Ελίνα Μακρή

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ελίνα Μακρή"

Transcript

1 Ελίνα Μακρή

2 Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D, T, SR, JK)

3 Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D, T, SR, JK)

4 Σχεδίαση Ψηφιακών Κυκλωμάτων

5 Λογικές Πύλες Πίνακας Αληθείας Πύλη AND ( Α Β ) A B out Πύλη OR ( Α + Β ) A B out

6 Λογικές Πύλες Πίνακας Αληθείας Πύλη ΝΟΤ ( Α ) A out Πύλη NAND ( (Α Β) ) A B out

7 Λογικές Πύλες Πίνακας Αληθείας Πύλη NOR ( (Α + Β) ) A B out Πύλη XOR ( Α Β = AB + A B ) A B out

8 Λογικές Πύλες Πίνακας Αληθείας Πύλη XNOR ( (Α Β) = AB + A B ) Ισοδυναμίες - De Morgan A B out

9 Λογικές Πύλες Πίνακας Αληθείας Παράδειγμα Να υπολογιστεί ο πίνακας αληθείας της συνάρτησης: f(x,y) = xy + x y Μπορείτε να σχεδιάσετε κύκλωμα που να υλοποιεί τη λογική παράσταση με μία πύλη;

10 Λογικές Πύλες Πίνακας Αληθείας Παράδειγμα Να υπολογιστεί ο πίνακας αληθείας της συνάρτησης: f(x,y) = xy + x y x y x' y' xy' x'y xy'+ x'y Το κύκλωμα είναι λογική πύλη ΧΟR δύο εισόδων.

11 Λογικές Πύλες Πίνακας Αληθείας Άσκηση Να υπολογιστεί ο πίνακας αληθείας της συνάρτησης: f(x,y) = xy + x y Μπορείτε να σχεδιάσετε κύκλωμα που να υλοποιεί τη λογική παράσταση με μία πύλη;

12 Λογικές Πύλες Πίνακας Αληθείας Άσκηση Να υπολογιστεί ο πίνακας αληθείας της συνάρτησης: f(x,y) = xy + x y x y x' y' xy x'y' xy + x'y' Το κύκλωμα είναι λογική πύλη ΧΝΟR δύο εισόδων. x y XNOR f(x,y)

13 Χάρτες KARNAUGH Χρησιμοποιούνται για την απλοποίηση των λογικών συναρτήσεων αντί της χρήσης των θεωρημάτων της άλγεβρας BOOLE. Άθροισμα Γινομένων (Ελαχιστόρων) Αν έχουμε τον πίνακα αληθείας μιας συνάρτησης, μπορούμε να βρούμε το άθροισμα των ελαχιστόρων χρησιμοποιώντας τις σειρές του πίνακα για τις οποίες το αποτέλεσμα της συνάρτησης είναι 1. x y z f(x,y,z) f (x,y,z) f = x y z + x y z + x yz + x yz + xyz = m 0 + m 1 + m 2 + m 3 + m 6 = m(0,1,2,3,6) f = xy z + xy z + xyz = m 4 + m 5 + m 7 = m(4,5,7) Κανονική Μορφή Συνάρτησης Αντίστροφη Συνάρτηση

14 Χάρτες KARNAUGH Χάρτης Karnaugh 2 μεταβλητών Από τον πίνακα αληθείας 2 μεταβλητών, μπορούμε να φτιάξουμε τον χάρτη Karnaugh 2 μεταβλητών. x y Ελαχιστόροι 0 0 x y 0 1 x y 1 0 xy 1 1 xy X Y x y x y 1 xy xy Από τον χάρτη Karnaugh, μπορούμε να δούμε ποιοί ελαχιστόροι είναι κοινοί. Y X x y x y 1 xy xy Y Y X x y x y X xy xy

15 Χάρτες KARNAUGH Χάρτης Karnaugh 2 μεταβλητών Παράδειγμα 1 Έστω οτι θέλουμε να ελαχιστοποιήσουμε την έκφραση: x y + x y Βλέπουμε οτι το x εμφανίζεται και στους 2 όρους της έκφρασης και αντιστοιχεί στην πάνω σειρά του πίνακα. Y x y x y X xy xy Y 1 1 X xy xy Τι γίνεται όμως αν απλοποιήσουμε τη συνάρτηση χρησιμοποιώντας άλγεβρα ΒΟΟLE? x y + x y = x (y + y) [y + y = 1] = x 1 [x 1 = x ] = x

16 Χάρτες KARNAUGH Χάρτης Karnaugh 2 μεταβλητών Παράδειγμα 2 Έστω οτι θέλουμε να ελαχιστοποιήσουμε την έκφραση: x y + xy Βλέπουμε οτι το y εμφανίζεται και στους 2 όρους της έκφρασης και αντιστοιχεί στην δεξιά στήλη του πίνακα. Y x y x y X xy xy Y x y 1 X xy 1 Αποτέλεσμα: x y + xy = y

17 Χάρτες KARNAUGH Χάρτης Karnaugh 2 μεταβλητών Παράδειγμα 3 Έστω οτι θέλουμε να ελαχιστοποιήσουμε την έκφραση: x y + x y + xy Βλέπουμε οτι: x y + x y = x (αντιστοιχεί στην πάνω γραμμή του πίνακα) x y + xy = y (αντιστοιχεί στην δεξιά στήλη του πίνακα) Y x y x y X xy xy Y 1 1 X xy 1 Αποτέλεσμα: x y + x y + xy = x + y

18 Χάρτες KARNAUGH Χάρτης Karnaugh 3 μεταβλητών Ο χάρτης Κarnaugh 3 μεταβλητών είναι ο παρακάτω: YZ x y z x y z x yz x yz X 1 xy z xy z xyz xyz x y z x y z x yz x yz X xy z xy z xyz xyz Οποιαδήποτε 2, 4 ή 8 γειτονικά τετράγωνα έχουν κοινούς παράγοντες: Z Y Y x y z x y z x yz x yz X xy z xy z xyz xyz Z x y z + x yz = x z(y + y) = x z 1 = x z Οι 2 μονάδες (άσσοι) αντιστοιχούν σε δύο μεταβλητές.

19 Χάρτες KARNAUGH Χάρτης Karnaugh 3 μεταβλητών Οποιαδήποτε 2, 4 ή 8 γειτονικά τετράγωνα έχουν κοινούς παράγοντες: Y x y z x y z x yz x yz X xy z xy z xyz xyz Z x y z + xy z + x yz + xyz = z (x y + xy + x y + xy) = z (y (x + x) + y(x + x)) = z (y +y) = z Οι 4 μονάδες (άσσοι) αντιστοιχούν σε μια μεταβλητή.

20 Χάρτες KARNAUGH Χάρτης Karnaugh 4 μεταβλητών Ο χάρτης Κarnaugh 4 μεταβλητών είναι ο παρακάτω: Y w x y z w x y z w x yz w x yz w xy z w xy z w xyz w xyz W wxy z wxy z wxyz wxyz wx y z wx y z wx yz wx yz X Z

21 Χάρτες KARNAUGH Άσκηση 2 Απλοποιήστε την συνάρτηση f(x,y,z) = xy + y z + xz

22 Χάρτες KARNAUGH Άσκηση 2 Λύση Απλοποιήστε την συνάρτηση f(x,y,z) = xy + y z + xz. Αρχικά, πρέπει να μετατρέψουμε την συνάρτηση σε άθροισμα ελαχιστόρων αν δεν είναι ήδη. Ένας εύκολος τρόπος να το κάνουμε είναι να φτιάξουμε πίνακα αληθείας για την συνάρτηση. Παραλείποντας τις ενδιάμεσες στήλες ο τελικός πίνακας αληθείας που προκύπτει είναι ο παρακάτω: x y z f(x,y,z) f(x,y,z) = x y z + xy z + xyz + xyz H λογική συνάρτηση f που προέκυψε από τον πίνακα αληθείας είναι σε κανονική μορφή (άθροισμα ελαχιστόρων).

23 Χάρτες KARNAUGH Άσκηση 2 Λύση Εναλλακτικά, μπορούμε να το κάνουμε μέσω άλγεβρας Boole. xy + y z + xz = (xy 1) + (y z 1) + (xz 1) = (xy (z + z)) + (y z (x + x)) + (xz (y + y)) = (xyz + xyz) + (x y z + xy z) + (xy z + xyz) = xyz + xyz + x y z + xy z Και στις 2 περιπτώσεις έχουμε το ίδιο αποτέλεσμα.

24 Χάρτες KARNAUGH Άσκηση 2 Λύση Στη συνέχεια, θα υπολογίσουμε τον χάρτη Karnaugh 3 μεταβλητών. f(x,y,z) = x y z + xy z + xyz + xyz x y z x y z x yz x yz X xy z xy z xyz xyz Z Y Ένας τρόπος απεικόνισης είναι να βάλουμε στη θέση των τετραγώνων το 1. 1 X Z Y

25 Χάρτες KARNAUGH Άσκηση 2 Λύση Δημιουργούμε ομάδες των 2, 4 ή 8 μονάδων. Y 1 X Z Ο παραπάνω πίνακας αντιστοιχεί: Y x y z X xy z xyz xyz Z Αποτέλεσμα: xy + y z + xz = y z + xy

26 Χάρτες KARNAUGH Άσκηση 2 Λύση Το ίδιο αποτέλεσμα απλοποίησης θα προέκυπτε αν προσπαθούσαμε να κάνουμε την απλοποίηση μέσω της άλγεβρας Boole. f(x,y,z) = x y z + xy z + xyz + xyz Συνάρτηση x y z + xy z + xyz + xyz = Αποτέλεσμα: xy + y z + xz = y z + xy Αξίωμα/Θεώρημα Επιμεριστική Ιδιότητα xy (z + z) + y z (x + x) = z + z = 1, x + x = 1 xy + y z

27 Χάρτες KARNAUGH Διαδικασία Απλοποίησης Συνάρτησης Μας δίνεται μια συνάρτηση και θέλουμε να την απλοποιήσουμε. Αρχικά, πρέπει να μετατρέψουμε την συνάρτηση σε άθροισμα ελαχιστόρων αν δεν είναι ήδη. Ένας εύκολος τρόπος να το κάνουμε είναι να φτιάξουμε πίνακα αληθείας για την συνάρτηση. Η συνάρτηση που προκύπτει από τον πίνακα αληθείας είναι σε κανονική μορφή, αλλά δεν είναι σε απλοποιημένη μορφή. Για να απλοποιήσουμε μια συνάρτηση που είναι σε κανονική μορφή εφαρμόζουμε χάρτη Karnaugh 2, 3 ή 4 μεταβλητών ανάλογα την περίπτωση. Στον χάρτη Karnaugh τοποθετούμε τους άσσους, τους ομαδοποιούμε και στη συνέχεια βγάζουμε κοινό παράγοντα. Τέλος, προκύπτει η απλοποιημένη μορφή της συνάρτησης.

28 Truth Table Solver

29 Είναι ένα πρόγραμμα το οποίο λύνει (solves) τον πίνακα αληθείας και έχει σαν έξοδο όλες τις πιθανές ελαχιστοποιημένες boolean εκφράσεις. Χρησιμοποιεί τον αλγόριθμο Quine-McCluskey algorithm (Tabulation method) για να πραγματοποιήσει boolean minimization. Είναι ένα εύκολο στη χρήση γραφικό περιβάλλον (GUI), το οποίο μπορεί να λύσει έναν πίνακα αληθείας χρησιμοποιώντας μέχρι και 16 μεταβλητές σαν είσοδο. Είναι free και open source πρόγραμμα και είναι γραμμένο σε Java.

30 Website Download

31 Γραφικό Περιβάλλον

32 Προκειμένου να υπολογίσουμε μια ελαχιστοποιημένη boolean έκφραση ακολουθούμε τα παρακάτω βήματα. 2. Επιλέγουμε ποιά έξοδος θα έχει αποτέλεσμα 1, ποιά 0 και ποιά d. 1. Επιλέγουμε αριθμό μεταβλητών. 4. Στο συγκεκριμένο πλαίσιο εμφανίζεται η ελαχιστοποιημένη έκφραση. 3. Πατάμε «Solve».

33 Function Number Of Terms Τιμή 0 1 d (don t care = αδιάφορος όρος) Τιμές

34 Χρήση του Truth Table Solver 1. Δεδομένου οτι έχουμε ήδη υπολογίσει τον πίνακα αληθείας μέσω πράξεων, μπορούμε να επαληθεύσουμε τα αποτελέσματα που βρήκαμε εισάγοντάς τα στο πρόγραμμα. 2. Εισάγοντας τον αριθμό των μεταβλητών, μπορούμε να δούμε το συνδυασμό των τιμών τους και ανάλογα με το αν επιλέξουμε να έχει σαν αποτέλεσμα η συνάρτηση 0, 1 ή d να δούμε την boolean έκφραση.

35 Παράδειγμα Να υπολογιστεί ο πίνακας αληθείας της συνάρτησης και στη συνέχεια να επαληθευτεί το αποτελέσμα μέσω του Truth Table Solver. f(x,y) = xy + x y Έχουμε ήδη υπολογίσει τον παρακάτω πίνακα αληθείας (προηγούμενες διαφάνειες). x y x' y' xy' x'y xy'+ x'y

36 Παράδειγμα Επαλήθευση του αποτελέσματος μέσω του Truth Table Solver. x y xy' + x'y

37 Παράδειγμα Επαλήθευση του αποτελέσματος μέσω του Truth Table Solver. x y xy' + x'y Παρατηρούμε οτι το αποτέλεσμα είναι όντως αυτό που βρήκαμε από τον πίνακα αληθείας.

38 Άσκηση 1 Να υπολογιστεί ο πίνακας αληθείας της συνάρτησης. Να απλοποιηθεί η συνάρτηση χρησιμοποιώντας χάρτη Karnaugh. Να επαληθευτεί το αποτελέσμα μέσω του Truth Table Solver. f(x,y) = x y + x y + xy

39 Άσκηση 1 Λύση Να υπολογιστεί ο πίνακας αληθείας της συνάρτησης. Πίνακας Αληθείας: f(x,y) = x y + x y + xy x y x' y' x y' x'y xy x y + x'y + xy Κανονική μορφή της συνάρτησης: f(x,y) = x y + x y + xy

40 Άσκηση 1 Λύση Να απλοποιηθεί η συνάρτηση χρησιμοποιώντας χάρτη Karnaugh. Χάρτης Karnaugh: f(x,y) = x y + x y + xy Κανονική μορφή της συνάρτησης Y 1 1 X 1 Y x y x y X xy xy Αποτέλεσμα: x y + x y + xy = x + y

41 Άσκηση 1 Λύση Να επαληθευτεί το αποτελέσμα μέσω του Truth Table Solver. x y x y' + x'y + xy

42 Άσκηση 1 Λύση Να επαληθευτεί το αποτελέσμα μέσω του Truth Table Solver. x y x y' + x'y + xy Παρατηρούμε οτι το αποτέλεσμα είναι όντως αυτό που βρήκαμε από τον πίνακα αληθείας.

43 Άσκηση 2 Δεδομένου του πίνακα αληθείας να βρεθεί η απλοποιημένη συνάρτηση μέσω του Truth Table Solver. x y z f (x,y,z)

44 Άσκηση 2 Λύση Εύρεση απλοποιημένης συνάρτησης μέσω του Truth Table Solver. x y z f (x,y,z)

45 Άσκηση 2 Λύση Εύρεση απλοποιημένης συνάρτησης μέσω του Truth Table Solver. x y z f (x,y,z)

46 Logisim

47 Λογικές Πύλες Σχεδίαση Είναι ένα free και open source εργαλείο για το σχεδιασμό ψηφιακών κυκλωμάτων. Το Logisim επιτρέπει το σχεδιασμό και την προσομοίωση ψηφιακών κυκλωμάτων. Είναι ένα εκπαιδευτικό εργαλείο, το οποίο βοηθάει να μάθουμε πως λειτουργούν τα ψηφιακά κυκλώματα.

48 Λογικές Πύλες Σχεδίαση Website Download Documentation

49 Λογικές Πύλες Σχεδίαση Γραφικό Περιβάλλον

50 Λογικές Πύλες Σχεδίαση Ας σχεδιάσουμε μια απλή πύλη για να δούμε πως λειτουργεί το Logisim... Πύλη AND Προσθέτουμε μία πύλη AND, είτε από το μενού πάνω, είτε από τις πύλες δεξιά της οθόνης.

51 Λογικές Πύλες Σχεδίαση Πύλη AND Προσθέτουμε εισόδους, εξόδους και καλωδίωση.

52 Λογικές Πύλες Σχεδίαση Πύλη AND Κάνοντας διπλό κλικ στην πύλη AND μπορούμε να ορίσουμε πόσες εισόδους θα έχει. Επιλέγουμε 2.

53 Λογικές Πύλες Σχεδίαση Πύλη AND Μενού -> Εργο -> Ανάλυση κυκλώματος

54 Λογικές Πύλες Σχεδίαση Πύλη AND Μενού -> Εργο -> Ανάλυση κυκλώματος (Είσοδοι, Έξοδοι)

55 Λογικές Πύλες Σχεδίαση Πύλη AND Μενού -> Εργο -> Ανάλυση κυκλώματος (Πίνακας, Έκφραση)

56 Λογικές Πύλες Σχεδίαση Πύλη AND Μενού -> Εργο -> Ανάλυση κυκλώματος (Ελαχιστοποιημένο: Άθροισμα Γινομένων, Γινόμενο Αθροισμάτων)

57 Λογικές Πύλες Σχεδίαση Άσκηση 1 f(a,b,c) = a + b ac + bc Να σχεδιάσετε με Logisim το κύκλωμα της συνάρτησης και να βρείτε την έκφραση, τον πίνακα αληθείας και τον χάρτη Karnaugh (ελαχιστοποιημένο άθροισμα γινομένων).

58 Λογικές Πύλες Σχεδίαση Άσκηση 1 Λύση f(a,b,c) = a + b ac + bc

59 Λογικές Πύλες Σχεδίαση Άσκηση 1 Λύση f(a,b,c) = a + b ac + bc

60 Λογικές Πύλες Σχεδίαση Άσκηση 1 Λύση f(a,b,c) = a + b ac + bc

61 Λογικές Πύλες Σχεδίαση Άσκηση 1 Λύση f(a,b,c) = a + b ac + bc

62 Λογικές Πύλες Σχεδίαση Άσκηση 2 D(A,B,C) = A (B + C) Να σχεδιάσετε με Logisim το κύκλωμα της συνάρτησης και να βρείτε την έκφραση, τον πίνακα αληθείας και τον χάρτη Karnaugh (ελαχιστοποιημένο άθροισμα γινομένων). Στη συνέχεια να υπολογίσετε με Logisim το κύκλωμα με χρήση ΜΟΝΟ πυλών NAND.

63 Λογικές Πύλες Σχεδίαση Άσκηση 2 Λύση D(A,B,C) = A (B + C)

64 Λογικές Πύλες Σχεδίαση Άσκηση 2 Λύση D(A,B,C) = A (B + C)

65 Λογικές Πύλες Σχεδίαση Άσκηση 2 Λύση D(A,B,C) = A (B + C)

66 Λογικές Πύλες Σχεδίαση Άσκηση 2 Λύση D(A,B,C) = A (B + C)

67 Λογικές Πύλες Σχεδίαση Άσκηση 2 Λύση Υπολογισμός κυκλώματος με χρήση ΜΟΝΟ πυλών NAND.

68 Λογικές Πύλες Σχεδίαση Άσκηση 2 Λύση Υπολογισμός κυκλώματος με χρήση ΜΟΝΟ πυλών NAND.

69 Λογικές Πύλες Σχεδίαση Αντικατάσταση πυλών με πύλες NAND Πύλη NOT Ισχύει: Επομένως, έχουμε την παρακάτω ισοδυναμία:

70 Λογικές Πύλες Σχεδίαση Αντικατάσταση πυλών με πύλες NAND Πύλη AND Ισχύει: Δηλαδή η AND πύλη μπορεί να αντικατασταθεί από μια NAND, η έξοδος της οποίας αντιστρέφεται από μια δεύτερη NAND. Επομένως, έχουμε την παρακάτω ισοδυναμία:

71 Λογικές Πύλες Σχεδίαση Αντικατάσταση πυλών με πύλες NAND Πύλη OR Θεώρημα De Morgan: Επομένως, έχουμε την παρακάτω ισοδυναμία:

72 Λογικές Πύλες Σχεδίαση Αντικατάσταση πυλών με πύλες NOR Η λογική NOR είναι η δυαδική της λογικής NAND. Πύλη NOT Ισχύει η παρακάτω ισοδυναμία: Πύλη OR Ισχύει η παρακάτω ισοδυναμία:

73 Λογικές Πύλες Σχεδίαση Αντικατάσταση πυλών με πύλες NOR Πύλη AND Ισχύει η παρακάτω ισοδυναμία:

74 Λογικές Πύλες - Ανακεφαλαίωση Κύκλωμα ΜΟΝΟ με πύλες NAND Στο χάρτη Karnaugh ομαδοποιούμε τους άσσους και καταλήγουμε σε άθροισμα γινομένων (απλοποιημένη συνάρτηση). Κάνουμε διπλό inverse στο αποτέλεσμα (χρήση DeMorgan). Καταλήγουμε σε κύκλωμα μόνο με πύλες NAND. Κύκλωμα ΜΟΝΟ με πύλες NOR Στο χάρτη Karnaugh ομαδοποιούμε τα μηδενικά (και ΌΧΙ τους άσσους). Βρίσκουμε την αντίστροφη συνάρτηση, εφόσον ομαδοποιήσαμε τα μηδενικά. Κάνουμε διπλό inverse στο αποτέλεσμα (χρήση DeMorgan). Καταλήγουμε σε κύκλωμα μόνο με πύλες NOR. Αδιάφοροι Όροι Είναι πλεονάζοντες όροι, των οποίων η τιμή δεν μας ενδιαφέρει αν θα είναι 0 ή 1. Χρησιμοποιούνται για την ομαδοποίηση στους χάρτες Karnaugh.

75

3. Απλοποίηση Συναρτήσεων Boole

3. Απλοποίηση Συναρτήσεων Boole 3. Απλοποίηση Συναρτήσεων Boole 3. Μέθοδος του χάρτη Η πολυπλοκότητα ψηφιακών πυλών που υλοποιούν μια συνάρτηση Boole σχετίζεται άμεσα με την πολύπλοκότητα της αλγεβρικής της έκφρασης. Η αλγεβρική αναπαράσταση

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Απλοποίηση Συναρτήσεων Boole Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Απλοποίηση Συναρτήσεων Boole Η πολυπλοκότητα του κυκλώματος

Διαβάστε περισσότερα

Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών μεταβλητών a,

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Μάθηµα 3: Απλοποίηση συναρτήσεων Boole ιδάσκων: Καθηγητής Ν. Φακωτάκης 3-1 Η µέθοδος του χάρτη H πολυπλοκότητα

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Άλγεβρα Boole και Λογικές Πύλες Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αξιωματικός Ορισμός Άλγεβρας Boole Άλγεβρα Boole: είναι μία

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων oole Επιµέλεια διαφανειών: Χρ. Καβουσιανός Απλοποίηση Συναρτήσεων oole Ø Η πολυπλοκότητα του κυκλώµατος που υλοποιεί µια συνάρτηση oole σχετίζεται άµεσα µε

Διαβάστε περισσότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδική Λογική Η δυαδική λογική ασχολείται με μεταβλητές

Διαβάστε περισσότερα

ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH

ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH 3.1 ΣΚΟΠΟΣ Η κατανόηση της απλοποίησης λογικών συναρτήσεων με χρήση της Άλγεβρας Boole και με χρήση των Πινάκων Karnaugh (Karnaugh maps). 3.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 3.2.1 ΑΠΛΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών OOLEN LGER ιδάσκων: ναπλ. Καθ. Κ. Λαµπρινουδάκης clam@unp.gr Αρχιτεκτονικές Υπολογιστών ναπλ. Καθ. Κ. Λαµπρινουδάκης Άλγεβρα OOLE Οι µεταβλητές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ

ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Αντικείμενο της άσκησης: Μεθοδολογία ανάλυσης και σχεδίασης συνδυαστικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB. Συνδυαστικά

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χάρτες Karnaugh, Οικουµενικές Πύλες (NAND & NOR) και Αποκλειστικό Η (ΧΟR) Εβδοµάδα: 3 Εργαστήριο Ψηφιακών Συστηµάτων

Διαβάστε περισσότερα

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Οι αρχές της λογικής αναπτύχθηκαν από τον George Boole (85-884) και τον ugustus De

Διαβάστε περισσότερα

Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ

Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Χάρτης Karnaugh (K-map) Prime Implicants (πρωταρχικοί όροι) Διαδικασία Απλοποίησης με K-map ΑδιάφοροιΣυνδυασμοίΕισόδων Διεπίπεδες Υλοποιήσεις

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Σεπτέμβριος 09 Συνδιαστικά Λογικά Κυκλώματα. Διδάσκουσα: Μαρία Κ.

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Σεπτέμβριος 09 Συνδιαστικά Λογικά Κυκλώματα. Διδάσκουσα: Μαρία Κ. ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική (Μέρος Α) Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ. Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων Ψηφιακή Σχεδίαση Κεφάλαιο 2: Συνδυαστικά Λογικά Κυκλώματα Γ. Κορνάρος Περίγραμμα Μέρος 1 Κυκλώματα Πυλών και

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Σεπτέμβριος 8 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Συνδυαστική Λογική (Μέρος Α) Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΛΓΕΒΡΑ BOOLE 2017, Δρ. Ηρακλής Σπηλιώτης Γενικοί ορισμοί Αλγεβρική δομή είναι ένα σύνολο στοιχείων και κάποιες συναρτήσεις με πεδίο ορισμού αυτό το σύνολο. Αυτές οι συναρτήσεις

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα

Διαβάστε περισσότερα

Απλοποίηση λογικών συναρτήσεων. URL:

Απλοποίηση λογικών συναρτήσεων.   URL: Ø ÖÓ Ü Ñ ÒÓ ÓØ Απλοποίηση λογικών συναρτήσεων ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò É ÖØ

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 4: Ελαχιστοποίηση και Λογικές Πύλες ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Βελτιστοποίηση

Διαβάστε περισσότερα

2. Άλγεβρα Boole και Λογικές Πύλες

2. Άλγεβρα Boole και Λογικές Πύλες 2. Άλγεβρα Boole και Λογικές Πύλες 2.1 Βασικοί ορισμοί Η άλγεβρα Boole μπορεί να οριστεί με ένα σύνολο στοιχείων, ένα σύνολο τελεστών και ένα σύνολο αξιωμάτων. Δυαδικός τελεστής ορισμένος σε ένα σύνολο

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Ένα ψηφιακό κύκλωμα με n εισόδους

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος 10. Συνδιαστικά Λογικά Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος 10. Συνδιαστικά Λογικά Κυκλώματα 1 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική (Μέρος Α) Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό Ο δειγματολήπτης (S/H) παίρνει δείγματα του στιγμιαίου εύρους ενός σήματος και διατηρεί την τάση που αντιστοιχεί σταθερή, τροφοδοτώντας έναν κβαντιστή, μέχρι την

Διαβάστε περισσότερα

Λογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων

Λογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων Λογικές πύλες Λογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων Το υλικό(hardware) για την εκτέλεση των εντολών γλώσσας μηχανής(και κατ επέκταση όλων των προγραμμάτων), κατασκευάζεται χρησιμοποιώντας

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ιδάσκων: Καθηγητής Ν. Φακωτάκης Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Κυκλώματα (Μέρος B) Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Βελτιστοποίηση

Διαβάστε περισσότερα

Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps

Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

Συναρτήσεων Boole. Η Μέθοδος του Χάρτη

Συναρτήσεων Boole. Η Μέθοδος του Χάρτη 3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole m 0 m x y x y m 2 m 3 xy xy Η Μέθοδος του Χάρτη H Αλγεβρική Έκφραση µίας συνάρτησης δεν είναι µοναδική. Στόχος η εύρεση της µικρότερης. Απαιτείται συστηµατική

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ VERILOG 2017, Δρ. Ηρακλής Σπηλιώτης Ελαχιστοποίηση λογικών συναρτήσεων Ο στόχος της ελαχιστοποίησης είναι η εύρεση της πιο απλοποιημένης

Διαβάστε περισσότερα

Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ

Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Λογικές Συναρτήσεις 2 Επιπέδων Συμπλήρωμα Λογικής Συνάρτησης Πίνακας Αλήθειας Κανονική Μορφή Αθροίσματος Γινομένων Λίστα Ελαχιστόρων

Διαβάστε περισσότερα

f(x, y, z) = y z + xz

f(x, y, z) = y z + xz Λύσεις θεμάτων Εξεταστικής Περιόδου Ιανουαρίου Φεβρουαρίου 27 ΘΕΜΑ Ο (2, μονάδες) Δίνεται η λογική συνάρτηση : f (, y, z ) = ( + y )(y + z ) + y z. Να συμπληρωθεί ο πίνακας αλήθειας της συνάρτησης. (,

Διαβάστε περισσότερα

Διδάσκουσα: Μαρία Κ. Μιχαήλ. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διδάσκουσα: Μαρία Κ. Μιχαήλ. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ : Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 9 ΗΜΥ-: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 9 Συνδυαστική Λογική: Ελαχιστοποίηση με τη μέθοδο Κατάταξης σε Πίνακα Διδάσκουσα: Μαρία Κ.

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

Εισαγωγή στα Ψηφιακά Συστήματα

Εισαγωγή στα Ψηφιακά Συστήματα Εισαγωγή στα Ψηφιακά Συστήματα Ασημόπουλος Νικόλαος Πατουλίδης Γεώργιος Παλιανόπουλος Ιωάννης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΕΡΟΣΚΑΦΩΝ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΕΙΣΑΓΩΓΗ στους Η/Υ Διδάσκουσα Δρ. Β. Σγαρδώνη 2013-14 ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες Α. ΑΛΓΕΒΡΑ Boole Η Άλγεβρα Boole (Boolean algebra) πήρε

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος 10. Κεφάλαιο 2: Συνδιαστικά Λογικά Κυκλώματα (Ελαχιστοποίηση με Κατάταξη σε Πίνακα) 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος 10. Κεφάλαιο 2: Συνδιαστικά Λογικά Κυκλώματα (Ελαχιστοποίηση με Κατάταξη σε Πίνακα) 1 ΗΜΥ : Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος ΗΜΥ-: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική: Ελαχιστοποίηση με τη μέθοδο Κατάταξης σε Πίνακα Διδάσκουσα: Μαρία Κ. Μιχαήλ Αλγοριθμική Ελαχιστοποίηση

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015-2016 Άλγεβρα Boole (Boolean Algebra) Βασικοί ορισμοί Η άλγεβρα Boole μπορεί να οριστεί

Διαβάστε περισσότερα

( ) ( ) University of Hertfordshire - IST Studies School of Computer Science COMPUTER SYSTEMS ARCHITECTURE 1

( ) ( ) University of Hertfordshire - IST Studies School of Computer Science COMPUTER SYSTEMS ARCHITECTURE 1 University of Hertfordshire - IST Studies School of omputer Science OMPUTER SYSTEMS RHITETURE 1 1. Simplify the function Y ( ) ( ) 2. Simplify the function Y (( 1) )( (0)) 3. Simplify the function Y 4.

Διαβάστε περισσότερα

( 1) R s S. R o. r D + -

( 1) R s S. R o. r D + - Tο κύκλωμα που δίνεται είναι ένας ενισχυτής κοινής πύλης. Δίνονται: r D = 1 MΩ, g m =5mA/V, R s =100 Ω, R D = 10 kω. Υπολογίστε: α) την απολαβή τάσης β) την αντίσταση εισόδου γ) την αντίσταση εξόδου Οι

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: Θεωρητική Μάθημα: Ψηφιακά Ηλεκτρονικά Τάξη: Β Αρ. Μαθητών: 8 Κλάδος: Ηλεκτρολογία Ημερομηνία:

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ. Ψηφιακά κυκλώματα.

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ. Ψηφιακά κυκλώματα. ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Ψηφιακά κυκλώματα Σημειώσεις Αναστάσιος Ι. Μπαλουκτσής (Μηχανολόγος/Ηλεκτρολόγος Μηχανικός,

Διαβάστε περισσότερα

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΙΚΗΣ ΣΧΕΔΙΑΣΗΣ

ΑΣΚΗΣΗ 4 ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΙΚΗΣ ΣΧΕΔΙΑΣΗΣ ΑΣΚΗΣΗ 4 ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΙΚΗΣ ΣΧΕΔΙΑΣΗΣ 4.1 ΣΚΟΠΟΣ Σκοπός αυτής της εργαστηριακής άσκησης είναι να παρουσιάσει τις βασικές αρχές της σχεδίασης λογικών (ψηφιακών) κυκλωμάτων για πρακτικές εφαρμογές. Στα προηγούμενα

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008 ΗΜΥ : Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 8 Σεπτέμβριος 8 ΗΜΥ-: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 8 Συνδυαστική Λογική: Ελαχιστοποίηση με τη μέθοδο Κατάταξης σε Πίνακα Διδάσκουσα: Μαρία

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου Ψηφιακή Σχεδίαση Εργαστηριο 1 Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΕΡΓΑΛΕΙΑ ΕΡΓΑΣΤΗΡΙΟ Το εργαλείο που θα χρησιμοποιηθεί

Διαβάστε περισσότερα

ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων

ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Λογισμικό Προσομοίωσης LogiSim καιχρήση KarnaughMaps Διδάσκοντες: Δρ. Αγαθοκλής Παπαδόπουλος & Δρ. Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Μετατροπή δυαδικών αριθμών

Μετατροπή δυαδικών αριθμών Κεφάλαιο 2o Συνδυαστικά κυκλώματα 2.1 Το δυαδικό σύστημα μέτρησης και η δυαδική λογική 2.1.1 Θεωρητικό Υπόβαθρο Οποιοσδήποτε αριθμός μπορεί να εκφραστεί σε σύστημα μέτρησης με βάση τον αριθμό β, με μια

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.

Διαβάστε περισσότερα

C D C D C D C D A B

C D C D C D C D A B Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Συνδυαστική Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ψηφιακά Κυκλώματα Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά (combinational)

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες

K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Λειτουργία Πολυπλέκτης (Mul plexer) Ο

Διαβάστε περισσότερα

- 1 - Ασκήσεις Ψηφιακών Συστημάτων

- 1 - Ασκήσεις Ψηφιακών Συστημάτων - 1 - Ασκήσεις Ψηφιακών Συστημάτων Αλγεβρα Boole ΠINAKAΣ 1. Aξιώματα της άλγεβρας Boole (Huntington) Α0. a, b ε B και, το σύνολο B έχει δύο τουλάχιστον στοιχεία. Α1. a+b ε B, a.b ε B Κλειστότης A2. a+b=b+a,

Διαβάστε περισσότερα

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005 ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Φεβ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 2-ii: Συνδυαστικά Λογικά Κυκλώµατα (2.6 2.8, ) Περίληψη Υλοποίηση κυκλωµάτων πολλαπλών επιπέδων (µετασχηµατισµοί)

Διαβάστε περισσότερα

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΠΜΣ στις Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών Διδάσκων : Παρασκευάς Κίτσος Επίκουρος Καθηγητής pkitsos@teimes.gr 1 Τμήμα των διαλέξεων

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Επιµέλεια διαφανειών: Χρ. Καβουσιανός Βασικοί Ορισµοί Δυαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το Σ αντιστοιχίζει ένα στοιχείο του

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 20 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 206 ΔΙΑΛΕΞΗ 2: Συνδιαστική Λογική (Κεφ. 2Α) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Δυαδική Λογική και Πύλες

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Σύνθετα Συνδυαστικά Κυκλώµατα Πύλες AND Πύλες OR Πύλες NAND Τυχαία Λογική Πύλες NOR Πύλες XNOR Η ολοκληρωµένη

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 11: Βασικές έννοιες ψηφιακής λογικής Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Γιατί χρησιμοποιούμε

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδυαστική Λογική / Κυκλώματα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδυαστική Λογική / Κυκλώματα ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Κυκλώματα (Μέρος ) Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Βελτιστοποίηση

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Α. ΦΟΥΡΝΑΡΗΣ, Π. ΚΙΤΣΟΣ, Ν. ΣΚΛΑΒΟΣ Σ. ΛΟΥΒΡΟΣ,

ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Α. ΦΟΥΡΝΑΡΗΣ, Π. ΚΙΤΣΟΣ, Ν. ΣΚΛΑΒΟΣ Σ. ΛΟΥΒΡΟΣ, 2015 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΒΙΒΛΙΟ ΕΡΓΑΣΤΗΡΙΟΥ Α. ΦΟΥΡΝΑΡΗΣ, Π. ΚΙΤΣΟΣ, Ν. ΣΚΛΑΒΟΣ Σ. ΛΟΥΒΡΟΣ, ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΑΝΤΙΡΡΙΟΝ 2015

Διαβάστε περισσότερα

ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ

ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ Λ Ο Γ Ι Κ Η Σ Χ Ε Ι ΑΣ Η ΒΙΒΛΙΟ ΕΡΓΑΣΤΗΡΙΟΥ ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ ΤΜΗΜΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & ΙΚΤΥΩΝ ΠΑΡΑΡΤΗΜΑ ΝΑΥΠΑΚΤΟΥ ΝΑΥΠΑΚΤΟΣ 2005 ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Λ Ο Γ Ι Κ Η Σ Χ Ε Ι Α Σ Η ΒΙΒΛΙΟ ΕΡΓΑΣΤΗΡΙΟΥ

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 1-1 Σχηµατισµός Μηνύµατος 1 1-2 Βάση Αρίθµησης 2 1-3 Παράσταση Αριθµών στο εκαδικό Σύστηµα 2 Μετατροπή υαδικού σε εκαδικό 3 Μετατροπή εκαδικού σε υαδικό 4

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 8 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Άλγεβρα Boole Ορισμοί Λογικές πράξεις Πίνακες αληθείας Πύλες

Διαβάστε περισσότερα

Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ

Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ Ψηθιακά ςζηήμαηα - Διζαγωγή Καθ. Π. Βλασόποςλορ 1 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 2 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 3 Κςκλώμαηα Γιακοπηών και Λογικέρ

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Εισαγωγή στη Γλώσσα VHDL

Εισαγωγή στη Γλώσσα VHDL Εισαγωγή στη Γλώσσα VHDL Παράδειγμα and3 Entity και Architecture Entity Entity - Παραδείγματα Architecture VHDL simulation παραδείγματος and3 Παράδειγμα NAND VHDL simulation παραδείγματος nand Boolean

Διαβάστε περισσότερα

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

Διαβάστε περισσότερα

ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Ι ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Ι ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Ι ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΔΙΑΡΚΕΙΑ : 150 ΠΡΟΣΟΧΗ Απαντάτε και επιστρέφετε μόνο τη παρούσα κόλλα. Δε θα βαθμολογηθεί οτιδήποτε άλλο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΤΟΣ ΣΠΟΥΔΩΝ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ ΥΠΟΓΡΑΦΗ

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Κεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole

Κεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole Κεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται και αναλύονται οι βασικές αρχές λειτουργίας των ψηφιακών κυκλωμάτων, παρουσιάζεται η άλγεβρα Boole και πώς χρησιμοποιείται

Διαβάστε περισσότερα

Ενότητα 6 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΥΝΔΥΑΣΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΠΟΛΛΩΝ ΕΠΙΠΕΔΩΝ

Ενότητα 6 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΥΝΔΥΑΣΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΠΟΛΛΩΝ ΕΠΙΠΕΔΩΝ Ενότητα 6 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΥΝΔΥΑΣΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΠΟΛΛΩΝ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Ανάλυση Συνδυαστικής Λογικής Σύνθεση Συνδυαστικής Λογικής Λογικές Συναρτήσεις Πολλών Επιπέδων Συνδυαστικά

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. Ενότητα: Ψηφιακά Συστήματα. Δρ. Κοντογιάννης Σωτήρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Ψηφιακά Συστήματα. Ενότητα: Ψηφιακά Συστήματα. Δρ. Κοντογιάννης Σωτήρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Ψηφιακά Συστήματα Ενότητα: Ψηφιακά Συστήματα Δρ. Κοντογιάννης Σωτήρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Μεταπτυχιακή Εξειδίκευση στα Πληροφοριακά Συστήματα Θεματική Ενότητα ΠΛΣ-5 ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ - ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΑΛΙΑΣ - Δρ. Λάμπρος Μπισδούνης Σύμβουλος Καθηγητής

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ 6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕ ΩΝ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα