάρος 83 κιλά, SD 31 Διαφέρουν στατιστικώς οι δύο δίαιτες; Απαντήστε την ερώτηση με 4 τρόπους!

37 Παράδειγμα:Λύση Λύση 1:Υπολογισμός δύο 95% CI 95% CI για δίαιτα 1 (74.12, 85.88) 95% CI για δίαιτα 2 (76.92, 89.08) Λύση 2:Υπολογισμός 95% CI για MD MD=3, SE(MD)= % CI για MD (-5.46, 11.46,) Λύση 3:Υπολογισμός z-test Z=0.70 Z<1.96 άρα p-value>0.05 Λύση 4: Υπολογισμός t-τεστ t=0.70, df βαθμοί ελευθερίας=198 Άρα η t κατανομή είναι σχεδόν η κανονική κατανομή Άρα p-value>0.05 Δεν απορίπτουμε την μηδενική υπόθεση οτι οι δύο δίαιτες είναι εξίσου αποτελεσματικές

38 Τεστ για διχότομα και διακριτά δεδομένα Γεωργία Σαλαντή Κώστας Τσιλίδης Βιβλίο Pagano: κεφ. 15, 16

39 Γιατί χρησιμοποιούμε στατιστικές μεθόδους;

40 Διακριτές μεταβλητές Διχότομα δεδομένα (δύο πιθανές εκβάσεις) Φύλο, νοσήματα: ναι/οχι Διακριτά δεδομένα (πάνω από δύο εκβάσεις) Ναι/όχι/ίσως, βελτίωση/επιδείνωση/σταθερός

41 Aναιμία και φύλο: 2x2 πίνακας Φύλο Όχι Γυναίκες 47 (82%) Άνδρες 59 (91%) Αναιμία Ναι 10 (18%) 6 (9%) Σύνολο Είναι πιο συχνή η αναιμία στους άντρες ή στις γυναίκες;

42 Μηδενική υπόθεση Η κατανομή των παρατηρήσεων στα κελιά του 2x2 πίνακα είναι τυχαία (H 0 : η πιθανότητα αναιμίας στους άνδρες = πιθανότητα αναιμίας στις γυναίκες)

43 Χ 2 τεστ για διχότομα δεδομένα: Υπολογισμός αναμενόμενων τιμών Υπολογίζουμε τον αναμενόμενο αριθμό σε κάθε κελί εάν η πιθανότητα αναιμίας στους άνδρες και τις γυναίκες ήταν ίδια Φύλο Αναιμία Όχι Γυναίκες /122 =49.5 Ναι Άνδρες Σύνολο Αναμενόμενος αριθμός= Σύνολο κολώνας Σύνολο γραμμής/γενικό Σύνολο

44 Χ 2 τεστ για διχότομα δεδομένα: Υπολογισμός αναμενόμενων τιμών Υπολογίζουμε τον αναμενόμενο αριθμό σε κάθε κελί εάν η πιθανότητα αναιμίας στους άνδρες και τις γυναίκες ήταν ίδια ταιριάζουν με τις παρατηρήσεις; Φύλο Όχι Γυναίκες Ο=47 Ε=49.5 Άνδρες Ο=59 Ε=56.5 Αναιμία Ναι Ο=10 Ε=7.5 Ο=6 Ε=8.5 Σύνολο

45 Χ 2 τεστ για διχότομα δεδομένα Υπολογίζουμε τον αναμενόμενο αριθμό σε κάθε κελί εάν η πιθανότητα αναιμίας στους άνδρες και τις γυναίκες ήταν ίδια ταιριάζουν με τις παρατηρήσεις; 2 X= i=1,2,3,4 O -E 2 i E i i Ο i οι παρατηρήσεις, Ε i οι προσδοκώμενες τιμές στα 4 κελιά Ακολουθεί Χ 2 κατανομή με 1 βαθμό ελευθερίας

46 Χ 2 τεστ για διχότομα δεδομένα Υπολογίζουμε τον αναμενόμενο αριθμό σε κάθε κελί εάν η πιθανότητα αναιμίας στους άνδρες και τις γυναίκες ήταν ίδια ταιριάζουν με τις παρατηρήσεις; Φύλο Όχι Γυναίκες Ο=47 Ε=49.5 Άνδρες Ο=59 Ε=56.5 Αναιμία Ναι Ο=10 Ε=7.5 Ο=6 Ε=8.5 Σύνολο X =1.81

47 Κατανομή Χ 2 Βαθμοί ελευθερίας κ (degrees of freedom df) Για την κατανομή Χ 2 με 1 df: Η πιθανότητα να έχουμε μια τιμή πάνω απο το 3.84 είναι 5%

48 P-value του Χ 2 test H πιθανότητα να βρούμε μια τόσο ακραία τιμή όσο αυτή του τέστ (=1.81) εάν το πείραμα επαναληφθεί με το ίδιο μέγεθος δείγματος 1.81 <3.84 Για X 2 =1.81 η p-value είναι =0.18 Στο Excel 1-CHISQ.DIST(3.84;1;1) Τι σημαίνει αυτό; Ότι η Η 0 δεν απορρίπτεται Ότι η συσχέτιση δεν είναι στατιστικά σημαντική

49 P-value του Χ 2 test

50 P-value του Χ 2 test

51 P-value του Χ 2 test

52 Λόγος αναλογιών (λόγος odds, OR) OR = a1 n1 a0 n0 /1 /1 a1 n1 a0 n0 a1/ b1 a0 / b0 a1 b0 a0 b1 Φύλο Αναιμία Όχι Γυναίκες 47 (β1) Άνδρες 59 (β0) Ναι 10 (α1) 6 (α0) Σύνολο 57 (Ν1) 65 (Ν0) SE(lnOR) = 1 a1 1 a0 1 b0 95% CI του lnor = lnor ± 1.96 SE(lnOR) 95% CI του RR = exp{lnor ± 1.96 SE(lnOR)} 1 b1

53 Χ 2 τεστ για διακριτά δεδομένα Γονότυπος Αναιμία Σύνολο Όχι Ναι ΑΑ Γονότυπος ΑC CC

54 Χ 2 τεστ για διακριτά δεδομένα Υπολογίζω τις προσδοκώμενες τιμές όπως πριν Σύνολο κολώνας Σύνολο γραμμής/γενικό Σύνολο Χρησιμοποιώ τον ίδιο τύπο για το Χ 2 όπως πριν Κατανομή Χ 2 με 2 βαθμούς ελευθερίας P-value=0.64 Τι σημαίνει αυτό;

55 Υπολογισμός βαθμών ελευθερίας df σε ένα X 2 τεστ Αν ξέρω τα συνολικά νούμερα (σε γραμμές και στήλες), πόσα κελιά χρειάζομαι για να συμπληρώσω όλον τον πίνακα; Φύλο Αναιμία Όχι Ναι Γυναίκες 57 Άνδρες 65 Σύνολο Γονότυπος Γονότυπος Αναιμία Σύνολο Όχι Ναι ΑΑ 63 ΑC x2 πίνακας έχει 1 df 3x2 πίνακας έχει 2 df 3x3 πίνακας έχει 4 df 4x2 πίνακας έχει 3 df CC

56 Προϋποθέσεις για την εφαρμογή του Χ 2 τεστ Όλες οι προσδοκώμενες τιμές να είναι πάνω από 5 Το τεστ δεν είναι αξιόπιστο Όχι Αναιμία Ναι ΑΑ Σύνολο Γονότυπος ΑC CC

57 Fisher exact test Μπορούμε να το εφαρμόσουμε όταν έχουμε λίγες ή σπάνιες παρατηρήσεις με κάποια κελιά να έχουν λίγες ή και καθόλου παρατηρήσεις p-value = 0.77

58 Μετά την εγχείρηση McNemar test Είναι η παραλλαγή του X 2 για ζευγαρωτές πρατηρήσεις Πρίν την εγχείρηση Ναι όχι Συνολο Η 0 η πιθανότητα πρίν και μετά την εγχείρηση είναι η ίδια Ναι a b a+b Οχι c d c+d a+c b+d n (b c) 2 X= 2 b c Κατανομή με 1 βαθμό ελευθερίας

59 Διαστρωμάτωση Λεπτοσπίρωση: Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού έχει αντισώματα στις πόλεις και πόσο στις αγροτικές περιοχές; Αντισώματα Αγροτικές Αστικές Σύνολο Ναι Οχι Σύνολο Επιπολασμός αντισωμάτων για λεπτοσπίρωση στις δυτικές Ινδίες (αστικές και αγροτικές περιοχές) Kirkwood, Medical Statistics

60 Ανάλυση Τι τεστ θα κάνουμε; Πόσο θα είναι η p-value X 2 test? p-value > 0.05 X 2 = 0, df = 1, p-value = 1 Τι σημαίνει αυτό;

61 Άνδρες Αντισώματα Αγροτικές Αστικές Σύνολο Γυναίκες Αντισώματα Αγροτικές Αστικές Σύνολο Ναι Ναι Οχι Οχι Σύνολο Σύνολο Στρώματα X 2 =5.73, df=1, p-value<0.025 X 2 =1.36, df=1, p-value=0.25 X 2 Mantel-Haenszel=7.09, df=1, p-value<0.01

62 Mantel-Haenszel (ΜΗ) τεστ Το χρησιμοποιούμε για να ελέγξουμε δεδομένα που υποψιαζόμαστε ότι είναι στρωματοποιημένα Π.χ. διαφορετικά φύλα, διαφορετικές ομάδες ηλικίας Το MH ελέγχει κάθε ένα από τα στρώματα και τα συνοψίζει τους ελέγχους σε μία μόνο p-value Γιατί δεν κάνουμε δύο ξεχωριστά τεστ; Γιατί να συνοψίσουμε τους ελέγχους; Για να κερδίσουμε ισχύ και να δούμε εάν υπάρχει διαφορά μεταξύ των συσχετίσεων στα δύο στρώματα.

63 Άσκηση Βελτίωση Σταθερός Βελονισμός Φάρμακα 6 14 Δείξτε με δύο διαφορετικούς τρόπους αν ο βελονισμός σχετίζεται με βελτίωση του πόνου της ράχης

64 Λύση 1: Υπολoγισμός 95% CI για το OR ΟR=1.87 lnor=0.62 var(lnor)=0.39 SE(lnOR)= % ΔΕ για lnor: , % ΔΕ για lnor: -0.60, % ΔΕ για OR: (0.55, 6.3) Λύση 2: Υπολoγισμός X 2 test X 2 test: με 1 df p-value=0.101 Άσκηση Άρα δεν απορρίπτω την υπόθεση οτι ο βελονισμός είναι το ίδιο αποτελεσματικός με το φάρμακο

65 Διαστήματα εμπιστοσύνης (confidence intervals) Τα μέτρα σχέσης ή εκτιμητές σχέσης (π.χ. OR) δεν αντιπροσώπευουν την αλήθεια, αλλά αποτελούν μόνο μία εκτίμησή της Το αληθινό αποτέλεσμα μπορεί να είναι μεγαλύτερο ή μικρότερο από αυτό που παρατηρήσαμε Όρισμός 95% CI: εάν επαναλάβουμε ένα πείραμα ή μία μελέτη πολλές φορές (π.χ. 100) και πάρουμε ένα διαφορετικό μέτρο σχέσης και το αντίστοιχο διάστημα εμπιστοσύνης του από κάθε επανάληψη, τότε 95 από τα 100 αυτά διαστήματα εμπιστοσύνης θα περιέχουν την αλήθεια (αληθινό μέτρο σχέσης) Το διάστημα εμπιστοσύνης μας λέει μέσα στα όρια της αληθοφάνειας πόσο μεγαλύτερο ή μικρότερο μπορεί να είναι το αληθινό αποτέλεσμα

66 Μεταβλητή 1/ Μεταβλητή 2 Συνεχής Διακριτή Συνεχής Συντελεστής συσχέτισης Διακριτή t-test, paired t-test $ Z-test Mann Whitney* Wilcoxon* $ X 2 test Fisher s McNeamar $ Μantel-Haenszel *: το τεστ δεν απαιτεί κανονική κατανομή των δεδομένων $: το τεστ είναι κατάλληλο για ζευγαρωτά το τεστ δεν απαιτεί όλες οι προσδοκόμενες τιμές στα κελιά να ειναι πάνω απο 5

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Μέτρα σχέσης. Ιωάννα Τζουλάκη Λέκτορας Επιδημιολογίας Υγιεινή και Επιδημιολογία

Μέτρα σχέσης. Ιωάννα Τζουλάκη Λέκτορας Επιδημιολογίας Υγιεινή και Επιδημιολογία Μέτρα σχέσης Ιωάννα Τζουλάκη Λέκτορας Επιδημιολογίας Υγιεινή και Επιδημιολογία Στο τέλος...(learning outcomes) Να γνωρίζετε τα κυριότερα μέτρα σχέσης που χρησιμοποιούνται για μετρήσουμε μια συσχέτηση μεταξύ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39 41 Περιεχόμενα Ξενάγηση στο βιβλίο 25 Ξενάγηση στο συνοδευτικό CD 27 Εισαγωγή 29 Ευχαριστίες 33 Οι βασικές διαφορές μεταξύ του SPSS 16 και των προηγούμενων εκδόσεων 35 Μέρος 1 Εισαγωγή στο SPSS 37 1 Βασικές

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις. Μια μηχανή εμφιάλωσης κρασιού γεμίζει φιάλες του μισού κιλού με ποσότητα κρασιού η οποία είναι κανονική τυχαία μεταβλητή

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008 Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 8 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 9.9.8. [] Μια βιομηχανία τροφίμων προμηθεύεται νωπά κοτόπουλα από τρεις διαφορετικούς παραγωγούς Α, Β, Γ. Το % των κοτόπουλων

Διαβάστε περισσότερα

Μη Παραµετρικοί Έλεγχοι

Μη Παραµετρικοί Έλεγχοι Μη Παραµετρικοί Έλεγχοι Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Καταρχήν Μη Παραµετρικοί Έλεγχοι εν απαιτούν κανονικότητα

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ)

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ) ΑΣΚΗΣΕΙΣ. Ο διευθυντής προσωπικού μιας μεγάλης εταιρείας πιστεύει ότι ίσως υφίσταται κάποια σχέση μεταξύ των ημερών απουσίας και της ηλικίας των εργαζομένων. Με βάση την υπόθεση αυτή ενδιαφέρεται να κατασκευάσει

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΚΛΙΝΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ VS ΣΤΑΤΙΣΤΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ Ι 1. Η στατιστική σημαντικότητα αντανακλά την επίδραση

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 Πίνακας Περιεχομένων Πρόλογος... 17 ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 (Basic Sampling Techniques and Questionnaire Analysis using

Διαβάστε περισσότερα

Methods of analysis. Assumptions. Normality. Variables. Normality. Groups. Summary Guide. Quantitative Qualitative. Normal Non-normal distributed

Methods of analysis. Assumptions. Normality. Variables. Normality. Groups. Summary Guide. Quantitative Qualitative. Normal Non-normal distributed Methods of analysis Summary Guide Assumptions Variables Quantitative Qualitative Normality Normal Non-normal distributed Groups Number (1, 2, >2) Pair or independent Normality Cases Cases >50

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια Κεφάλαιο 7 Μη Παραµετρικά Κριτήρια Παραµετρικά Κριτήρια Τα παραµετρικά κριτήρια είναι στατιστικά κριτήρια που απαιτούν την ικανοποίηση συγκεκριµένων προϋποθέσεων είτε αναφορικά µε συγκεκριµένες παραµέτρους

Διαβάστε περισσότερα

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2.

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. ΕΙΣΑΓΩΓΗ 17.3. ΤΟ χ 2 ΓΙΑ ΜΙΑ ΠΟΙΟΤΙΚΗ ΜΕΤΑΒΛΗΤΗ 17.3.1. Ένα ερευνητικό παράδειγμα

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

την τιμή της μέσης τιμής, μ, ή της διασποράς, σ, ενός πληθυσμού και σε στατιστικούς ελέγχους υποθέσεων για τη σύγκριση των μέσων τιμών, μ

την τιμή της μέσης τιμής, μ, ή της διασποράς, σ, ενός πληθυσμού και σε στατιστικούς ελέγχους υποθέσεων για τη σύγκριση των μέσων τιμών, μ Ανάλυση Διασποράς Ανάλυση Διασποράς (Analysis of Variance, ANOVA) είναι μέθοδος στατιστικού ελέγχου υποθέσεων που αναφέρονται σε περισσότερους από δύο πληθυσμούς. Στην προηγούμενη ενότητα αναφερθήκαμε

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

Χαράλαµπος Κ. Μαµουλάκης

Χαράλαµπος Κ. Μαµουλάκης Τα λάθη στο δείγµα και τη στατιστική ανάλυση Χαράλαµπος Κ. Μαµουλάκης Επικουρος Καθηγητής Ουρολογίας Ουρολογική Κλινική Πανεπιστηµιακό Γενικό Νοσοκοµείο Ηρακλείου Πανεπιστήµιο Κρήτης, Τµήµα Ιατρικής Σύγκρουση

Διαβάστε περισσότερα

Σχεδιασµός µελετών. Γεωργία Σαλαντή. Λέκτορας Εργαστήριο Υγιεινής και Επιδηµιολογίας Ιατρική Σχολή Πανεπιστήµιο Ιωαννίνων

Σχεδιασµός µελετών. Γεωργία Σαλαντή. Λέκτορας Εργαστήριο Υγιεινής και Επιδηµιολογίας Ιατρική Σχολή Πανεπιστήµιο Ιωαννίνων Σχεδιασµός µελετών Γεωργία Σαλαντή Λέκτορας Εργαστήριο Υγιεινής και Επιδηµιολογίας Ιατρική Σχολή Πανεπιστήµιο Ιωαννίνων Οι φοιτητές ιατρικής αντιπαθούν την στατιστική όχι όµωςκαιοιγιατροί! Γιατίοιγιατροί

Διαβάστε περισσότερα

Εισαγωγή στη διαγνωστική έρευνα

Εισαγωγή στη διαγνωστική έρευνα DEPARTMENT OF HYGIENE AND EPIDEMIOLOGY Εισαγωγή στη διαγνωστική έρευνα Κώστας Τσιλίδης, ktsilidi@cc.uoi.gr http://users.uoi.gr/ktsilidi/teaching Ιωαννίδης: κεφάλαιο 3 Ahlbom: κεφάλαιο 3, 4 Guyatt: κεφάλαιο

Διαβάστε περισσότερα

Στατιστικές μέθοδοι ανάλυσης δεδομένων

Στατιστικές μέθοδοι ανάλυσης δεδομένων ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΕΡΕΥΝΑ APPLIED MEDICAL RESEARCH ÁÑ ÅÉÁ ÅËËÇÍÉÊÇÓ ÉÁÔÑÉÊÇÓ 2009, 26(5):699-711 Στατιστικές μέθοδοι ανάλυσης δεδομένων 1. Εισαγωγή 2. Επίπεδο στατιστικής σημαντικότητας 3. Είδη δεδομένων

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού

Διαβάστε περισσότερα

Το κάπνισμα στην Ελλάδα

Το κάπνισμα στην Ελλάδα Εθνική Μελέτη Νοσηρότητας και Παραγόντων Κινδύνου (Ε.ΜΕ.ΝΟ.) Το κάπνισμα στην Ελλάδα Καρακατσάνη Άννα Αναπληρώτρια Καθηγήτρια Πνευμονολογίας Β Πνευμονολογική Κλινική ΕΚΠΑ ΠΓΝ«ΑΤΤΙΚΟΝ» Ε.ΜΕ.ΝΟ Είναι η πρώτη

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Έλεγχοι Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Το ρυθμό απελευθέρωσης του φαρμάκου από το σκεύασμα Έλεγχο ταυτότητας και καθαρότητας της πρώτης ύλης και των εκδόχων( βάση προδιαγραφών)

Διαβάστε περισσότερα

ΕΠΕΚΤΑΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΝΟΣΗΡΟΤΗΤΑΣ ΣΤΗ ΝΗΣΟ ΜΗΛΟ ΕΚΘΕΣΗ ΠΡΟΟΔΟΥ

ΕΠΕΚΤΑΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΝΟΣΗΡΟΤΗΤΑΣ ΣΤΗ ΝΗΣΟ ΜΗΛΟ ΕΚΘΕΣΗ ΠΡΟΟΔΟΥ ΕΠΕΚΤΑΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΝΟΣΗΡΟΤΗΤΑΣ ΣΤΗ ΝΗΣΟ ΜΗΛΟ ΕΚΘΕΣΗ ΠΡΟΟΔΟΥ ΣΥΝΟΨΗ Η παρούσα μελέτη αποτελεί συνέχεια της αρχικής φάσης της μελέτης νοσηρότητας και θνησιμότητας στη νήσο Μήλο που πραγματοποιήθηκε το

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση!

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! ΘΕΜΑ ο [Μονάδες 20] Ερώτημα i (4 μονάδες). Για να κάνουμε τους υπολογισμούς που χρειάζονται

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Σημειώσεις Στατιστικής

Σημειώσεις Στατιστικής + εφαρμογή με το LibreOffice Calc και το R Project Επαμεινώνδας Διαμαντόπουλος Νοέμβριος 0, Ξάνθη. Επικοινωνία : epdiamantopoulos@yahoo.gr Ιστοσελίδα : http://users.sch.gr/epdiaman/! Κατάλογος περιεχομένων

Διαβάστε περισσότερα

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμηματικό e-mal : dap_ode@yahoo.gr www.dap-pape.gr

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική Ο μεγάλος Γάλλος μαθηματικός Laplace έγραψε ότι οι Πιθανότητες δεν είναι τίποτα άλλο παρά η μετατροπή της κοινής λογικής σε μαθηματικές εκφράσεις. Η χρήση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Μεθοδολογία Εκπαιδευτικής Έρευνας Nic_nicolaou@hotmail.com www.nikolas-nikolaou.net

Μεθοδολογία Εκπαιδευτικής Έρευνας Nic_nicolaou@hotmail.com www.nikolas-nikolaou.net 1 Μεθοδολογία Εκπαιδευτικής Έρευνας Nic_nicolaou@hotmail.com www.nikolas-nikolaou.net Ορισμοί Research is the systematic, controlled, empirical and critical investigation of hypothetical propositions about

Διαβάστε περισσότερα

ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 31 www.frontistiria-eap.gr ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΔΕΟ 31 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ

ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 31 www.frontistiria-eap.gr ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΔΕΟ 31 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΔΕΟ 31 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 1 ΤΟΜΟΣ ΚΑΘΑΡΑ ΠΑΡΟΥΣΑ ΑΞΙΑ Η καθαρή Παρούσα Αξία ισούται με το άθροισμα προεξοφλημένων καθαρών ταμειακών

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(55) Κορρέ Πελαγία(580) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εαρινό εξάμηνο 0 Ρέθυμνο, 5/6/0 ΠΕΡΙΕΧΟΜΕΝΑ:. Εισαγωγή.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Εισαγωγή στο P.A.S.W. Υποχρεωτικό μάθημα 4 ου εξαμήνου

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Διλήμματα underwriting: σχεδιάζοντας λύσεις

Διλήμματα underwriting: σχεδιάζοντας λύσεις Διλήμματα underwriting: σχεδιάζοντας λύσεις Γιάννης Βασαλάκης Chief Uwr Ζωής & Υγείας Interamerican Τάσος Γαρυφαλλάκης Uwr Ζωής & Υγείας Αξίωμα Συνήθη ερωτήματα- προβληματισμοί Είναι παθολογικό το αποτέλεσμα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΣΑΚΧΑΡΩΔΗΣ ΔΙΑΒΗΤΗΣ και ΚΑΡΚΙΝΟΣ: συνύπαρξη ή αιτιολογική σχέση;

ΣΑΚΧΑΡΩΔΗΣ ΔΙΑΒΗΤΗΣ και ΚΑΡΚΙΝΟΣ: συνύπαρξη ή αιτιολογική σχέση; ΣΑΚΧΑΡΩΔΗΣ ΔΙΑΒΗΤΗΣ και ΚΑΡΚΙΝΟΣ: συνύπαρξη ή αιτιολογική σχέση; Δ. Καραγιάννη, Β. Κουρκούμπας, Δ. Μπαλτζής, Γ. Κοτρώνης, Ε. Κιντιράκη, Χ.Τρακατέλλη, Α. Παυλίδου, Μ. Σιών Γ Παθολογική Κλινική ΑΠΘ, ΓΠΝΘ

Διαβάστε περισσότερα

Οργανωσιακή Δέσμευση και η επίδρασή της στην εργασιακή ικανοποίηση των υπαλλήλων της Ανώτατης Τεχνολογικής Εκπαίδευσης. Ανδρουλακάκη Αικατερίνη

Οργανωσιακή Δέσμευση και η επίδρασή της στην εργασιακή ικανοποίηση των υπαλλήλων της Ανώτατης Τεχνολογικής Εκπαίδευσης. Ανδρουλακάκη Αικατερίνη Π.Μ.Σ. ΔΙΕΘΝΗΣ ΔΙΟΙΚΗΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Οργανωσιακή Δέσμευση και η επίδρασή της στην εργασιακή ικανοποίηση των υπαλλήλων της Ανώτατης Τεχνολογικής Εκπαίδευσης Ανδρουλακάκη Αικατερίνη

Διαβάστε περισσότερα

Τα συστηματικά σφάλματα στις επιδημιολογικές μελέτες Κάθε επιδημιολογική μελέτη πρέπει να θεωρείται ως μια άσκηση μέτρησης

Τα συστηματικά σφάλματα στις επιδημιολογικές μελέτες Κάθε επιδημιολογική μελέτη πρέπει να θεωρείται ως μια άσκηση μέτρησης Τα συστηματικά σφάλματα στις επιδημιολογικές μελέτες Κάθε επιδημιολογική μελέτη πρέπει να θεωρείται ως μια άσκηση μέτρησης Kenneth J. Rothman, 2002 Πρόγραμμα εκπαίδευσης στην επιδημιολογική επιτήρηση και

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

Σημασία παρονομαστών!!!

Σημασία παρονομαστών!!! Μέτρα συχνότητας νοσημάτων στην επιδημιολογική επιτήρηση και διερεύνηση επιδημιών Κρούσματα ιλαράς ανά νομό, Ελλάδα, Σεπτ. 005 - Απρ. 006 Νομός Αριθμός Κρουσμάτων Σύνολο Πληθυσμού Επίπτωση/ 100.000 Κεφαλληνίας

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

«Επιδράσεις των Στάσεων για την Τοποθέτηση Προϊόντος στη Συμπεριφορά των Ελλήνων Kαταναλωτών»

«Επιδράσεις των Στάσεων για την Τοποθέτηση Προϊόντος στη Συμπεριφορά των Ελλήνων Kαταναλωτών» «Επιδράσεις των Στάσεων για την Τοποθέτηση Προϊόντος στη Συμπεριφορά των Ελλήνων Kαταναλωτών» Ονοματεπώνυμο: Κωνσταντίνα Τσούτσου Σειρά: 9 η Επιβλέπων Καθηγητής: κ. Γ. Ι. Σιώμκος Δεκέμβριος 2012 Σκοπός

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα