Ranking method of additive consistent fuzzy judgment matrix considering scale
|
|
- Φιλομήλ Θέτις Μακρή
- 7 χρόνια πριν
- Προβολές:
Transcript
1 @ 38 7 ffi u_o$xmd:) Vol.38, No Π 7 J Systems Egieerig Theory & Practice July, 2018 doi: / (2018) jas_wξ: O223; C934 m}ffibo: A flψz ~ 6>L8"ffl(ΛρI~&: Π wffl`, T q, zoff, fl! ()0iscffiftfi& tfi&, ) ) G = flhξuω μe.mοχ-ρ l~ p(}ff^]ysψ +V'Y fi, _ Ua fi #% d±*.y$ _Q[W-Y,,U xφ"% 0 1 Q[Ymοχ-ρ l~ p(. k, /ν* v Q[ Ymοχ-ρ l~rp(y}ff^]jμe x. 1k, Zψvgψ lq[, RbUgψ lq[ mοχ-ρ l~ p(y}ff^]j μex, ΠXμe.}ff^]jμexΞ»ß±ΛYffiχ. flμ} l~ p(; }ff^]; Q[; mοχ-ρ Rakig method of additive cosistet fuzzy judgmet matrix cosiderig scale LIU Weifeg, CHANG Jua, MENG Jitao, YANG Yog (College of Sciece, Zhegzhou Uiversity of Aeroautics, Zhegzhou , Chia) Abstract It is foud from the umerical example that the rage of parameter i the rakig method of additive cosistet fuzzy judgmet matrix i the related literatures is ot appropriate, ad by aalyzig the process of proof, the problem existed i the rakig method is due to idiscrimiate scale. Hereby, it is poited out that the series of results i the related literatures are oly suited to additive cosistet fuzzy judgmet matrix i scale 0 1. The, based o scale , the rakig method ad results about additive cosistet fuzzy judgmet matrix are reproved. Fially, geeralized fuzzy scale is defied, ad the rakig method ad results about additive cosistet fuzzy judgmet matrix with geeralized fuzzy scale are discussed, which realized the rakig methods ad results i the related literatures uificatio i forms. 1 C< Keywords fuzzy judgmet matrix; rakig method; scale; additive cosistecy KB UΨIBX [1] O$, ffiψibx [2,3]»7Mffl>FRaam* Ψ1:3 1Offi X [3,4], O E@ßM1 : f, D$VNiΨI:,c c [3,4], 6,MHρ $i, ffiψibxc $t:fixtw, +)2hHρUTpΠ9=. :ΞU, tb ffiψibx: ±ffxr:!>.=fi9eam:!>". -Mk7 ffiψibx:,c, VΨ±ffXR2hQ0^h av:,v@#ffi,c ffiψibx:±ffxr, *l [5 18];,V@ffffi,c ffiψibx:±ff XR, *l [18 28]. xw] Xml [4 9] itb ffiψibx:#ffi,c 0fl t±ffxr, 7+ot:!> ). l -ff+*: PH ο: hkb (1976 ),, Φ 5ο%, d0d, "?YΞ: ffljχ, IffY. ß5$: ~"q#pχρ6 Πρ6 ~ ( ); Φ 7i=χ BP" ~ (18A110032) Foudatio item: Natioal Natural Sciece Foudatio of Chia ( ); Key Scietific Research Projects i Colleges ad Uiversities of Hea (18A110032) N0BEfi,: hkb, ψf, u6w, =. NlffiH;$ffl-d» fflωjcy; fiys [J]. v`p%ye;*, 2018, 38(7): D0BEfi,: Liu W F, Chag J, Meg J T, et al. Rakig method of additive cosistet fuzzy judgmet matrix cosiderig scale[j]. Systems Egieerig Theory & Practice, 2018, 38(7):
2 @ 7 ffi hkb, =: NlffiH;$ffl-d» fflωjcy; fiys 1837 [4] ]ze#ffi,c c $VHρNi:,c, Xme#ffi,c ffiψibx: f, h$th ρi<= ffiψibxcdexmß*; l [5, 6]!>e»^flGx: ffiψibx, l(e,k]= : ffiψibx:±ffxr; l [7] 4Be=#ffi,c ffiψibxffl>6r(aam* Ψ1: X, O pm!>effl>6r(aam* Ψ1:#ffi,c ffiψibxdffl>6rm* $Gflm_( :tu, χ r ij = α(w i w j )+0.5, ffli 0 <α 0.5, K,8 eψj:iffi]z; l [8] ] ß4 ffil(e#ffi,c ffiψibx:,kflm±ffq=, e α :fi`vgh α 0.5( 1); l [9] a(l [8] i±ffxr7a=b#ffi,c ffiψibx, h,3 l [6], l(e,k ffiψibx: ±ffxr. l [4 9] :!>3mKBQRd0 ffiψibx:±ffxre@m*:xm34π9='`. 4@, l [7 9]MXm ffiψibx:±ffxrflffl t3m9, r@ψjff^flg[, O@i_ >/flg}'h 0 1 flg, 4 t:^i: ffiψibx@tb flg:.?:1, ffiψib X:±ffXRflffl t3mdflg:fl=v»q^. h,, Cy],kψS:^Lzl [8, 9] ißifi `Vg/M[, ^re[( :G6MBr@ff^flG. "fi, Kl [7 9] i: t3m8 mωe X, l( flgx:#ffi,c ffiψibx±ffxrπ t3m. tfi, D4ey4 ffiflg, l (y4 ffiflgx:#ffi,c ffiψibx:±ffxrflffl t3m, <9 0 1 flgπ flg x:±ffxrπ t3m"hffly^,.o<9l [7 9] i±ffxrπ t3m: =1:_, [4] 4BX R =(r ij ), - 0 r ij 1, O!BX ffibx. 4BX R=(r ij ) h ffibx, - r ij +r ji =1,i,j =1, 2,,, O!BX ffiψibx. 4BX R =(r ij ) h ffiψibx, - r ij = r ik r jk +0.5,i,j,k =1, 2,,, O!BX 4 [29] 4 w =(w 1,w 2,,w ) ffiψibx R :±ffλc, * K&3 k =1, r ik r jk, q w i w j, 5U@<= r ik = r jk,k =1, 2,, w i = w j, O!BX R :±ff 5 [11] 4 ffiψibx R =(r ij ), - r ij 0.5, OKB&3 k =1, r ik r jk ; - r ij =0.5, OKB&3 k =1, r ik r jk, οu r ik r jk, O!BX R :ff+a:. 3 1.Ψ χ 1 [8] 4 R = h 3 2#ffi,c ffiψibx l [8] DX 4.1 ]zeßi α :fi`h α 1 2 ( 1), Mg^iLzßI α< 1 2 ( 1) 9,»ΛΠ ]flm: e.?bg^i =3,Lzα 1, χ α»λπb 1, 4@5 α =0.8 < 1 9, Q0ψS(flm^ h w 1 = 7 12, w 2 = 1 12, w 3 = g^lzl [8, 9] i±ffq=ißi α :fi`vg» ψ. xw^rl [8] DX 4.1 :]zi, 6c α 1 2 ( 1) :G6, l( α : ψfi`vg. l [8] ] z α 1 2 ( 1) : $*x: Mk7 w i : e,.o97 1 α ( 1 X, s 0.5 k=1 r ik 0.5, B@ α max{ 2 k=1 r ik} = 2 k=1 r ik 1 5 ) 1, χ α 2 k=1 r ik.?b R h ffiψib 0.5 = w]zQ0Q, l [8] Mb6 α :fi`vg9, 7=egl :7X 2.1, Og7X&4 ffiψ IBX R =(r ij ) ο= 0 1 flg,.o@ 0.5 k=1 r ik 0.5, 8Ob6( α @, g^i ffi ΨIBX R =(r ij ) ο=:@ flg, O 0 1 flg. 6,, s FR_Π:Vg9g h 0.1( 1) k=1 r ik 0.9( 1) + 0.5, so97ßi α :fi`vgh α max{ 2 k=1 r ik} = 2 [0.1( 1) + 0.5] = 2 5 ( 1).
3 1838 v`p%ye ; 38 G?1w:^rQ09^, flg:»^ν< 7flmq=i:ßIfi`. 4l [8, 9] i r@/flgv ψjff^, O@}' ffiψibxh 0 1 flg,.ob6(ßi α 1 2, 6,l [8, 9] i: t3m@ tb 0 1 flg:. 4@^ 1 i: ffiψibxο=:@ flg, so/ßifi`h α 1 2, / ffl=bflmq=» A,.Oνν( 5ßI α =0.8 9, ±ffq=("q0<=:μt. 6,, 9gWK»^:flG^ Xm±ffq=:ψS, ν»ν( ^ 1 i:μt »7?M9# )ΞffJ ';Φ± *jvlz, 0x2fl:BXJaflGh : ffi ΨIBX. ffi 1 4 R =(r ij ) h ffiψibx, O 0.1( 1) k=1 r ik 0.9( 1) ffi 2 4 R =(r ij ) h ffiψibx, O R h#ffi,c ffiψibx5 75, /M 2 e}, Λc w =(w 1,w 2,,w ) T 0fl I α, <9 i, j =1, r ij = α(w i w j )+0.5. K! (&^ ) Dl [8] DX 2.3 ]z ^. (Ω* ) 4 R h#ffi,c ffiψibx, fid α 2 5 ( 1). w i :}, ]zdl [8] DX 2.3 i ^, V[7μ]z w i : e. g w i = 1 1 5α 2( 1) 5 k=1 r ik,? 0.1( 1)+0.5 k=1 r ik Q^, w i 1 1. A^ α 2 5 ( 1), O w i ( 1) 2( 1) 5 =0. [0.1( 1)+0.5] = ffi 3 4 ffiψibx R =(r ij ) ifrdfflflmpstu= r ij = α(w i w j )+0.5, OfflflmΩ "? w i = 1 1 k=1 r ik l(. ffi 4 4 R =(r ij ) h#ffi,c ffiψibx, OfflflmQ? w i = 1 1 k=1 r ik ψs. ffi 5 4 R =(r ij ) h ffiψibx, w =(w 1,w 2,,w ) T?tΠP#RψD, χv@xw ~ [:4 mi z = i=1 j=1 [0.5+α(w i w j ) r ij ] 2, s.t. w i =1,w i 0,i=1, 2,,. q(@ w i = 1 1 k=1 r ik. K! Dl [8] DX 3.3 ^. ffi 6 4 R =(r ij ) h ffiψibx, -ffl e}, flmλcq? w i = 1 1 i=1 k=1 r ik ψ S, OßI α Ωνps α 2 5 ( 1). K! +li? 3 μ^[^r. ffi 7 4 R =(r ij ) h ffiψibx, -fflflmλcpstu= r ij = α(w i w j +0.5), O R i& 3akFR:flm_flDßI α "UΨ, 1 1 w i w j 1 1. K!? r ij = α(w i w j +0.5) Q^, w i w j = 1 α (r ij 0.5), χ w i w j DßI α "UΨ.?B 0.1 r ij 0.9,.O@ 0.4 r ij , χ r ij ^9Mk7 α 2 5 ( 1), s O@ w i w j = 1 α r ij ( 1) 0.4 = 1 1. ffi 8 4 A =(a ij ) h ffiψibx, g r i = j=1 a ij,i=1, 2,,, v*xfiμ r ij = ri rj 2( 1) + 0.5,i,j =1, 2,,, 97#ffi,c ffiψibx R =(r ij ), O? R :FR r ij Dflm w i :tu= r ij = α(w i w j +0.5), ß9:flmΛc w =(w 1,w 2,,w ) T ps w i = 1 1, 2,,, fflißi α 2 5 ( 1). K! Dl [9] idx 1 ]z ^. 5 ffia 3»7?M9# )ΞffJ ';Φ± 4α( 1) + 1 2α( 1) k=1 a ik,i= xw/ 0 1 flg qflg0fl 0.1 ffiflg8 by, mdvt:y Zl(y4 ffiflg:d4. "fi, l(y4 ffiflgx: ffiψibx:±ffxrπ t3m, <9l [7 9] ΠlißB qflg: t3 6 y4 ffiflgd4*x:
4 @ 7 ffi hkb, =: NlffiH;$ffl-d» fflωjcy; fiys ffl>%frd/fr^(m*, 0.5+δ i, i =1, 2,,t ^ ffl>%frψ/frm*:$g, 0.5+δ i H2, fflz%frψ/frm*:$gh2; 0.5 δ i, i =1, 2,,t ^ ffl>%fr»ψ/fr m*:$g, 0.5 δ i HΠ, fflz%frψ/fr»m*:$gh2, ffli δ i [0, 0.5], i =1, 2,,t δ 1 δ 2 δ t. z", y4 ffiflgi@ 2t +1kflG`, 0.5 ± δ i [0, 1], i =1, 2,,t. ffi 9?y4 ffiflgl(ψibx R =(r ij ) E@xw f: 1)r ij =0.5; 2) r ij + r ji =1. z",?y4 ffiflgl(ψibx R =(r ij ) h ffiψibx. O 1 5 t =1,δ 1 =0.5 9, y4 ffiflgχh 0 1.flG; 5 t =4,δ 1 =0.1, δ 2 =0.2, δ 3 =0.3, δ 4 =0.4 9, y4 ffiflgχh qflg; 5 t =4,δ 1 =0.061, δ 2 =0.175, δ 3 =0.362, δ 4 =0.4 9, y4 ffiflgχh 0.1 O 2 /y4 ffiflgi: 2t +1kflG` 0.5, 0.5+δ i, i =1, 2,,t!hGflG, fflv=o*@hρ U-_ ffiψibx9<=. Mk7μ^l imß4flmλc9, ffk ffiψibxviffifi 97, c ffiψibx, Ψ*l [6] iveiffifi r ij = ri rj 2( 1) +0.5,,9 r ij,λ»lfi`h 0.5, 0.5+δ i, i =1, 2,,t, 4 r ij [0.5 δ t, 0.5+δ t ], h,ot»z! r ij hgflg:φ6flg. heffbmg, ot/gflg:t2` 0.5+δ t ΠtΠ` 0.5 δ t ^!h M 0,m 0. "fi, My4 ffi flgx, l( ffiψibx:±ffxrπ t3m. ffi 10 4 R =(r ij ) h ffiψibx, O m 0 ( 1) k=1 r ik M 0 ( 1) ffi 11 4 R =(r ij ) h ffiψibx, O R h#ffi,c ffiψibx5 75, /M 2 e}, Λc w =(w 1,w 2,,w ) T 0fl I α, <9 i, j =1, r ij = α(w i w j )+0.5. K! (&^ ) Dl [8] DX 2.3 ]z ^. (Ω* ) 4 R h#ffi,c ffiψibx, fid α (0.5 m 0 )( 1). w i :}, ]zdl [8] D X 2.3 i ^, V[7μ]z w i : e. g w i = 1 1 2α+(2m 0 1)( 1) 2 k=1 r ik,? m 0 ( 1)+0.5 k=1 r ik Q^, w i 1 1. A^ α (0.5 m 0 )( 1), O w i 2(0.5 m0)( 1)+(2m0 1)( 1) 2 =0. [m 0( 1)+0.5] = ffi 12 4 ffiψibx R =(r ij ) ifrdfflflmpstu= r ij = α(w i w j )+0.5, OfflflmΩ "? w i = 1 1 k=1 r ik l(. ffi 13 4 R =(r ij ) h#ffi,c ffiψibx, OfflflmQ? w i = 1 1 k=1 r ik ψs. ffi 14 4 R =(r ij ) h ffiψibx,w =(w 1,w 2,,w ) T?tΠP#RψD, χv@xw ~ [:4 mi z = i=1 j=1 [0.5+α(w i w j ) r ij ] 2, s.t. w i =1,w i 0,i=1, 2,,. q(@ w i = 1 1 k=1 r ik. K! Dl [8] DX 3.3 ^. ffi 15 4 R =(r ij ) h ffiψibx, -ffl e}, flmλcq? w i = 1 1 k=1 r ik ψs, OßI α Ωνps α (0.5 m 0 )( 1). K!?flm: e Q^, w i = 1 1 i=1 k=1 r ik 0, χ@ 1 α ( 1 k=1 r ik 1 5 ) 1,.O@ α 2 k=1 r ik.?b R =(r ij ) h ffiψibx, s@ m 0 ( 1) k=1 r ik M 0 ( 1) + 0.5, B@@ α max{ 2 k=1 r ik} = 2 [m 0( 1) + 0.5] = (0.5 m 0 ) +(m 0 0.5) = (0.5 m 0 )( 1). ffi 16 4 R =(r ij ) h ffiψibx, -fflflmλcpstu= r ij = α(w i w j +0.5), O R i& 3akFR:flm_flDßI α "UΨ, 1 1 w i w j 1 1. K!? r ij = α(w i w j +0.5) Q^, w i w j = 1 α (r ij 0.5), χ w i w j DßI α "UΨ.?B m 0 r ij M 0,.O@ m r ij 0.5 M 0 0.5, Mk7 m 0 + M 0 =1,O@ m r ij m 0, χ r ij m 0. ^9Mk7 α (0.5 m 0 )( 1), s@ w i w j = 1 α r ij (0.5 m 0)( 1) (0.5 m 0)= 1 1.
5 1840 v`p%ye ; 38 G ffi 17 4 A =(a ij ) h ffiψibx, g r i = j=1 a ij,i=1, 2,,, v*xfiμ r ij = ri rj 2( 1) + 0.5,i,j =1, 2,,, 97#ffi,c ffiψibx R =(r ij ), O? R :FR r ij Dflm w i :tu= 4α( 1) + 1 r ij = α(w i w j +0.5), ß9:flmΛc w =(w 1,w 2,,w ) T ps w i = 1 2α( 1) k=1 a ik,i= 1, 2,,, fflißi α (0.5 m 0 )( 1). K! Dl [9] idx 1 ]z ^. O 3 5 m 0,M 0 ^ 0, 1 Π 0.1, 0.9, χ ffiψibx^ h 0 1 flgπ flg9, DX 10 DX 17 ^ c hl [8, 9] i t3mπlidx 1 8. xwxmy4 ffiflgx±ffλc: f. ffi 18 4 A =(a ij ) h ffiψibx, Offl±ffΛc@,xΠff:, ffli w i = 1 4α( 1) + 1 2α( 1) a ik,i=1, 2,,,α (0.5 m 0 )( 1). K! 4 w =(w 1,w 2,,w ffiψibx A =(a ij ) :±ffλc, O@ w i = 1 4α( 1) + 1 2α( 1) k=1 k=1 a ik,w j = 1 4α( 1) + 1 2α( 1) a jk. -KB k =1, a ik a jk, O@ w i, w j :ffl0=q^ w i w j. A5U@<= a ik = a jk (k =1, 2,,) "_9, z"@ w i = w j. 6,, ±ffλc@,xπff:. ffi 19 ffiψibx A =(a ij χ- a ij 0.5, O@ w i w j ; - a ij =0.5, OοU w i w j, οu w i w j. 6 νf ] ^rψs:^lze, flg:»^k ffiψibx:±ffq=ßifi`vg@pψ2:<. " fi, Xme flgx#ffi,c ffiψibx:±ffxrflffl t3m. tfi, r Mk7 0 1 Π flg:r^yz, D4ey4 ffiflg,!>ey4 ffiflgx: ffiψibx:±ffxrπ t:3m, : el [7 9] i±ffxrπ t3m =1:_,. li!>3 X»e»^flGx:#ffi,c ffiψibx:±ffxr, afπqre ffiψibx±ffxmπxr. fi/4 [1] e`], ρh. fi-_ss8 [M]. <: j~%x3χ)ξ3, Wag L F, Xu S B. Itroductio to aalytic hierarchy process[m]. Beijig: Chia Remi Uiversity Press, [2] οpk.!enf»iffysffi:> [M]. <: 3χ)Ξ3, Xu Z S. Ucertai multiple attribute decisio makig: Methods ad applicatios[m]. Beijig: Tsighua Uiversity Press, [3] Chiclaa F, Herrera F, Herrera-Viedma E. Itegratig three represetatio models i fuzzy multipurpose decisio makig based o fuzzy preferece relatios[j]. Fuzzy Sets ad Systems, 1998, 97(1): [4] )y, S/. ffl-dcyffi N,Pχj;:> [J]. v`p%, 1997, 15(2): Yao M, Zhag S. Fuzzy cosistet matrix ad its applicatios i soft sciece[j]. Systems Egieerig, 1997, 15(2): [5] fkχ, οpk. ffl AHP j-lff;ffihs [J]. K'EvY, 1998, 7(2): Li J C, Xu Z S. A ew scale i FAHP[J]. Operatios Research ad Maagemet Sciece, 1998, 7(2): [6] οpk. ffl ΩJCY fi;-lts [J]. v`p%χ±, 2001, 16(4): Xu Z S. Algorithm for priority of fuzzy complemetary judgemet matrix[j]. Joural of Systems Egieerig, 2001, 16(4): [7] SfiL. fflfi-_ss (FAHP)[J]. fflv`ejχ, 2000, 14(2): Zhag J J. Fuzzy aalytical hierarchy process[j]. Fuzzy Systems ad Mathematics, 2000, 14(2): [8] ji9. ρc ffl-dcy; fflfi-_ss; fi [J]. fflv`ejχ, 2002, 16(2): Lü Y J. Weight calculatio method of fuzzy aalytical hierarchy process[j]. Fuzzy Systems ad Mathematics, 2002, 16(2): [9] SfiL. ffl ΩJCY fi;-lffys [J]. K'EvY, 2005, 14(2): Zhag J J. A ew rakig method of fuzzy complemetary judgemet matrix[j]. Operatios Research ad Maagemet Sciece, 2005, 14(2): k=1
6 @ 7 ffi hkb, =: NlffiH;$ffl-d» fflωjcy; fiys 1841 [10] Thfl, fl~`. fflωjcy-d»φ;ffi fiys [J]. K'EvY, 2000, 9(3): Fa Z P, Hu G F. The cosistecy approximatio ad rakig method for fuzzy judgemet matrix[j]. Operatios Research ad Maagemet Sciece, 2000, 9(3): [11] οpk. z5 ffl-d»cyffi fiys [J]. 5[LYp3χχ±, 2000, 1(6): Xu Z S. Geeralized fuzzy cosistet matrix ad its priority method[j]. Joural of PLA Uiversity of Scieces ad Techology, 2000, 1(6): [12] οpk. ffl ΩJCY fi;u±yffis [J]. v`p%ye;*, 2001, 21(10): Xu Z S. The least variace priority method (LVM) for fuzzy complemetary judgemet matrix[j]. Systems Egieerig Theory & Practice, 2001, 21(10): [13].%fi, Thfl. ρc fflωjcy;-ly fiys [J]. F 3χχ± (q#pχξ), 2000, 21(4): Jiag Y P, Fa Z P. A method for rakig alteratives based o fuzzy judgemet matrix[j]. Joural of Northeaster Uiversity (Natural Sciece), 2000, 21(4): [14] #, Qm1, ZΩfl. ffl CY fiξd;ρ5ts [J]. <8W3χχ± (q#pχξ), 2007, 43(2): Xig Y, Zeg W Y, Li H X. A kid of method to calculate the priority vector of fuzzy reciprocal matrix[j]. Joural of Beijig Normal Uiversity (Natural Sciece), 2007, 43(2): [15] Qxfl, '8. fflωjcy fiξd;!eys"? [J]. fflv`ejχ, 2004, 18(2): Sog G X, Yag D L. Study o approaches for determiig the priority weight vector of fuzzy judgemet matrix[j]. Fuzzy Systems ad Mathematics, 2004, 18(2): [16] Qxfl, '8.!E fflωjcy fiξd;bwys [J]. v`p%yys:>, 2004, 13(2): Sog G X, Yag D L. Two kids of approaches for determiig the priority weight vector of fuzzy judgemet matrix[j]. Systems Egieerig Theory Methodology Applicatios, 2004, 13(2): [17] Michele F, Matteo B. O the priority vector associated with a reciprocal relatio ad a pairwise compariso matrix[j]. Soft Computig: A Fusio of Foudatios, Methodologies ad Applicatios, 2010(14): [18] ji9, %ffw, xa;. ρc Lw; ΩJCY fiys [J]. v`p%ye;*, 2011, 31(7): Lü Y J, Cheg H T, Ta J Y. Complemetary judgemet matrix rakig method based o relative etropy[j]. Systems Egieerig Theory & Practice, 2011, 31(7): [19] Thfl,.%fi, ΦO. fflωjcy;-d»ffi»g [J]. SeEIff, 2001, 16(1): Fa Z P, Jiag Y P, Xiao S H. Cosistecy of fuzzy judgemet matrix ad its properties[j]. Cotrol ad Decisio, 2001, 16(1): [20] Thfl, ZΩ&. ρc Fuzzy ffλuv;-lys fiys [J]. F 3χχ± (q#pχξ), 1999, 20(6): Fa Z P, Li H Y. A rakig method for alteratives based o fuzzy preferece relatio[j]. Joural of Northeaster Uiversity (Natural Sciece), 1999, 20(6): [21] Thfl, ZΩ&, fl~`. -W Fuzzy ΩJCYffiY fi;~ffi»ys [J]. F 3χχ± (q#pχξ), 2000, 21(1): Fa Z P, Li H Y, Hu G F. Fuzzy judgemet matrix ad the goal programmig method for rakig alteratives[j]. Joural of Northeaster Uiversity (Natural Sciece), 2000, 21(1): [22] Xu Z S, Da Q L. A least deviatio method to obtai a priority vector of a fuzzy preferece relatio[j]. Europea Joural of Operatioal Research, 2005, 164(1): [23] οpk. ΩJCY;bl fiys ffi;u±flysffiz[ξds [J]. v`p%ye;*, 2002, 22(7): Xu Z S. Two methods for priorities of complemetary judgemet matrices Weighted least-square method ad eigevector method[j]. Systems Egieerig Theory & Practice, 2002, 22(7): [24].%fi, Thfl. -l>c fflωjcy fi; χ 2 YS [J]. F 3χχ± (q#pχξ), 2000, 21(5): Jiag Y P, Fa Z P. Chi-square rakig method for the fuzzy judgemet matrix[j]. Joural of Northeaster Uiversity (Natural Sciece), 2000, 21(5): [25] RPχ, 1ν], οpk. ΩJCY fi;z5 χ 2 S [J]. F 3χχ± (q#pχξ), 2002, 32(4): Kog S Q, Da Q L, Xu Z S. Geeralized chi square method for priorities of complemetary judgemet matrices[j]. Joural of Southeast Uiversity (Natural Sciece Editio), 2002, 32(4): [26] hkb, ±w. fflωjcy fiξd;u±ffffis [J]. fflv`ejχ, 2012, 26(6): Liu W F, He X. A Least deviatio method of priority vector for derivig priority of fuzzy judgemet matrix[j]. Fuzzy Systems ad Mathematics, 2012, 26(6): [27] Masamichi S. Fuzzy sets cocept i rak-orderig objects[j]. Joural of Mathematical Aalysis ad Applicatios, 1973, 43(3): [28] Tesuzo T. Fuzzy preferece orderigs i group decisio makig[j]. Fuzzy Sets ad Systems, 1984, 12(2): [29] Saaty T L, Luis G V. Icosistecy ad rak preservatio[j]. Joural of Mathematical Psychology, 1984, 28(2):
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA
16 3 013 3 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 16 No 3 Mar 013 1 K 30007 K Hausdorff K K K O1 4 A 1007-9807 013 03-001 - 08 0 3 X = 5 36 K SDA 1 symbolic data aalysis SDA 3 5 SDA 1 011-06 - 15
PACS: Pq, Tp
Acta Phys. Si. Vol. 61, No. 4 (212) 456 * 1)2) 1) 1) (, 213 ) 2) (, 3325 ) ( 211 4 18 ; 211 7 6 ),., ; Rossler,,, ;. :,,, PACS: 5.45.Pq, 5.45.Tp 1,,. Takes [1] [2 5],,,,.,, [6]., [7] Lyapuov [8],,,. (extreme
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Research on Real-Time Collision Detection Based on Hybrid Hierarchical Bounding Volume
20 2 Vol. 20 o. 2 2008 Joural of System Simulatio Ja., 2008 6024 SphereOBB X Z X Sphere OBB-Sphere Z OBB Sphere Sphere OBB OBB OBB OBB TP9.9 A 004-7X (2008) 02-72-06 Research o Real-Time Collisio Detectio
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT
2003 6 RESEARCH & DEVELOPME 00-893X(2003) 06-003 - 06 3 CDMA Ξ,, (, 36005), roecker Delta, CDMA, DS - CDMA, CDMA, CDMA CDMA, CDMA, Gold asami DS - CDMA CDMA ; ; ; 929. 5 ;O45. 5 A Performace Aalysis of
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Journal of Central South University (Science and Technology) Jun i p i q
4 3 ( ) Vol.4 No.3 6 Joural of Cetral South Uiversity (Sciece ad Techology) Ju. pq i p i q (. 483. 483) pq i p i q pq TM74 A 6777()357 A improved i p i q detectio approach of positive fudametal active
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Rapid Acquisitio n of Doppler Shift in Satellite Co mmunicatio ns
7 3 7 ATA ELETRONIA SINIA Vol. 31 No. 7 July 3 1, 1, (1., 184 ;., 444) :., PN,.,,. : ; ; ; : TN9 : A : 3711 (3) 7155 Rapid Acquisitio of Doppler Shift i Satellite o mmuicatio s HUAN Zhe 1,LU Jiahua 1,YAN
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Generalizatio n of Funda mental Theore m of Pro bability Lo gic
7 2007 7 ACTA ELECTRONICA SINICA Vol. 35 No. 7 July 2007 1,2, 1,3 (1., 710062 ; 21, 710049 ; 31, 716000) :,,., gp, 2. : ; ; ; ; ; gp2 : O142 : A : 037222112 (2007) 0721333208 Geeralizatio of Fuda metal
PACS: Mj, Dp, Ta
* )2)3) 2) 4) 4) ) (, 26607 ) 2) (, 26606 ) 3) (, 00049 ) 4) (, 266003 ) ( 20 8 22 ; 20 0 2 ),.,,, ;,,,.. :,, PACS: 42.68.Mj, 42.8.Dp, 92.60.Ta,, 4., 5 7. 9, Mouche, :, HH VV, Mouche., Zhag 0 Wag, HH VV,.,
Pro duction Technology and Technical Efficiency in ( k, y) Sp ace
15 5 Vol. 15 No. 5 006 10 OPERA TIONS RESEARCH AND MANA GEMEN T SCIENCE Oct. 006 ( 150001) : K L Y k ( L ) y ( K L Y) ( k y) ( k y) ( k y) ( K L Y) ( C R ) C R ( k y) : ; ;; : F4. 0 :A :100731 (006) 05007505
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
!" # C*D ." + % 67$ '*? ( V #% I!5 I! > 3 . #B % !"#$ % &!$ '( )* *!"#$ $+", -.#/0 .#*..#/0!"#$ B 1G L3:*1( CE CLV )#IB Z 4 Q " +* -1 LTV
!" # '( &' $ 4 ' 6 - (! -! - ) 9//4:9 : ; 9/6/4:9 @A ; CD!"#$ &!$ '( )!"#$ $", -.#/ 9( - 67$ -#$ #8 4 #! # " " " " 9D >? @#" 6# ABC? " :;"." ( = # 9( 8B G L 7 7J/ K".#/ 8B G HID 'J # 94/D$. (" ") #$ >$"
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives
America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
POI 2.1 POI POI ( ) ( ) ( 2 ) ; POI 1) POI POI POI ;POI POI Xx ij i 1 TOPSIS [11] TOPSIS POI POI j POI POI ( ) POI POI 2) 1 POI Fig.1 Proc
40 6 20156 GeoaticsadIforatioScieceofWuhaUiversity Vol.40No.6 Jue2015 DOI10.13203/j.whugis20130657 1671-8860(2015)06-0829-05 POI 1 2 1 1 1 1 1 450001 2 75711 510515 POI POI POI POI TOPSIS ;POI; ;TOPSIS
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods
DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
The q-commutators of braided groups
206 ( ) Journal of East China Normal University (Natural Science) No. Jan. 206 : 000-564(206)0-0009-0 q- (, 20024) : R-, [] ABCD U q(g).,, q-. : R- ; ; q- ; ; FRT- : O52.2 : A DOI: 0.3969/j.issn.000-564.206.0.002
T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod
2003 6 6 00026788 (2003) 0620042206 H arlow, 2 3, (., 70049; 2., 7006; 3., 200433) H arlow,,,,, ;, ; ; F832. 5; F830. 9 A T he Op tim al L PM Po rtfo lio M odel of H arlow s ad Its So lvig M ethod W AN
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Finite-time output regulation method for a class of uncertain nonlinear systems
0 07 0 Electri c Machies ad Cotrol Vol. No. 0 Oct. 07 54088 :,,, ;, : ; ; ; ; DOI: 0. 5938 /j. emc. 07. 0. 05 TP 7 A 007-449X 07 0-008- 08 Fiite-time output regulatio method for a class of ucertai oliear
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell
20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
/&25*+* 24.&6,2(2**02)' 24
!! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Optimization Investment of Football Lottery Game Online Combinatorial Optimization
27 :26788 (27) 2926,2, 2, 3 (, 76 ;2, 749 ; 3, 64) :, ;,,, ;,, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Sensitivity analysis of microseismic positioning accuracy based on distribution models of influencing factors
46 9 ( ) Vol.46 No.9 15 9 Joural of Cetral South Uiversity (Sciece ad Techology) Sep. 15 DOI: 1.11817/j.iss.167-77.15.9.36 ( 183) 3 16 3 V e T e D e 3 TU46 A 167 77(15)9 349 8 Sesitivity aalysis of microseismic
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ
Japanese Fuzzy String Matching in Cooking Recipes
1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe
M in ing the Com pa tib ility Law of M ultid im en siona l M ed ic ines Ba sed on D ependence M ode Sets
39 4 ( Vol. 39 No. 4 2007 7 JOURNAL OF SICHUAN UN IVERSITY ( ENGINEER ING SC IENCE ED ITION July 2007 : 100923087 (2007 0420134205 1, 1, 2, 1, 1, 3 (1., 610065; 2., 610075; 3., 150000 :, MM2 DE (MultidimesioalMedicie
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
: , Technology Economics. Sharma. Oh J eong2dong Lee Seogwon Hwang Alma Hes2. R1J1 Orsato P1 Wells
29 2 2010 2 Techology Ecoomics Vol129, No12 Feb., 2010 2006 2008,, (, 230009) :2006 2008, 2006 2008 :, ;, ;,,(), :;DEA ;; ; : F062. 4 :A :1002-980X(2010) 02-0039 - 06 1,,,, 16,,, [1 ],,, DEA (data evelop
Tutorial on Multinomial Logistic Regression
Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m
Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values
Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q
ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ
ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
th International Conference on Machine Learning and Applications. E d. h. U h h b w k. b b f d h b f. h w k by v y
212 11th International Conference on Machine Learning and Applications C b G E P fi d P P I f Id fy F M d D d W, M O h, E Z,T L C f C S, U v y f M, C G b, FL 33146, USA E : d.w 1@. d, h @.. d D f C S d
Approximation Expressions for the Temperature Integral
20 7Π8 2008 8 PROGRSS IN CHMISRY Vol. 20 No. 7Π8 Aug., 2008 3 3 3 3 3 ( 230026),,,, : O64311 ; O64213 : A : 10052281X(2008) 07Π821015206 Approimation pressions for the emperature Integral Chen Haiiang
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Το μέλλον των μεταφορών στην Ευρώπη: Οι προκλήσεις και η αντιμετώπιση τους
Το μέλλον των μεταφορών στην Ευρώπη: Οι προκλήσεις και η αντιμετώπιση τους Μαρία Μποϊλέ, Άγγελος Αγγελακάκης, Ανέστης Παπανικολάου, Αλκιβιάδης Τρομάρας Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης
Discriminantal arrangement
Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Optimization Investment of Football Lottery Game Online Combinatorial Optimization
27 :26788 (27) 2926,2, 2 3, (, 76 ;2, 749 ; 3, 64) :, ;,, ;, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun
Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο
15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Diane Hu LDA for Audio Music April 12, 2010
Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T
An A lgor ithm of M ea sur ing Var ia tion D egree for Fea ture M odel
35 2 2010 4 ( ) http: / /www. kustjoura l. com / Joural of Kum ig Uiversity of Sciece ad Techology ( Sciece ad Techology) Vol. 35 No12 Ap r. 2010 doi: 10. 3969 / j. iss. 1007-855x. 2010. 02. 018 1, 2 (1.,
!! " # $%&'() * & +(&( 2010
!!" #$%&'() *& (&( 00 !! VISNIK OF HE VOLODYMYR DAL EAS UKRAINIAN NAIONAL UNIVERSIY 8 (50) 00 8 (50) 00 HE SCIENIFIC JOURNAL " 996 WAS FOUNDED IN 996 " - - " I IS ISSUED WELVE IMES A YEAR "#$% Founder
( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]
1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.
Α.Τ.Ε.Ι. ΚΡΗΤΗΣ Σ.Ε.Υ.Π. ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΕΡΓΑΣΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τίτλος: «Χρήση ψυχοτρόπων ουσιών από μαθητές Α Λυκείου της Δευτεροβάθμιας Εκπαίδευσης του Νομού Ηρακλείου και ο ρόλος του Κοινωνικού
Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»
Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date