Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1

2

3 k

4 k

5

6

7 ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G) N G (x) = x v 1 v 5 v 1 v 5 v 3 v 4 v 3 v 4 v 2 v 6 G v 2 v 6 G G G V (G) = V (G ) = {v 1, v 2, v 3, v 4, v 5, v 6 } E(G) = {{v 1, v 2 }, {v 1, v 3 }, {v 2, v 3 }, {v 3, v 4 } {v 1, v 5 }, {v 2, v 6 }, {v 4, v 5 }, {v 4, v 6 }, {v 5, v 6 }} E(G ) = E(G) {{v 1, v 4 }, {v 2, v 5 }}

8 G = (V, E) V = {v 1, v 2, v 3, v 4, v 5, v 6 } E = {{v 1, v 2 }, {v 1, v 3 }, {v 2, v 3 }, {v 3, v 4 } {v 1, v 5 }, {v 2, v 6 }, {v 4, v 5 }, {v 4, v 6 }, {v 5, v 6 }} G G G a b c d b e d e f G a f c G H G = ({a, b, c, d, e, f}, {{a, d}, {a, e}, {a, f}, {b, d}, {b, e}, {b, f}, {c, d}, {c, e}, {c, f}}) G H = ({1, 2, 3, 4, 5, 6}, {{1, 4}, {1, 5}, {1, 6}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 4}, {3, 6}}) G V (G) = {v 1,..., v n } n n A = [a i,j ] (i,j) [n] 2 a i,j = { 1 {v i, v j } E(G) 0 {v i, v j } E(G) G 0 n n! A = A =

9 G G G H σ : V (G) V (H) x, y V (G) x y {x, y} E(G) {σ(x), σ(y)} E(H) G H G H G H G H a c υ ω 4 b 5 2 χ τ e d G f ϕ G ψ 6 3 G 1 Q 3 Q 3 r 0 K r = ({v 1,..., v r }, {{v i, v j } 1 i < j r}) r r G r G K r

10 K 6 K 4,3 K 6 K 4,3 p, q 0 K p,q = (A B, E) A = {v 1,..., v p }, B = {u 1,..., u q } E = {{v i, u j } 1 i p 1 j q} K 1,r r 0 r K 3,3 P 3 C 7 P 3 C 7 r 1 P r = ({v 1,..., v r+1 }, {{v 1, v 2 },..., {v r, v r+1 }}) v 1 v r+1 x y (x, y) r 3 C r = ({v 1,..., v r }, {{v 1, v 2 },..., {v r 1, v r }, {v r, v 1 }}) C 3 (6, 4)

11 V r = {1,..., r} (p, q) (V p V q, {{(x 1, y 1 ), (x 2, y 2 )} x 1 x 2 + y 1 y 2 = 1}). r 0 V r r r Q r = (V r, {{x, y} x, y V r x y }) Q 0 Q 3 Q 1 Q 2 Q i i = 0, 1, 2, 3 G G G V (G) G (G) G 1, 2, 3, 4 1, 4, 3, 2 3, 2, 1, 4 3, 2, 1, 2 (C 4 ) = { 1, 2, 3, 4 1, 4, 3, 2 3, 2, 1, 4 2, 3, 4, 1 3, 4, 1, 2 4, 3, 1, 2 4, 1, 2, 3 2, 1, 4, 3 } (H) = { 1, 2, 3, 4 4, 2, 3, 1 } V (K n ) (K n ) S n n! = (K n ) = S n G C 4 H G C 4 H

12 H H G (G) S n G (G) G n! G x, y V (G) x y σ(x) = y σ (G) x y G G {1, 3} {2, 4} C 4 {1, 2, 3, 4} G {2} {3} {1, 4} H {1, 4} {2, 3, 5, 6} {7} G x y σ (G) σ(x) = y C r r 3 K r r 1 K r,r r 1 G G V

13 ,6 2,1 1 1 G 1 G 2 G 3 G 4 G 5 G 6 G 1 G 2 G 3 G 4 G 5 G 6 {,,,,} G 1 E(G 1 ) = {{,}, {,}, {,}, {,}, {,}, {,}, {,}} G 2 E(G 2 ) = {(,), (,), (,), (,), (,), (,), (,)} G 3 E(G 1 ) 5 1 2, ,6 1 G 4 E(G 1 ) = E(G 1 ) {{}, {}, {}} G 5 E(G 1 ) {,} {,} {,} G 6 E(G 1 ) {{,,}, {,,,}} G = (N, E) E = {{x, y} ( N 2) y 2 = x 3 } G = (R, E) E = {{x, y} ( R 2) y 2 + x 2 = 1} 3 G Q 3

14 A = [a i,j ] 1 i,j r a i,j = (i + j) ( 2) K r/2, r/2 G 1, G 2, G 3 A = [a i,j ] 1 i,j 8 a i,j = (i + j) 2 σ : V (G) V (H) G H S V (G) σ(n G (S)) = N H (σ(s)) S V (G) σ(s) = {σ(v) v S} G m(g) = ( ) n(g) 2 x, y 1 (x, y) P x 1 P y 1 (p, q) 2 p q p q a, b, r C a Q b (r, r) Q r r Q r r 0 G (G) G (G) = 1 G n(g) A

15 n n

16

17 ΚΕΦΑΛΑΙΟ 2 G G G = (V (G), {{x, y} x, y V (G)}\E) G G G G G L(G) = (E(G), {{e 1, e 2 } e 1, e 2 E(G) e 1 e 2 }). a e b a d c e f b G d c f L(G) K 4 L(K 4 ) G H G H G H = (V (G) V (H), {{(x 1, y 1 ), (x 2, y 2 )} ({x 1, x 2 } E(G) y 1 = y 2 ) ({y 1, y 2 } E(H) x 1 = x 2 )}). G H G H = (V (G) V (H), E(G) E(H)) G H = (V (G) V (H), E(G) E(H)).

18 V (G) V (H) = G H G H G H G H G + H G H G H = {V (G) V (H), E(G) E(H) {{x, y} x V (G) y V (H)}}. G H G H G H G + H G H G H G H K 3 K 1,3 K 3 K 1,3 K 3 K 1,3 K 3, K 1,3, K 3 K 1,3 K 3 K 1,3,, +, k 0 G k G = } G + {{ + G }, G [k] = G } {{ G } k k G (k) = } G {{ G}. k G 0 G G (0) K 0 G [0] K 1 K 1 K 2 G 1 G 2 G 1 K 1,K 2 G 2 G 1 G 2 K 1 K 2 G 1 G 2 G 1 G 2 K 1 K 2 K 1 K 2 G K1,K 2 H G H

19 G e E(G) v v e v e v V (G) E G (v) E(G) v E E(G) V (E) = e E e E G S V (G) v V (G) E E(G) e = {x, y} E(G) G\S = (V (G)\S, {{x, y} E(G) {x, y} S = }) G\v = G\{v} G\E = (V (G), E(G)\E) G\e = G\{e} G\{x, y} G\e {x, y} e G\{x, y} {x, y} x y G\e e G v V (G) {x, v} {v, y} x y G/v = (V (G)\{v}, E(G)\{{x, v}, {v, y}} {{x, y}}) v G v e e G H G H G e = {x, y} E(G) v V (G) G/e = (V, E ) V = V (G)\{x, y} {v } E = E(G)\E G (x)\e G (y) {{v, u} u N G ({x, y})\{x, y}} e = {x, y} G x y v {x, y} G

20 u G v e G e G u v G 1 G 2 G 3 f G f G w w G 4 G 5 G 6 T = {\v, /v, \e, /e} T = {\v, /v, \e, /e} \v \e /v /e T = {\v, /v, \e, /e} A T A G H H A G H G A A T A A = {\e, \v} H A G υπ G H G H G A = {\v} H A G ϵν G H G

21 A = {\e} H A G πα G H G A = {\e, \v, /v} H A G τπ G H G A = {\e, \v, /e} H A G ϵλ G H G C 4 C 4 C 5 C 5 G S V (G) G[S] = G\(V (G)\S) G[S] = (S, {{v, u} {v, u} S {x, y} E(G)}). G[S] ϵν G G[S] G S E E(G) G[E] = (V (E), E) G[E] G G H H ϵν G H ϵν G H G H πα H G H ϵν H G H τπ G H ϵλ G υπ ϵν πα τπ ϵλ T = {\v, /v, \e, /e} T G { υπ, ϵν, πα, τπ, ϵλ } G G G G G G G

22 G G G n(g) = 0 1 ( 4) n 3 C n L(C n ) G m(l(g)) ( ) m(g) 2 K p,q + K r,s (K p + K q ) (K r + K s ) K p,q K p + K q K (m) r K m r P p P q (p, q) L(K 4 ) (2 K 1 ) (3) Q r K [r] 2 G (G) = (G) G = {G G L(G)}

23 G k 1 k G, G [k] G (k) G L(G) G k,r V (G k,r ) r k {v, u} E(G k,r ) v u G k,r K [r] k G L(G) G = C i1 + + C ir i j 3 1 j r G 1 G 5 {\e, /v} G e v G\v G/v G\e G/e G K 1 G n T n k k 1 G k q 2 Q q 2 q G 1 K 5 k K 2,4 (k k) T W r = K 1 C r (n n) r 3(n 2) + (n 3) 2 n 3 3 K 1,3 + K 1,3 πα Q 3 Q 3

24 K 1,4 ϵλ Q 3 K 1,4 τπ Q 3 K 3,3 K 5 K 5 r (r, r) Q 3 G K 1,r υπ G K 1,r τπ G r (r, r) L(K 4 ) (r, r) K 1,1+ r 2 (r 1) K 2,1+ r 3 (r 1) K 3,r r 3 G 1 = {C r r 3} G 2 = {P i i 0} G 3 = {Q r r 0} ϵλ τπ υπ πα ϵν k A = {δ (G) G P [k] n n 1} B = {δ (G) G P [k] n n 1}

25 ΚΕΦΑΛΑΙΟ 3 v G G (v) = N G (v). G δ(g) = { G (v) v V (G)} (G) = { G (v) v V (G)} d(g) = 1 n(g) v V (G) G (v) G ϵ(g) = m(g) n(g) G r r (G) = {k K 1,k υπ G}. G v V (G) G (v) = 2 m(g) δ(g) d(g) (G) ϵ(g) = d(g) 2 v G (v)

26 V 1 V 2 V (G) 2 m(g) = G (v) = G (v) + G (v), v V 1 v V 2 v V (G) v V 1 G (v) V 1 G (G) G v V (G) z(g) = ( (G) G (v)). n(g) z(g) G (G) r = (G) G r G 1 = G G < r G ϵν G 1 z(g 1 ) < z(g) G m G υπ G r z(g) = 0 G m r G ϵ(g) δ(g) 2 δ, ϵ 0 δ ϵ G n = K δ+1 + K n δ 1 δ(g) δ ϵ(g n ) = ( δ+1 2 )+( n δ 1 2 ) n n ϵ(g n ) = n ϵ(g n ) ϵ δ (G) = {k G H δ(h) k }. G H υπ G δ (H) δ (G) G δ (G) n 1 δ (G)

27 G δ (G) = 3 δ (G) n δ (G) G H δ(h) n δ (G) H n 1 (n δ (G)) = δ (G) 1 G δ(h) n δ (G) n(h) = n(h) n δ (G) + 1 H G δ(h ) δ (G) n(h ) δ (G) + 1 n(h) + n(h ) > n H H v v H G (v) H (v) δ(h ) δ (G) v H G (v) δ (G) 1 G H δ(h) ϵ(g) δ (G) ϵ(g) G n(g) = 1 < n G n(g) = n δ(g) δ(g) δ (G) v G G (v) δ (G) G = G\v E(G ) m(g) δ (G) V (G ) = n(g) 1 δ (G ) ϵ(g ) = E(G ) V (G ) m(g) δ (G). n(g) 1 G υπ G δ (G) m(g) δ (G). n(g) 1 G δ (G) {ϵ(g), δ(g)} G n δ (G) k (v 1,..., v n ) G i=1,...,n δ Gi (v i ) k G i = G[{v 1,..., v i }] (v 1,..., v n ) G i=1,...,n δ Gi (v i ) k H υπ G δ(h) > k v i H (v 1,..., v n ) H υπ G i Gi (v i ) δ(g i ) δ(h) > k (v 1,..., v n ) G v i δ Gi (v i ) > k

28 G (v 1,..., v n ) v i v i (v 1,..., v n ) > k G i v j, j < i k G i v i v i+1 δ(g i ) > k δ (G) > k α = [d 1,..., d n ] G σ : V (G) {1,..., n} G (v) = d σ(v) α G G [5, 5, 4, 3, 3, 3, 3, 3, 1, 1, 1] α = [d 1,..., d n ] n 2 d 1 1 α = [d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ] α = [d 1,..., d n ] G V (G) = {v 1,..., v n } δ G (v i ) = d i, 1 i n f(g) = v N G (v 1 ) v 1 (d 2,..., d d1 +1) v i, v j N G (v 1 ) d i > d j {v 1 v i } E(G) {v 1, v j } E(G) d i > d j v h v 1 {v h, v i } E(G) {v h, v j } E(G) G G {v 1, v j } {v h, v i } {v 1, v i } {v h, v j } f(g ) > f(g) v 1 (d 2,..., d d1 +1) G\v 1 α = [d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ] α

29 G α = [d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ] S G d 1 G S G α = [d 1,..., d n ] (d 1,..., d n ) d i r(r 1) + (r, d i ). i=1,...,r i=r+1,...,n ϵ(g) = δ(g) 2 G L(G) n r, s r + s = n s = 0 ( 2) G r s G 2 K 3 ϵλ G G G n m δ(g) m 1 2 (n2 3n + 2).

30 q, r 1 δ (K 1,q K 1,r ) δ (G) 1 2 ( 2 n(g) 1 ) (2 n(g) 1) 2 8 m(g). G H δ (G), δ (H) k δ (G H) 2k + 1 G δ (G) 1 2 (n 1 (G)) k A = {δ G G P [k] n n 1}, B = {δ G G P [k] n n 1}. α = (d 1,..., d n ) (n d 1 1, n d 2 1,..., n d n 1) α = (d 1,..., d n ) G k G G [k] G (k) k 0 G d d G v G d(g)/2 d(g v) d(g) G 2 r G G r r n(g) = 2r + 1 r > 0 n(g) 3 m(g) = v V (G) m(g v) n(g) 2

31 ΚΕΦΑΛΑΙΟ 4 G G W = [v 1,..., v r ] i,1 i<r {v i, v i+1 } E(G) W (v 1, v i+1 ) G r v 1 v r W G[W ] = ({v 1,..., v r }, {{v 1, v 2 },..., {v r 1, v r }}). W = [v 1,..., v r, v 1 ] G n n G (x, y) (x, y) G (x, y) W (x, y) W W = [v 1,..., v r ] G v 1 = x v r = y y W W y i W = [v 1,..., v i ] W (x, y) W W = [v 1,..., v r 1 ] W r G (v 1, v r 1 ) P W v r P {v r 1, v r } (x, y) W G V (G) = {1,..., n} A = [a i,j ] (i,j) [n] 2 G i i i i = 1,..., n

32 r = 1,..., n a r i,j Ar = [a r i,j ] (i,j) [n] 2 r i j G r r = 1 v i, v j A 1 = A A r 1 = [ai,j r 1 ] ar i,j r 1 v i v j A r = A r 1 A a r i,j = a r 1 i,h a h,j h=1,...,n r v i v j v i v h r 1 v j v h A = C A 2 = A3 = A 4 = C x, y G G (x, y) x y G (x, y) G G (x, y) = G G (x) = G (x, y). y V (G) (G) = G (x). x V (G) x, y G (x, y) = (G) (G) = G (x). x V (G)

33 β χ Θ (β, χ) (β, χ) (β, χ) Θ x V (G) (G) = G (x) x G G (G) x V (G) (G) = G (x) x G G (G) G n(g) 2 G x y K k, k 1 K p,q, p, q 2 p q Q 3 G V (G) G x,y V (G) G (x, y) 0 G (x, y) = 0 x = y x,y V (G) G (x, y) = G (y, x) x,y,z V (G) G (x, y) + G (y, z) G (x, z) G (G) (G) 2 (G) x, y G v G G (x, v) G (v)

34 G H G G (v, y) G (v) (G) = G (x, y) G (x, v) + G (v, y) 2 G (v) = 2 (G). (C r ) = r 2 = (C r) r 3 2 (P 2 r ) = 2r = (P 2r ) r 1 (C r ) = (C r ) = V (C r ) r 3 (P r ) 2 K 1 r 2 P 2r+1 [(P 2r+1 )] K 2 r 0 (P 2r ) = 1 r 1 G (G) = (G) = V (G) G x (G) = G (x) = (G) v V (G) (G) G (v) (G) G (v) = (G) = (G) (G) = (G) = V (G) G (G) d v V (G) q q (d 1) l 1 l 1 v i = 1,..., l Pv i l v P v τ(p ) Pv 1 = q i, 1 i l 1 Pv i+1 Pv i Pv i G (u) 1 Pv i+1 Pv i+1 P Pv i ( G (τ(p )) 1) Pi v (d 1) i, 1 i r 1 Pv i = Pv 1 (d 1) l 1

35 G v V (G) G v A = [X 0,..., X r ] r = v (G) X 0 = {v} X i+1 = N G (X i )\ j=0,...,i 1 X j i = 1,..., r X 3 X 2 X 1 x X 0 x A = [X 0,..., X r ] G v i=0,...,r X i = V (G) A = [X 0,..., X r ] G v i, j, 0 i j r x, y x X i y X j P x y X i,..., X j P X i P [a 1,..., a q ] {0,..., r} a 1 = i a q = j a h, a h+1, 1 j < q a h a h+1 1 A X i X i 1 X i X i+1 {i,..., j} G A = [X 0,..., X r ] G v i = 0,..., r X i G i v i u X i G (v, u) = i i i = 0 i j i = j+1 u X j+1 X j+1 u u X j j v u P G v u j + 1 P G v u j P X 0,..., X j+1 P j

36 A A G (v, u) = i u X h, h {1,..., i 1, i + 1,..., r} A = [X 0,..., X r ] V (G) u V (G)\ h {1,...,i 1,i+1,...,r} X h = X i G (G) d v V (G) 1 + ((d 1) 1) G l v d d 2 A = [X 0,..., X r ] G v G i v X i X i G v X i X i d (d 1) i 1 i 1 i = 1,..., l G i v i=0,...,l X i X i 1 + d + d(d 1) + + d(d 1) l 1 i=0,...,l = 1 + d( i=0,...,l 1 (d 1) i ) = 1 + d ((d 1) 1) d 2 G (G) α (G) d n(g) 1 + d d 2 ((d 1)α 1). v l = (G) G (G) v G (G) β (G) d n(g) 1 + d d 2 ((d 1)β 1). A = [X 0,..., X r ] G v { X i 0 i r} G v v v G G (G) G (G) n(g) 1 (G) v G G G v A = [X 0,..., X r ] G v n(g) 1 + r X i 1 + r (G) r = G (v) (G) n(g) 1 + (G) (G)

37 G n (G) d d n/2 G n (G) d (G) β m(g) n(n 1)(d 2) 2((d 1) β 1). e G 2 l (d 1) l 1 l 1 Pi r, i = 1,..., r r e = (x, y) i (d 1)(d 1) r i 1 = (d 1) r i r i y G\e (d 1)(d 1) i 2 = (d 1) i 1 i 1 x G\e Pi r e x y (d 1) r i (d 1) i 1 = (d 1) r 1 e Pi r 2 (d 1)r 1 e l r G 2 m(g) (d 1) r 1 G 2 (n 2) G β 2 ( ) n 2 2 m(g) i=1,...,β (d 1) i 1 m(g) G n (G) d (G) β m(g) d n/2 d n 2 n(n 1)(d 2) 2((d 1) β 1). n G G (G) G G (G) G (G) = (G) = 0

38 G H G H 3 C = (v 1,..., v r, v 1 ) {z, y} z y C G (G) G δ(g) (G) 1 P = (v 1,..., v t ) G v 1 v 1 v i i G (v 1 ) + 1 δ(g) + 1 δ(g) + 1 G G ϵ(g) 1 V (H) 3 < n n = n(g) δ(g) 2 G v 1 ϵ(g\v) 1 G\v G ϵ(g) 1 K 3 τπ G K 3 G G (G) g δ(g) d { 1 + d i=0,...,r 1 n(g) (d 1)i g = 2r + 1 g 2 i=0,...,r 1 (d 1)i g = 2r g g 2 = 1 S i, 0 i r r + 1 G v 0 G i = 1,..., r v S i S i 1

39 G v v 0 i i v 0 2r < g S i (d 1) S i 1 2 i r S 0 = 1 S 1 d n(g) i=0,...,r S i 1 + d + d(d 1) +..., d(d 1) r 1 g 2 = 0 v 0 G n(g ) S i (d 1) +..., 2(d 1) r 1 = (d 1) i i=0,...,r n(g) = n(g ) 1 i=0,...,r 1 G n n + n 1+ 1 k (G) 2k k n + 1 = d δ (G) ϵ(g) d G G δ(g ) d (G) 2k + 1 (G ) 2k + 1 d > 2 G n n(g ) 1 + d i=0,...,r 1 d > 2 (d 1) i = 1 + d d 2 ((d 1)k 1) > (d 1) k = n, k 1 {(H) H υπ P k P k } = k(k + 2). G G

40 (p, q) p, q 1 r r 1 G H G (G H) G G (G) = (G) = V (G) x, y x y 2x x y G (G) = (G) G (G) < 3 (G) > 3 x, y x y 2x G (G) = x (G) = y G δ(g) (G) 2 G G G n (G) x n x G (G) 2 (G) + 1 G (G) + δ(g) n 1 4

41 ΚΕΦΑΛΑΙΟ 5 x, y V (G) (x, y) G (G) < K 1 G v G G (v) 1 G G\v [v 1,..., v n ] G i = 1,..., n 1 (v i, v i+1 ) P i G G P i (v i, v i+1 ) W i W 1,..., W n 1 G G G n(g) n(g) = 1 < n G n(g) = n v V (G) N G (v) = V (G)\{v} x, y V (G)\{v} {v, x} E(G) {v, y} E(G) H = G[V (G)\{v}] < n H H {v, x} G G {v, y} G G G I(G) G H I(G) G I(G)

42 H G G G H G δ(h) δ(g) (H) (G) G δ(g) n(g) 2 G G H n(h) n(g) 2 δ(h) n(h) 1 < n(g) 2 G m(g) n(g) 1 G G m(g) < n(g) 1 H n(h) < n(g) m(h) n(h) 1 δ(g) 1 m(g) n(g) δ(g) 2 n(g) v G G H = G\v G m(h) n(h) 1 m(g) = m(h) + 1 n(g) = n(h) + 1 m(g) n(g) 1 G S V (G) S G G\S S S G S S (a, b) a, b V (G) G\S (a, b) S (a, b) (a, b) S (a, b) G S k 2 G G G

43 a e i b f j G c d g h k l {e, f, g, h} G {e, f, h} {e, g} G {f} {h} G {f, g} (a, k) {h} (a, k) G P 1 x t w y P 2 P 1 P 2 G v x, y G\v x y v x y G x, y V (G) G (x, y) x y G G (x, y) = 1 e = {x, y} G e G G\x {x} G G\x (y) 1 G\e G\e G\x G\e G\e x y {x, y} G x y (x, y) < k x, y G (x, y) = k 2 w k G x y P 1 P 2 G x w P 1 P 1, P 2 y P P 1 x y {y, w} P, P 2 G P 1, P 2 y R

44 G x y w G G\w R P 1 P 2 R P 1 {w, y} G t P 1 P 2 R t P 1 P P 1 x t R t y P 2 P 2 {w, y} P 2 P G G 3 x, y, z V (G) G y x z G + G w x z G + P 1, P 2 w y (P 1 P 2 )\w H 1 H 2 V (H 1 ) V (H 2 ) 2 H 1 H 2 H 1 x 1 v u u v x 2 H 2 {v, u} S = V (H 1 ) V (H 2 ) x 1, x 2 H = H 1 H 2 x 1 x 2 H 1 H 2 x 1 V (H 1 )\S x 2 V (H 2 )\S P 1 G 1 v u x 1 P 1 P 1 v, u S P 2 G 2 v u x 1 P 1 P 2 v G {v} G

45 G I 2 (G) G H I 2 (G) G G K 2 I 2 (G) H 1 H 2 G {x, y} S = V (H 1 ) V (H 2 ) w V (H 1 )\V (H 2 ) P H 1 x y w H 1 P H 1 H 1 P H 1 x P x v P y x y P x y V (H 1 ) V (H 2 ) = {v} G\v x y H 1 H 2 v P x y G\v H = H 1 H 2 H\v x y P H\v E(G)\E(H) H + = H P H + H 1 H H + P P H 1 H 2 x y x y v P x P y x y v H 1 H 2 C = P P x P y H + = C H 1 H 2 K 3

46 K 3 G k > k k κ(g) = {k G k } G κ(g) δ(g) G e E(G) κ(g\e) κ(g) 1 v V (G) κ(g\v) κ(g) 1 G S V (G) x V (G)\S (x, S) S x S G s, t G (s, t) G (s, t) G G (s, t) S k k (s, t) G S (s, t) S G k k (s, t) G k = 1 k > 1 k k H H (s, t) S k G G H G k (s, t) G e E(G) (s, t) S e k 1 G\e e E(G) e S e = w e\{s,t} S e {w} (s, t) G k

47 G\S e (s, t) S e = k 1 k s t e G\e e S e S e e s t (s, t) G N G (s) N G (t) = x t s S = S {t,x} \{x} (s, t) G\x S = k 1 k 1 (s, t) G\x s, x, t k (s, t) G s S t s t s S t G s G t G (s, t) S k G N G (s) = S N G (t) = S S (s, t) k G P s G s S S P t (s, t) G S P s P t P P s P P t V (P ) V (P ) = V (P ) V (P ) = {q} q S (s, t) S G s = P Ps P G t = P Pt P S V (G s )\s S V (G t )\t G s = G s {S {t}, {{x, t} s S}} G t = G s {S {t}, {{s, x} x S}} n(g t ), n(g s ) < n(g) k (s, t) P 1 s,..., P k s P 1 t,..., P k t G s G t (s, S) {Q i s i = 1,..., k} = {P i s\t, i = 1,..., k} (t, S) {Q i t i = 1,..., k} = {P i t \s i = 1,..., k} Q 1 s Q 1 t,..., Q k s Q k t k (s, t) G P (s, t) G [s, v 1, v 2,..., t] e = {v 1, v 2 } v 2 t {v 1, t} E(G) P 3 {v 1 } S e (s, t) S k G {v 1, t} E(G) N G (s) = {v 1 } S e P {s, v 2 } E(G) {v 2 } S e (s, t) S k G {s, v 2 } E(G) N G (t) = {v 2 } S e k 2 S e s t (s, t) (s, t)

48 x y (x, y) G κ G (x, y) κ(g) = {κ G (x, y) x, y V (G), {x, y} E(G)} k k S (x, y) G G (x, S) W x (y, S) W y W x G\S x e k G κ(g\e) = k 1 G κ(g) = k e = {x, y} E(G) e G κ G\e (x, y) = k 1 G = G\e e G R V (G ) k 1 G \R x y G \R R G κ(g) = k R (x, y) G k 1 κ G (x, y) k 1 κ(g ) k 1 κ G (x, y) k 1 κ G (x, y) = k 1 e G k k (x, y) G G (x, y) G k κ(g\e)(x, y) k 1 G δ(g) > κ(g) e E(G) κ(g\e) = κ(g) G G k κ(g) = k G k S G\S v N G (v) = S G (v) = k C D = G\S\V (C) D G\S n(d) n(c) e = {x, y} x, y V (C) G = G\e G (x, y) R k 1

49 v G G = G [S C] ({v } S, {{v, w} w S}) k (v, x) G (v, x) S G k 1 S S V (C) S (z, x) G z D S + = S {y} (z, x) G S + S V (C) S + S C + G\S + x C S (x, S) W x G G W x (x, S) G (y, S) W y G D S C x z y S G z V (D) k (z, x) G (z, S) W z G G V (D) R z V (D)\R G W z W x G k (x, z) G W z W y G k (z, y) R z x z z y R x y V (D) R V (D) V (D) < V (C) R R 1 = R V (D) = V (D) R 2 = R S R 3 = R V (C) R (x, y) G w S\R R W x W y x w w y R R S\R R 2 = S S\R R ( S R 2 ) = 1 2 (k R 2 ) V (D) = R 1 = R R 3 R 2 = k 1 R 3 R 2 k R (k R 2 ) 1 = 1 2 (k R 2 ) 1 < 1 2 (k R 2 ) R 3 V (C) r 0 K + 2,r = K 2 (r K 1 ) K 2 K + 2,r K 2,r

50 K + 2,5 G k k + 2 k 2 v V (G) k K + 2,k 2 πα G[N G (v)] G e E(G) κ(g\e) = k e = {x, y} G[N G (v)] K + 2,d 2 S = v N G (v)\{x, y} S 2 G = (G\S)\e P G S G\e k 1 (x, y) S P κ G (x, y) = k e G G v G G G K 3 2 G G G v 2 v G K 3 n(g) 4 G/v 2 r W r = C r K 1 W r r 3 3 e E(G) G\e 3 e E(G) G G/e 3 G G = K 4 K 4 W 3 n

51 W 9 n(g) = n G G G G G e = {a, b} G v e G e = (G\a)\b G W r v V (G) v 1, v 2, v 3 K 3 K 2,1 + v 1, v 2, v 3 G v 1, v 2, v 3 G v 1, v 2, v 3 G e = {v, v 3 } v e G e e v 1 v 2 B 1, B 2 G e v e {v 3, v e } G B G e {a, v 3 } G a B v 3 B 1 \v e B 2 \v e v 3 1 B 2 {v e, v 2 } {v e, v 1 } G v 3 w i B i \v e \v i i = 1, 2 {v i, v e } G i = 1 2 f = {v, v 1 } S f = {v 1, v f } G = G\v (α) {v, v 1, v i }, i = 2, 3 G v f {v 2, v 3 } (β) v 2, v 3 G \S f S f G G v 2 v 3 S f (v 2, v 3 ) G v 1 (α) {v 1, v 2 } v 1, v 2, v 3 G e = {v, v 3 } G S = {v, v 3, v e } C D G\S {v 1, v 2 } {v e } C v G S C v D {v 3, v e } G

52 v e f B v 1 1 w 1 v v 3 G v e B 2 v 2 S f v f v 1 v 3 v 2 w 2 G (α) (β) α G G e β S f G {v 1, v 2 } {v 1, v 3 } v 1, v 2, v 3 G G G\v {v 2, v 3 } G 3 S G S 2 v 1, v 2, v 3 G S C G\S S G G e = {v 2, v 3 } G f = {x, y} G (x, y) G \f (x, y) G {v 2, v 3 } {v 2, v} {v, v 3 } f G e = {v 2, v 3 } G H = G G \e H = G \e H n(g) < n(h) H f H/f f e e E(H) = G \e e H H = G f G G H W r r 3 = G \e G W r v a, b, c W r K 1,2 W r {a, b}, {b, c} E(W r ) {a, c} E(W r ) K 1,2 (α) (β) {a, b} {b, c} H = G G W r

53 a v a v b c b c (α) (β) a v a v c c b b (γ) (δ) W r+1 v W r W r (γ) W r W r (δ) W r+1 W 4 Q 3 K 4 Q 8

54 v 4 v 1 v 2 v v 1 v 2 v 1 v 2 3 G 5 e 3 H G E πα G e v e 3 H E E E e v e G = (V (H ), V (H ) H ) G G = G/e G 3 G 1,..., G m G 1 = G G m = K 4 i = 1,... m 1 G i G i+1 G n(g) 4 κ(g) 3 K 4 ϵλ G G δ(g) 3 G G G V (G) 5 3 < 5 K 4 κ(k 4 ) = 3 κ(g) 2 S G C G\S C + = G[S V (C)] S = {x} x C + N C +(x) S G G\S C C δ(c + ) 3 n(c + ) < n(g) C + G S = {x, y} (x, y) P G\V (C) C C + {x, y} (x, y) P G\V (C) C ϵλ G S C N C (x) N C (y) G C δ(c ) 3 n(c ) < n(g) C G

55 G δ(g) 3 K 3 ϵλ G k κ (G) = {k G k } G m(g) (2k 1)(n(G) k) k n(g) = 1 < n G n(g) = n m(g) (2k 1)(n(G) k) S G S k G k S < k C 1 G\S G 1 = G[V (C 1 ) S] G 2 = G\V (C 1 ) S = V (G 1 ) V (G 2 ) G 1, G 2 m(g) m(g 1 ) + m(g 2 ) n(g 1 ) + n(g 2 ) = n(g) + S. h {1, 2} m(g h ) (2k 1)(n(G h ) k), (2 1)(n(G) k) m(g) m(g 1 )+m(g 2 ) < (2k 1)(n(G 1 )+n(g 2 ) 2k)) = (2k 1)(n(G)+ S 2k) < (2k 1)(n(G) k)), n(g i ) < n, i = 1, 2 G h k G h G G H κ(h) ϵ(g) 2 κ (G) ϵ(g) 2 ϵ(g) 2 k κ (G) k ϵ(g) 2 k m(g) 2k n(g) (2 1)(n(G) k) G k κ (G) k G G λ(g) G λ(g) = { F F E(F ) G\F }.

56 G k K k G G n V (G) = {v 1,..., v n } G[{v 1,..., v i }] i = 1,..., n G G G K 2,3 ϵλ G G K 1 K 2 G a b b a = (t(v) 1) v V (G) t(v) v 4 n n 1

57 Q 8 K 4 G 2κ (G) ϵ(g) κ(g) 2 δ(g) (n(g) + k 2)/2 κ(g) k f : NN k N G δ(g) f(k) k ϵ (G) = {k H υπ G : ϵ(h) k}. ϵ (G) δ (G) 2 ϵ (G) κ (G) δ (G) 4 κ (G) ϵ (G) 2 κ (G) 4 ϵ (G) G G

58

59 ΚΕΦΑΛΑΙΟ 6 G x, y V (G) P 1 P 2 e = {x, y} P 1 P 2 H = (P 1 P 2 )\e G H P x y H P G\e P ({x, y}, {{x, y}}) G G G < n G n x y G G (x) = 1 G\x x G G m(g) = n(g) 1 G m(g) n(g) 1 m(g) n(g) 1 m(g) n(g) ϵ(g) 1 G n(t ) 2

60 2 m(t ) 1 + 2(n(G) 1) m(t ) n(g) 1 2 m(t ) n(g) G δ(g) + 1 δ(g) δ(g) = 1 2 δ(g) = k 1 k 1 k G k T k + 1 T G T = T \v v T G = G\y y G δ(g ) k 1 n(t ) = k T G σ : V (T ) V (G ) T G u T v u T u = σ(u) G T G T σ v G u k 1 G (u ) k u x G T V (T )\{u } = k 1 σ σ(v) = x T G G (u ) = k 1 u G y u G k 1 σ σ(v) = y T G G G G G G G G G G G T V (T ) V (G) v V (G)\V (T ) V (T ) 1 G

61 u V (T ) P (v, u) G x 0 = v, x 1,..., x r = u G v V (T ) {x 0, x 1 } T P e i = {x i, x i+1 }, i 1 P T e T G G G T G G G n(g) = m(g) 1 G T n(t ) 1 G T G = T n n {1,..., n} (T, τ) T τ : V (T ) {1,..., n(t )} V (T ) n(g) n(t ) (T, τ) (T, τ ) σ : V (T ) V (T ) T T v V (T ), τ(v) = τ (σ(v)) n n 2 n n 1 n n 2 n n n n 2 n 2 n n A = (a 1,..., a n 2 ) n

62 S = {1,..., n} T = (V, E) V n E = τ : V S V S S > 2 x S A x S y A E {τ 1 (x), τ 1 (y)} A S (T, τ) (T, τ) n() A V (T ) > 2 v T w v A τ(w) T v A T [5, 5, 2, 3, 3, 2, 8, 8] A (T, τ) (T, τ) A n n 2 n

63 3 T 1 T 2 δ (T 1 T 2 ) 3 G m(g) n(g) 1 (T ) G n(g) m(g) T G δ(g) n(t ) 1 T G k G n T n k k 1 G k v G G G (G, v) T e = {x, y} T T (e, x) T (e, y) T {x, y} e = {x, y} T (G) = n(t (e, x)) n(t (e, y)) n(t (e, x)) n(t (e, y)) (e, x) T (e, y) T e = {x, y} T (e) = (T, x) (T, y) {2δ(G), n(g) 1} G = P 1 P r P 1,..., P r i,j,i j E(P i ) E(P j ) = G 2r

64

65 ΚΕΦΑΛΑΙΟ 7 R 2 S R 2 S S S Γ = (V, A) v V R 2 Γ e A R 2 (0, 1) e e e V V ( e E e) = Γ = V ( e E e) E V (Γ) = V E(Γ) = A

66 f 3 f 3 f 1 f 2 f 1 f 2 f 4 f 4 f 5 f 5 Γ R 2 Γ F (Γ) Γ K 5 K 3,3 Γ = (V, E) Γ = (V, E ) Γ V V E E (V, E ) R 2 \ Γ Γ = (V, E) R 2 \ Γ Γ F (Γ) Γ G Γ = (V, E) D R 2 Γ D R 2 {(x, y) R 2 x 2 + y 2 < 1} Γ D Γ = (V, E) f F (Γ) Γ Γ Γ Γ = (V, E) G Γ = (V, { e e E(Γ)}). Γ G Γ Γ f F (Γ) Γ[f] Γ V (Γ) f f\v (Γ) f F (G) G Γ[f] K 3 Γ f 1 f 4 G Γ G G Γ G) G Γ G Γ G Γ G

67 G Γ Γ υπ, ϵν, πα, τπ ϵλ G Γ Π Γ Π G Γ Π Γ G Γ G H G H K r, r 2 G H Γ e Γ f 1, f 2 F (Γ) e f 1 f 2 Γ f F (G) Γ[f] Γ Λ Γ Γ Γ Γ R 2 \ Λ Λ Γ

68 W 1 W 2 G W 1 W 2 [v 1, v 2, v 3, v 1, v 5, v 1, v 4, v 1 ] [v 4, v 1, v 5, v 1, v 3, v 2, v 1, v 4 ] [v 4, v 1, v 5, v 1, v 2, v 3, v 1, v 4 ] Γ = (V, A) f F (Γ) f Γ V f f\v j i k f 4 g a l b f 2 f 3 c h f 1 e G π(f 1 ) = [e, h, c, b, a, j, c, j, i, c, h, g, e], π(f 2 ) = [b, a, k, l, k, c, b], π(f 3 ) = [g, e, h, g], π(f 4 ) = [i, c, j, i] Γ = (V, E) f F (Γ) π(f) f Γ = (V, E) Γ = (V, E) Γ Γ G Γ G Γ ρ : V (Γ) V (Γ ) σ : F (Γ) F (Γ ) f F (Γ) ρ(π(f)) = π(σ(f)) Γ Γ G Γ G Γ G G Γ, Γ G G Γ Γ

69 σ(f 1 ) f 1 f 3 σ(f 2 ) σ(f 3 ) f 2 Γ Γ Γ Γ Γ G Γ G Γ Γ Γ R 2 S 0 = {(x, y, z) x 2 +y 2 +(z 1) 2 = 1} (0, 0, 2) (x, y, z) S 0 = {(x, y, z) x 2 + y 2 + (z 1) 2 = 1} (χ, ψ) R 2 x (x, y) ( 2 z, y 2 z ) 2x (x, y, z) ( x 2 + y 2 + 1, 2y x 2 + y 2 + 1, 2x 2 + 2y 2 x 2 + y ) f Γ s = (x 0, y 0 ) f Γ

70 (x, y) (x x 0, y y 0 ) s = (x 0, y 0 )) G Γ S 0 s (x, y, z) (2 x, 2 y, z) {(x, y, z) R 3 z = 0} s (0, 0, 2) s G Γ Γ Γ f Γ Γ f Γ Γ ρ π f π(f) Γ Γ = (V, A) F = F (Γ) Γ = (V, A ) Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ

71 Q 3 K 2,2,2 G H G K 2,2,2 K [3] 2 G K 4 Γ n m r m + 2 = r + n

72 Γ m n 1 m = n 1 G Γ r = 1 < m n Γ n m r m n G Γ e Γ e f, f Γ e Γ Γ = (V (Γ), E(Γ)\{e}) f f f f e Γ (m 1) + 2 = (r 1) + n Γ V (G) 3 Γ E(Γ) Γ Γ Γ V (Γ) 3 Γ Γ 3 3n 6 Γ 2 3 E(Γ) r = 2 3m G n 3 3n 6 G δ(g) 5 m = m(g) n = n(g) Γ 6 m 6 2 n = 3 n G δ (G) 5 n 3 n

73 G G x G y x, y 3 n = n(g) r = n(g ) n, r, x y n + r = xn + 2, 2 n + r = yr + 2, 2 x, y 3, x, y 5, n = 4y 2(x + y) xy x = 3 y = 3 n = 4 r = 4 G x = 3 y = 4 n = 8 r = 6 G x = 4 y = 3 n = 6 r = 8 G x = 3 y = 5 n = 12 r = 20 G x = 5 y = 3 n = 20 r = 12 G x, y 4 (x 4)(y 4) 0 xy 4x 4y 16 0 xy 2(x + y) 2(x 4) + 2(y 4) 0

74 K 5 K 3,3 G K 3,3 < m G m G e = {x, y} E(G) G = G\e G e = {x, y} E(G) G G = G/e v e e G = G\e G = G/e m(g ) < m(g) G K 5 K 3,3 Γ G x y Γ e Γ G Γ C x y R\ C S = V (C) G G 3 (x, y) P i, i = 1, 2, 3 G {x, y} E(G ) S F = C P 1 P 2 P 3 K5 = (2 K 1) K 3 {x, y} F K 5 K 5 τπ G Γ Γ = Γ\v e f F (Γ) Γ v e Γ Γ [f] C M = [x 1,..., x r, x 1 ] V (C) e = {x, y} G X = N G (x)\y Y = N G (y)\x V (C) X M Y G K 3,3 τπ G P 1 P 2 x P 3 y C F = C P 1 P 2 P 3

75 x i x j x y x l C x k x j x l X x i x k Y 1 i < j < k < l r K 5 K 3,3 K 5 K 3,3 G K 5 K 3,3 G S S = 1 2 C i, i = 1,..., r G\S i = 1,..., r G i G V (C i ) S i = 1,..., r G i ϵλ G n(g i ) < n(g) G G i K 5 K 3,3 G K 5 K 3,3 G i, i = 1,..., r i, j 1 i < j r G i G j = K S i=1,...,r G i = G G e E(G) K 5 τπ G/e K 5 τπ G K 3,3 τπ G A xy A x A y x y K 3,3 e = {x, y} v e G = G/e e A xy = N G (x) N G (y) A x = N G (x)\{y}\a xy, A x = N G (y)\{x}\a xy H G D V (G ) v e D K 5 τπ G v e V (H)\D

76 N = N H (v e ) N = 4 N A x, A y, A xy N A x A y K 3,3 τπ G K 5 τπ G G K 5 K 3,3 K 5 K 3,3 K 5 K 3,3 Γ υπ, ϵν, πα, τπ ϵλ K 4 K 2,3 K 4 K 2,3 K 5 K 3,3 K 4 K 2,3 G G + = G K 1 G G G + G + Γ Γ Γ G

77 G + G + K 5 K 3,3 G K 4 K 2,3 G n 2n 3 v 1 v 5 Γ v 2 v 3 v 4 v 2 v 3 v 4 Γ v 5 v 1 G Γ G f Γ Γ[f] [v 1,..., v n, v 1 ] Γ + f Γ Γ [v 1,..., v n, v 1 ] Γ Γ + {v i, v n i+1 } i = 1,..., r {v i, v n i } i = 1,..., r 1 {v n, v n} G n(g ) = 2 n(g) m(g ) = 2 n(g) + 2 m(g)) m(g ) 3 n(g ) 6 2 n(g) + 2 m(g)) 6 n(g) 6 m(g) 2 n(g) 3 G (G) 3 G H G H G (G) 3 r 3 r = 3 r = 4

78 ξ P X,Y = {(x, y, z) R 3 z = 0} R 3 P X,Y S 0 ξ G G H m n 2(n 1) 6 4 G K 3 υπ G δ (G) 3 C 4 τπ G m(g) 3 2 (n 1) Γ κ r n m m + κ + 1 = n + r

79 14 6 x δ(g) 2 δ(h) 2 G H H G 6 H G δ (G) 6 K 4 τπ G 1 2 (3n 1) 4 C 4 τπ G m(g) 3 2 (n 1) H n 0 n 3 n

80 K4 K 4 G = {G K4 ϵλ G} {V 1, V 2 } V (G) G[V 1 ], G[V 2 ] G k 3 m(g) k(n(g) 2) k 2 G (4 4) G G G G

81 ΚΕΦΑΛΑΙΟ 8 k k k G χ : V (G) {1,..., k} {x, y} E(G) χ(v) χ(u) k G G k k χ 1 (i) i = 1,..., k χ S V (G) χ(s) = {χ(v) v S} X {1,..., k} χ 1 (S) = {χ 1 (i) i X} χ k G k G k χ(g) k 2 χ(c 2k 1 ) = 3 χ(c 2k ) = 2 l 1,..., l k K l1,...,l k = K l1 + + K lk V i (K l1,...,l k ) = V (K li ), i = 1,..., k K l1,...,l k k k K l1,...,l k l 1,..., l k V i (G), i = 1,..., k k G k

82 K K 3,3,3,3 k k k k k k χ : V (G) {1,..., k} k G G K χ 1 (1),..., χ 1 (k) χ : V (K l1,...,l k ) {1,..., k} χ(v) K l1,...,l k v χ K l1,...,l k G k G k G k G n n 2 ( k 1 2k ) G K l1,...,l k l 1,..., l k i=1,...,k l i = n m(g) m(k l1,...,l k ) K l1,...,l k m(k l1,...,l k ) ( ) n 2 i=1,...,k = 1 2 (n2 n = 1 2 (n2 i=1,...,k 1 2 (n2 n2 k ) = n 2 ( k 1 2k ) ( ) li 2 i=1,...,k (l 2 i )) (l 2 i l i ) i=1,...,k l2 i 1 k ( i=1,...,k l i) 2 k G n m χ(g) n2 n 2 2m

83 G 2 G G G G G G A = [X 0,..., X r ] G v G G X i {x, y} X i P x v x P x v y X 1,..., X i 1 w P 1 P 2 v P 1 P 2 P 1 P 2 w P 1 P 2 X i X i G n n2 4 G k S V (G) χ : V (G) {1,..., k} G χ(s) = {1,..., k} k G S S k G v, u S i j χ(v) = i, χ(u) = j G[χ 1 (i) χ 1 (j)] χ : V (G) {1,..., k} k G V v G[χ 1 (i) χ 1 (j)] v u V v χ G χ i j V v χ = χ\{(x, χ(x)) x V v } {(x, i + j χ(x)) x V v }. χ (v) = χ (u) = j χ 1 (S) = {1,..., k} i S

84 G χ(g) δ (G) + 1 G δ (G)+1 n(g) n(g) = 1 G < n δ (G) + 1 G n(g) = n v G δ (G) δ G\v δ (G\v) + 1 δ (G) + 1 χ : V (G\v) {1,..., δ (G) + 1} X = χ 1 (N G (v)) X δ (G) R = {1,..., δ (G) + 1}\X i R χ = χ {(v, i)} χ G δ (G) + 1 G l (l + 1) χ(g) l + 2 δ (G) l + 1 H H δ(h) l + 1 l + 2 l + 1 G n χ(g) + χ(g) n + 1 n χ(g) χ(g) χ(g) + χ(g) δ (G) δ (G) + 1 δ (G) n δ (G) 1 G χ(g) K l1,...,l χ(g) l i = {l 1,..., l χ(g) } l i n χ(g) V i(g) G G G n χ(g) 6 5

85 5 G v 5 G G = G\v 5 S = N v (G) 5 χ G {1, 2, 3, 4, 5}\χ 1 (S) i χ {(v, i)} 5 G Γ G Γ N G (v) v [v 1, v 2, v 3, v 4, v 5, v 1 ] χ(v i ) = i i = 1,..., 5 i, j, 1 i < j 5 G i,j = G[χ 1 (i) χ 1 (j)] G i,j G i j v i v j G i,j i, j, 1 i < j 5 P v 1 v 2 v v 5 v 4 v 3 v 1 v 3 P G P v L G Λ Γ G Λ = L Λ R 2 R 1, R 2 R 2 \ˆΛ v 2, v 4 Γ v 2 v 4 Λ G 2,4 v 2 v 4 G 2,4 i = 2 j = 4 4 δ (G) (G)

86 G ( (G) + 1) (G) d 3 G (G) d K d+1 υπ G G d G v G G = G\v d S = N v (G) d d χ G {1,..., d} \χ 1 (S) i χ {(v, i)} d G S S = {v 1,..., v d } χ(v i ) = i G v 1 v 2 G G i = 1,..., d S i = {v i } N G (v i ) d G h {1,..., i 1, i + 1,..., d}\χ(s i ) χ = χ\{(v i, χ(v i ))} {(v i, h)} G S G G i,j = G[χ 1 (i) χ 1 (j)] v i v j G i,j, P i,j (v i, v j ) G i,j i, j 1 i < j d P i,j G i,j i, j 1 i < j d P i,j G i,j D = [v i, a 1,..., a p, v j ] P i,j P i,j v i b a 1 χ(b) = j S i Gi,j (v i ) = 1 Gi,j (v j ) = 1 a s D Gi,j (c) > 2 χ(a s ) = i d a s P i,j χ(d) = j a s j a s P i,j d {1,..., i 1, i + 1,..., d}\χ(n Gi (a s )) h χ = χ\{(a s, i)} {(a s, h)} d G d a h C i,j = C i,j\a h i j S i, j, k {1,..., d} V (C i,k ) V (C k,j ) = {x k } c V (C i,k ) V (C k,j )\{x k } χ(c) = k c i j {1,..., k 1, k + 1,..., d}\χ(n G (c)) h χ = χ\{(c, k)} {(c, h)} d G d C i,k = C i,k\c i k S z P 1,2 v 1 χ(z) = 2 z S z G 2,3 z V (P 2,3 ) z S z P 2,3

87 P 1,2 P 2,3 z G 1,2 2 3 G z 3 S 1 d G (G) G 2l G l q q U n {v 1,..., v n } U n X m,n,d,k = {G U n m(g) = m nd, (G) d 2, χ(g) k} G m,n,d,l = {G U n m(g) = m nd, (G) d 2, (G) l}. k 2 l 3 n, d X dn,n,d,k < G dn,n,d,l U n l k X m,n,d,k G m,n,d,k X m,n,d,k χ : V (G) {1,..., k} ) k ( n/k ) = 1 2 n2 (1 1 k H = (V (G), ) ( n 2 2 ) χ ( 1 2 n2 (1 1 k ) ) m ( 1 2 n2 (1 1 k ))m m H χ k n k H X m,n,d,k k n ( 1 2 n2 (1 1 k ))m G m,n,d,l G m,n,d,l H G m 1,n,d,l e (H) d 2

88 m(h) nd 2n/d H d 2 n(1 2 d ) S V (H) e x S S\{x} l v l d2 d 2 2 (d2 1) l d 2l l 3 n(1 2 d ) d2l e 1 2 n(1 2 d )(n(1 2 d ) d2l ) H G m,n,d,l G m,n,d,l ( 1 2 n(1 2 d )(n(1 2 d ) d2l )) m n d X dn,n,d,k G dn,n,d,l k n ( 1 2 n2 (1 1 k ))dn ( 1 2 n(1 2 d )(n(1 2 d ) d2l )) nd n 2 k 1/d (1 1 k ) n(n(1 2 d ) d2l )(1 2 d ). n d n 2 n 2 d k 1/d (1 1 k ) (1 2 d )2. d 1 1 1/k G K 5 K 3,3 K 5 K 3 4 K 5 G K 5 ϵλ G V 8

89 V 8 V 8 G K 5 ϵλ G G K 4 ϵλ G k > 0 G χ(g) k K k G k = 6 r 7 K r G K r ϵλ G ϵ(g) 2 r 2 c(r) c ϵ(g) c K t ϵλ G c(t) = (α + o(1))t t α = r = 1, 2, 3 r = 4 G G

90 χ(g) m(G) G {V 1, V 2 } V (G) χ(g[v 1 ])+ χ(g[v 2 ]) = χ(g) G {V 1, V 2 } V (G) χ(g[v 1 ]) + χ(g[v 2 ]) > χ(g) G H χ(g 1 ) χ(g 2 ) χ(g 1 G 2 ) G G l (l + 1) m m/2 T U D

91 ΚΕΦΑΛΑΙΟ 9 ω(g) G G ω(g) = {k K k υπ G} G G ω(g) χ(g) G ω(g) 4 τ(p, n) p n p, n (p 1, n 0) p n 1,..., n p G m(g) = n i n j 1 i<j p n 1,..., n p n/p p

92 n p,..., n p, n p,..., n p. }{{}}{{} n p p (n p) p, n (p 1, n 0) T p (n) τ(p, n) T 4 (10) T 5 (9) G (k)ω ω(g) k G ω(g ) k n(g) = n(g ) m(g) < m(g ) G v V (G) v G G v G N G (v) v v v v G G + G ω(g) = ω(g + ) (k)ω G x, y, a {x, y} E(G) {x, a}, {y, a} E(G) x y

93 G (x) > G (a) x G + ω(g + ) k m(g + ) = m(g) + G (x) G + a G ω(g ) k m(g ) = m(g) + G (x) G (a) > m(g) G (x) G (a) G (y) G (a) a G + ω(g + ) k m(g + ) = m(g)+2 G (a) G + x y G ω(g ) k m(g ) = m(g)+2 G (a) G (x) ( G (y) 1) > m(g) x y x y G (y) 1 (k)ω G n T k (n) G k ω(g) > k G T k (n) (k)ω G m(g) τ(ω(g), n(g)) G S V (G) G S G α(g) G G G α(g) = ω(g) G n(g) α(g) χ(g) k l r(k, l) k l n G n ω(g) k α(g) l k l r(1, l) = r(k, 1) = 1 r(2, l) = l r(k, 2) = k r(k, l) = r(l, k)

94 r(k, l) k l r(k, l) r(k 1, l) + r(k, l 1). G n(g) = r(k 1, l) + r(k, l 1) v G k 1 = N G (v) k 2 = N G (v) k 2 G v G k 1 + k 2 = n(g) 1 = r(k 1, l) + r(k, l 1) 1. k 1 r(k 1, l) G = G[N G (v)] ω(g ) k 1 α(g ) l ω(g) k v G + α(g) l k 1 < r(k 1, l) k 1 r(k 1, l) 1 k 1 r(k 1, l) + 1 k 2 r(k, l 1) G = G[N G (v)] ω(g ) k α(g ) l 1 ω(g) k α(g) l v G k l ( ) k + l 2 r(k, l). k 1 k + l k +l 5 p, q k, l k + l < p + q r(p, q) r(p 1, q) + r(p, q 1) ( ) ( ) p + q 3 p + q 3 + p 1 p 2 ( ) p + q 2 =, p 1 r(3, 3) r(2, 3) + r(3, 2) = 6 C 5 ω(c 5 ) = α(c 5 ) = 2 r(3, 3) 5 r(3, 3) = 6 r(k, l) k l r(3, i) i {3,..., 9} r(4, i) i {4, 5} r(5, 5) {43,..., 49} r(5, 5) r(6, 6) r(5, 5) r(6, 6)

95 k r(k, k) 2 k/2 k 3 V n = {v 1,..., v n } G n V n G k n G n k i, j, 1 i < j n G n G n = 2 (n 2) S V n k 2 (n 2) ( k 2) Gn S ( n ) k S G k n ( ) n 2 (n 2) ( k G 2) n k k G n ( n )2 (k2) n k 2 (k 2) <. k k! n < 2 k/2 Gn k G n < 2k2/2 2 ( k 2) k! = 2k/2 k! < 1 2. G n k G n = {G G G n } G n k G G n k ω(g) < k α(g) < k r(k, k) < 2 k/2 G ω(g) < k α(g) < k n < 2 k/2 G ω(g) δ (G) + 1 τ(p, n) τ(p, n) n 2 p 1 2p n p n p

96

97 ΚΕΦΑΛΑΙΟ 10 e G S V (G) S S V (G) G S G (G) G G S S G k G U D (G) { U, D } G (G) = n(g) α(g) S G G S G S V (G)\S S G

98 G S V (G)\S V (G)\S G G k n(g) k G δ (G) (G) δ (G) k G δ(h) k H S S < k H\S I v I H S G (v) S < k (H) k (G) (H) k G L(G) L(G) G L(G) L(G) G (G) = χ(l(g)) r L(G) G V (L(G)) r L(G) G G r E(G) r G r r G r L(G) G M E(G) e,e M e e = µ(g) G M v V (G) v M G µ(g) = ω(l(g)) G χ(g) n(g) µ(g)

99 n = n(g) = n(g) µ(g) G G n 2 µ(g) G M G n 2 µ(g) µ(g)+n 2 µ(g) = n µ(g) χ(g) n(g) µ(g) G n m µ(g) 2mn n + 2m. µ(g) n χ(g) χ(g) n 2 µ(g) n n 2 n 2 n(n 1)+2m 2mn n+2m n 2 2(( n 2) m) 3 K 2 G µ(g) (G) G (G) = µ(g) G (G) µ(g) U D G M G M U U G S U M P S S M P M R G e M e = {u, d} u U d D d R S d R u R = M R G e E(G) R e M e M M e = {u, d} e M M {e} d e u S e S R d R e R u e = {u, d } S d R u R e R S P d d d e M d R e R d P e P P M e P d P P P + = P ({d, u, d}, {e, e}) S d d R d e M P + M

100 U u u U u e e e e D d D d d U u U u D e e d e d D e e d d M P + M P + M + G M G U D M U R U N G (R) R M U U S U M M M S D N G (S) M = S M N G (S) S M U (G) = µ(g) < U S G < U S U = S U S D = S D S G (U\S U ) (D\S D ) G N G (U\S U ) S D S < U S\S U < U\S U N G (U\S U ) S D = S\S U < U\S U R = U\S U N G (R) < R n m (G) m n α(g) n2 m n G 1 3 m(g)

101 ΚΕΦΑΛΑΙΟ 11 G H χ(h) = ω(h) 3

102 5 W i, i 4 i C 5 G G n χ(g) ω(g) χ(g) n µ(g) µ(g) = (G) ω(g) = α(g) α(g) = n (G) χ(g) n µ(g) = n (G) = α(g) = ω(g) H L(H) H H χ(l(h)) = ω(l(h)) (H) = χ(l(h)) µ(h) = ω(l(h)) G (G) = 3 G χ(g) = ω(g) = δ (G) + 1 = 4

103 S G G x, y S {x, y} E(G) S (a, b) a, b G\S C a C b G\S a b x y C a C b S (a, b) G (x, y) P a C a (x, y) P b C b P a P b P a P b G 4 G G G G a b S (a, b) G S G C a G\S a G 1 = G[S C a ] G 2 = G\C a G 1 G 2 n(g i ) < n(g), i = 1, 2 i = 1, 2 G i i {1, 2} G i v i V (G i )\S G i {1, 2} G i v i S v 1 v 2 G G δ (G) ω(g) 1 G ω(g) 1 G v G = G[N G (v) {v}] G (v) = G (v) ω(g) 1 G H χ(h) δ (H) + 1 ω(h) = ω(h) G {V c, V d } V (G) V c G V d G G C i G {V c, V d } V (G) G[V c ] C i V c G G[V d ] i 3 V d G i 3 0 i 3 G

104 G I = {I 1,..., I n } i I I i = [l i, r i ] l i < r i I G I = (I, {{I i, I j } I i I j }), G I I G I G I G I I G I G C i G i 4 I 1, I 2, I 3,..., I i C i I 1 l 1 = {l j 1 j i} I 3 r 1 I 1 I 3 G j = 1,..., i 2 I j+2 r j r 1 I 1 I i = I 1 I i G G

105 ω(g) = α(g) n(g) = n(g) H n(h) α(h) ω(h) G G 5 1 G 5 G I 0 = {3, 5} G 3 G 5 χ 3 χ 5 G 3 G 5 χ 3 χ 5 I 1 = {2, 5}, I 2 = {1, 4}, I 3 = {2, 4} I 4 = {1, 3} G G I 0, I 1, I 2, I 3, I 4 S 0 = {1, 2}, S 1 = {3, 4}, S 2 = {2, 3}, S 3 = {1, 5} S 4 = {4, 5} G H χ(h) = ω(h) n(h) α(h) χ(h) n(h) α(h) ω(h) G χ(g) > ω(g) H G G χ(h) = ω(h) p = ω(g) I 0 = {v 1,..., v q } G q = α(g) i {1,..., q} G i = G\v i ω(g i ) = ω(g) ω(g i ) < ω(g) χ(g i ) = ω(g i ) < ω(g) χ(g) ω(g) χ(g i ) = ω(g i ) = p i 1,..., q p σ i : V (G i ) {1,..., p} G i I (i 1) p+1,..., I (i 1) p+p σ i i = 1,..., q G pq + 1 I 0, I 1,..., I pq G j {0,..., pq} χ(g\i j ) < ω(g) I j χ(g) ω(g) χ(g\i j ) ω(g) ω(g) χ(g\i j ) = ω(g\i j ) ω(g) G\I j p S j pq + 1 S 0, S 1,..., S pq G j, j {0,..., pq} j j S j I j j = 0 j {1,..., pq} G i = G\v i σ i I j S 0 G\I 0

106 S 0 I 0 v i S 0 G[S 0 ] G i χ(g i ) = p G[S 0 ] σ i I j G[S 0 ] < p G[S 0 ] I j j {1,..., pq} j > 0 G[S j ] G\I j I j σ i i {1,..., q} σ i G i = G\v i v i S j v i S j G[S j ] G i \I j G i χ(g i \I j ) < p G[S j ] < p v i S j S j I 0 S j I j j {1,..., pq}\{j} G i = G\v i σ i I j i i v i S j v i, v i I 0 v i S j G[S j ] G i = G\v i G i I j S j < p i = i I j I j σ i S j I j S j I j = G[S j ] G\I j I j G\{v i } I j I j p 2 G\I j I j p 1 χ(s j ) < p S 0 S 1 S 2 S 3 S 4 I I I I I X Y Z X Y C 5 X, Y Z n(g) = 5 > 2 2 = α(g) ω(g) V (G) = {v 1,..., v n } (pq + 1) n X = [x i,h ] (i,h) [pq+1] [n] x i,h = 1 v h I i X I i, i = {0,..., pq} n (pq + 1) Y = [y h,j ] (h,j) [n] [pq+1] y h,j = 1 v h S j Y S j, j = {0,..., pq} S j I i i j i = j S j I i = 0 S j G\I j S j I j = S j I i = i j S j I i S j I i S j I i = 1 z i,j = x i,h y h,j = S i I j h {1,...,n} XY (pq + 1) (pq + 1) Z = [z i,j ] (i,j) [pq+1] 2 Z

107 0 X n X n X pq Z = XY pq XY X Y Z Z pq + 1 P = (S, <) S R S x, y R x < y y < x R S x, y R x y y x a a a b c b c b c d e f d e f d e f g h g h g h P P P = (S, <) G P G P = (S, {{x, y} x < y x > y}), S G P G P P G P P P = (S, <) S ρ P ρ P ρ P = (S, <) S = n P B U D U = S v S v D (v, u) S S v < u

108 a b c d e f g h G P P a R U a b c d e f g h b c B d e f R D g h a b c d e f g h B B R {a, c, f, h} {b, d} {e, g} d e f P B v U u D u D v U v D v v M B R B M = µ(b) = (B) = R = k R k S n k S P F P S F = E M {v, u } E A F v A u A F u A v F [v, u] E E\{{v, u }} E = F

109 n k U M M F = n k ρ = n k P = (S, <) P (P) k F = {L 1,..., L k } S L i F P P = (S, <) P P F P ρ I ρ F P I F I = F F I P F I F = I I P = (S, <) S α(g P ) = (P) P G P α(g P ) P P P = (S, <) S (P) = χ(g P ) P G P F P ρ V (G P ) ρ G χ(g) ρ P (P) = χ(g P ) a a b c b c d e f d e f g h g h G P P G P G P G P

110 G n χ(g) ω(g) χ(g) ω(g) P = (V (G), <) G G = G P χ(g) = χ(g P ) = (P) = α(g P ) = α(g) = ω(g) {ω(h) 1 G H H } (G) {ω(h) G H H } G H G

111 ΚΕΦΑΛΑΙΟ 12 G G W = [v 0,..., v r 1, v 0 ] G W = [v 1,..., v r, v 1 ] e E(G) {i {v i, v i+1 r } = e} = 1.

112 G C = [v 0,..., v r 1, v 0 ] v G I {0,..., r 1} v = v i I = {i {0,..., r 1} v = v i } i I v = v i {v i 1 r, v i } {v i, v i+1 r } I C (v) = 2 I v ρ(g) = v V (G) ((v) 2). ρ(g) = 0 G G ρ(g) ρ(g) > 0 v 4 G v G {x, v} {y, v} v G w x y v G G G G (v) = G (v) 2 G G G w G v ρ(g ) < ρ(g) G G G G W = [v 0,..., v r 1 ] G

113 C A B D A B C D G G v 0 v r 1 G G G v 0 v r 1 G G G G G

114 G G G G G G I = {1,..., k} I 1, I 2 I I 1 + I 2 k + 2 i I 1 i + 1 I 2 j I 2 j + 1 I 1 G n(g) G x y G (x) + G (y) n(g) 2 < n(g) G P = [v 1,..., v r ] G r n(g) G P {v 1, v r } E(G) v 1 v r N G (v 1 ), N G (v 2 ) {v 2,..., v r 1 } N G (v 1 ) N G (v 2 ) r 2 n(g) 2 N G (v 1 ) + N G (v r ) n(g) i {2,..., r 2} v i N G (v r ) v i+1 N G (v 1 ) G C = [v 0, v i+1, v i+2,..., v r, v i, v i 1,..., v 0 ]

115 G r < n G w G C v C G w v C r + 1 P n(g)/2 G α(g) κ(g) C G G u V (G)\V (C) V (C) κ(g) V (C) < κ(g) x x C κ(g) G x x e = {x, x } V (C)\{x, x } < κ(g) 2 P V (C)\{x, x } P (C\e) r r κ(g) G + G v C V (C) κ(g) κ(g + ) κ(g) v u G + κ(g) v u G + (u, S) G S V (C) S κ(g) S u V (C)\S x S x C S C\{x, x } P 1 P 2 P 1, P 2 u x x C I V (C) S I G x, y I e C\{{x, x }, {y, y }} (e, {e}) P x P y x y x y P x P y u x y I V (C)\S u V (C)\S {u} I G κ(g) + 1 α(g) > κ(g)

116

117 n

118 k 3

119 n(g) G m(g) G N G (S) S G K r r K 1,r r P r r C r r Q r r (G) G G G L(G) G G H G H G H G H G H G H G + H G H G H G H k G k G G [k] k G

120 G (k) k G G H G H E G (v) V (E) G\S G v E E(G) S V (G) G G\v v V (G) G G\E E E(G) G G\e e E(G) G G/v v V (G) G G/e e E(G) G υπ ϵν πα τπ ϵλ G[S] S V (G) G[E] E E(G) G (v) v G δ(g) G (G) G d(g) G ϵ(g) G δ (G) G G (x, y) x y G G (x) x G (G) G (G) G (G) G

121 (G) G (G) G (G) G (G) G (G) G κ(g) G κ G (x, y) x y W r r λ(g) G F (Γ) Γ

122

123

124 k

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

(G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O

Διαβάστε περισσότερα

### Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

### Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

### ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

### (a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

### Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ

Για ιδανικά διαλύματα : μ i = μ i lnx i x= γ=1 Για αραιά διαλύματα : x 1 : μ i = μ i lnx i χ μ i = μ i φ lnx i όπου μ i φ =μ i χ Χημική Ισορροπία λ Από σελ. 7 Χημική Ισορροπία όταν ν i μ i = (T,P σταθερό)

Διαβάστε περισσότερα

### Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

# % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν

Διαβάστε περισσότερα

### Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

### Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

### Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

### ! "# \$"%%&\$\$'(\$)*#'*#&+\$ ""\$&#! "#, &,\$-.\$! "\$-/+#0-, *# \$-*/+,/+%!(#*#&1!/+# ##\$+!%2&\$*2\$ 3 4 #' \$+#!#!%0 -/+ *&

! "# \$"%%&\$\$'(\$)*#'*#&+\$ ""\$&#! "#, &,\$-.\$! "\$-/+#0-, *# \$-*/+,/+%!(#*#&1!/+# ##\$+!%2&\$*2\$ 3 4 #' \$+#!#!%0 -/+ *& '*\$\$%!#*#&-!5!&,-/+#\$!&- &"/ "\$,&/#!6\$7,&78 "\$% &\$&'#-/+#!5*% 3 +!\$ 9 &\$*,2"%& #\$- 3 '*\$%#

Διαβάστε περισσότερα

l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R

Διαβάστε περισσότερα

### Υδροδυναμική. Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli

Υδροδυναμική Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli Υδροδυναμική - γενικά Ρευστά σε κίνηση Τμήματα με διαφορετικές ταχύτητες και επιταχύνσεις Αλλαγή μορφής

Διαβάστε περισσότερα

### Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

χ (1) χ (3) χ (1) χ (3) L x, L y, L z ( ) ħ2 2 2m x + 2 2 y + 2 ψ (x, y, z) = E 2 z 2 x,y,z ψ (x, y, z) E x,y,z E x E y E z ħ2 2m 2 x 2ψ (x) = E xψ (x) ħ2 2m 2 y 2ψ (y) = E yψ (y) ħ2 2m 2 z 2ψ (z)

Διαβάστε περισσότερα

### ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

### Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

### Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

### ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ x x x y y x y?? Ευριπίδης Μάρκου Ευάγγελος Κρανάκης Άρης Παγουρτζής Ντάννυ Κριζάνκ ΕΥΡΙΠΙΔΗΣ ΜΑΡΚΟΥ Τµήµα Πληροφορικής µε Εφαρµογές στη Βιοϊατρική Πανεπιστήµιο

Διαβάστε περισσότερα

V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,

Διαβάστε περισσότερα

### !"! #!"!!\$ #\$! %!"&' & (%!' #!% #" *! *\$' *.!! )#/'.0! )#/.*!\$,)# * % \$ %!!#!!%#'!)\$! #,# #!%# ##& )\$&# 11!!#2!

# \$ #\$ % (% # )*%%# )# )\$ % # * *\$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* \$,)# )#/ * % \$ % # %# )\$ #,# # %# ## )\$# 11 #2 #**##%% \$#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #\$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

### ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

### τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

### /&25*+* 24.&6,2(2**02)' 24

!! "#\$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39\$:80(& 2/((,* (33; (* 3: &

Διαβάστε περισσότερα

### ! # %& # () & +( (!,+!,. / #! (!

! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /

Διαβάστε περισσότερα

### m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

### Parts Manual. Trio Mobile Surgery Platform. Model 1033

Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

### X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )

Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

### ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

### Γυροσκοπικοί υπολογισμοί

Γυροσκοπικοί υπολογισμοί Γυροσκοπικοί υπολογισμοί Α) Εισαγωγή Το γυροσκόπιο είναι μια διάταξη, η οποία μπορεί να διατηρεί σταθερό τον προσανατολισμό της μέσω της περιστροφής των μερών της. Για να μεταβληθεί

Διαβάστε περισσότερα

### Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

### ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

### F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

### ПРАВИЛА О РАДУ ДИСТРИБУТИВНОГ СИСТЕМА

ПРАВИЛА О РАДУ ДИСТРИБУТИВНОГ СИСТЕМА Верзија 1.0 децембар 2009. године На основу члана 107. Закона о енергетици (''Службени гласник Републике Србије'' број 84/04) и чл. 32. ст. 1. т. 9. Одлуке о измени

Διαβάστε περισσότερα

### Θεωρητική μηχανική ΙΙ

ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

### ! "#" "" \$ "%& ' %\$(%& % &'(!!")!*!&+ ,! %\$( - .\$'!"

! "#" "" \$ "%& ' %\$(%&!"#\$ % &'(!!")!*!&+,! %\$( -.\$'!" /01&\$23& &4+ \$\$ /\$ & & / ( #(&4&4!"#\$ %40 &'(!"!!&+ 5,! %\$( - &\$ \$\$\$".\$'!" 4(02&\$ 4 067 4 \$\$*&(089 - (0:;

Διαβάστε περισσότερα

### C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

### Αλληλεπίδραση ακτίνων-χ με την ύλη

Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )

Διαβάστε περισσότερα

### Μαγνητικοί άνεμοι και απώλεια στροφορμής

8 Μαγνητικοί άνεμοι και απώλεια στροφορμής Σχήμα 8.1: Μορφολογία ενός αστρικού ανέμου στο ισημερινό επίπεδο στα πλαίσια της αντιμετώπισής του από το απλοποιημένο μοντέλο του μαγνητοπεροστροφικού ανέμου

Διαβάστε περισσότερα

### ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ ιπλ ωµατ ική Εργασία του Φοιτητή ιονύση Παππά Τ µ ή µ α Μ ε τ α ν α σ τ ε υ τ ι κ ή ς π ο λ ι τ ι κ ή ς Τίτλος Εργασίας: Η Συµβολή της Τοπικής Αυτοδιοίκησης στην καταπολέµηση

Διαβάστε περισσότερα

### ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mil: info@iliskos.gr www.iliskos.gr Fl] = f]! D G] = F]

Διαβάστε περισσότερα

8 ) / 9! # % & ( ) + )! # 2. / / # % 0 &. # 1& / %. 3 % +45 # % ) 6 + : 9 ;< = > +? = < + Α ; Γ Δ ΓΧ Η ; < Β Χ Δ Ε Φ 9 < Ε & : Γ Ι Ι & Χ : < Η Χ ϑ. Γ = Φ = ; Γ Ν Ι Μ Κ Λ Γ< Γ Χ Λ =

Διαβάστε περισσότερα

### ! " #\$% & '()()*+.,/0.

! " #\$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " \$%!%!! &'(\$ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20

Διαβάστε περισσότερα

### Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική

Διαβάστε περισσότερα

### ( 1) R s S. R o. r D + -

Tο κύκλωμα που δίνεται είναι ένας ενισχυτής κοινής πύλης. Δίνονται: r D = 1 MΩ, g m =5mA/V, R s =100 Ω, R D = 10 kω. Υπολογίστε: α) την απολαβή τάσης β) την αντίσταση εισόδου γ) την αντίσταση εξόδου Οι

Διαβάστε περισσότερα

### Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς

9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1

Διαβάστε περισσότερα

### http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

### Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων

Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

### 2.1. ΑΠΛΟΣ ΤΥΧΑΙΟΣ ΠΕΡΙΠΑΤΟΣ

Κεφ. ΙΙ Τυχαίος Περίπατος.. ΑΠΛΟΣ ΤΥΧΑΙΟΣ ΠΕΡΙΠΑΤΟΣ Ας θεωρήσουµε ότι σωµατίδιο ανά µονάδα χρόνου κινείται πάνω επάνω στον οριζόντιο άξονα x x µε βήµατα σταθερού µήκους l =. Με πιθανότητα p (0 < p < )

Διαβάστε περισσότερα

### ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ Περιεχόμενα 1. Το εξωτερικό μέτρο Lebesgue 2 2. Mετρήσιμα σύνολα 4 3. Η κανονικότητα του μέτρου Lebesgue

Διαβάστε περισσότερα

### A 1 A 2 A 3 B 1 B 2 B 3

16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

### ΘΕΜΑ Β Β1. Δίνονται τα στοιχεία: 7 Ν, 8Ο, 11 Νa. α. Ποιο από τα στοιχεία αυτά έχει περισσότερα μονήρη ηλεκτρόνια στη θεμελιώδη κατάσταση;

Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 0 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0.06.0 ΘΕΜΑ Α Για τις ερωτήσεις Α έως και Α4 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

### + (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# # # # 6! 9 # ( 6 & # 6

# % ( + (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# 2 + + 3 + 4 5 # 6 5 7 + 8 # # 6 (! 9 # ( 6 & 0 6 ) 1 5 + # 6 2 # # + 6 # # 6 # + # # + 6 + # #! 5 # # 6 & # : # # : 6 0 ) 5 + 6 1 # # 2 + # + # # 4 + # 6

Διαβάστε περισσότερα

### ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια Συνέχεια ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ mail: info@iliaskosgr wwwiliaskosgr f] g,! R f] g,, f] g

Διαβάστε περισσότερα

### K r i t i k i P u b l i s h i n g - d r a f t

T ij = A Y i Y j /D ij A T ij i j Y i i Y j j D ij T ij = A Y α Y b i j /D c ij b c b c a LW a LC L P F Q W Q C a LW Q W a LC Q C L a LC Q C + a LW Q W L P F L/a LC L/a LW 1.000/2 = 500

Διαβάστε περισσότερα

### Συμμετρία μορίων και θεωρία ομάδων

Συμμετρία μορίων και θεωρία ομάδων Συμμετρία πολυατομικών μορίων Τι μας χρειάζεται; Προβλέπει τη φαματοκοπία και τη υμπεριφορά ατόμων και μορίων Πράξεις Συμμετρίας: κινήεις του μορίου κατά τις οποίες η

Διαβάστε περισσότερα

### 1.4 8v 78hp 1.4 8v 78hp. Progression Distinctive Βενζίνη Βενζίνη 14.600 15.700 145.B3N.1 145.E3N.1

1.4 8v 78hp 1.4 8v 78hp 1368 1368 Progression Βενζίνη Βενζίνη 14.600 15.700 145.B3N.1 145.E3N.1 ΘΟΦΝΠ ΦΥΡΗΠΚΝΠ NIGHT PANEL ΚΔ LED ---- ΦΥΡΗZOMENOI ΘΑΘΟΔΞΡΔΠ ΠΡΑ ΑΙΔΜΖΙΗΑ ---- ΡΑΚΞΙΥ SPRINT ---- ΡΑΚΞΙΥ

Διαβάστε περισσότερα

### ! # % &! ( )! % +,.! / 0 1 )2 3

! !! # % &! ( )! % +,.! / 0 1 )2 3 ) 4 5! 5 ) 6 2 2 ) 2 3 #! 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 83 % ) 1

Διαβάστε περισσότερα

### * * * * * * * * * * * * * * * * * * * * * * * * * Ν ΖΖ.ΖΖΖΖΖ.ΖΖΖΖΖΖΖ Ν.ΖΖΖΖ.ΖΖΖΖΖΖΖΖΖΖΖΖΖ

. Ν, Φ Γ Ω ( υ α α α α α υ ) * * * * * * * * * * * * * * * * * * * * * * * * * Χ. Ω Ν Γ ΖΖΖΖΖΖΖΖΖΖΖΖΖΖΖ.ΖΖΖ.ΖΖ.Ζ 2-8 Ν Ω Θ Ζ..ΖΖ.. 8-23 Ν ΖΖ.ΖΖΖΖΖ.ΖΖΖΖΖΖΖ. 23-29 Ν.ΖΖΖΖ.ΖΖΖΖΖΖΖΖΖΖΖΖΖ. 29-51 Ν Φ ΖΖΖΖΖΖΖΖΖΖΖΖ.ΖΖΖΖ.ΖΖ.

Διαβάστε περισσότερα

### Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±

Ó³ Ÿ. 2010.. 7, º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ ƒ ˆ Šˆ ˆ ˆ ƒ Š.. ± Î,. ˆ. ³ ƒ ˆ, Œμ ± μí Ê μ ± É μ μ ÊÎ± Î ÉμÉ É É μ ÒÌ ±μ² Î É Í ³ Ö- É Ö - μ É Ì μé±²μ Ö μ ³ Ê²Ó Ê ( ² Î Ì μ³ É Î μ É ) ³ Ö ±Ê²μ- μ

Διαβάστε περισσότερα

### ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ Μαρτίου 00 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική

Διαβάστε περισσότερα

### ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ KYΡIAKH 18 MAΡTIOY 2012 ΔΙΑΡΚΕΙΑ:ΤΡΕΙΣ (3) ΩΡΕΣ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ Να μελετήσετε

Διαβάστε περισσότερα

### TALAR ROSA -. / ',)45\$%"67789

TALAR ROSA!"#"\$"%\$&'\$%(" )*"+%(""%\$," *\$ -. / 0"\$%%"\$&'1)2\$3!"\$ ',)45\$%"67789 ," %"(%:,;,"%,\$"\$)\$*2

Διαβάστε περισσότερα

### Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση Ενότητα Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα / 77 Επαναληπτικές

Διαβάστε περισσότερα

### 1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x

ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 6 Θ. Τομαράς 1. Πρωτόνια στις κοσμικές ακτίνες φτάνουν ακόμα και ενέργειες της τάξης των 10 20 ev. Να συγκρίνετε την ενέργεια αυτή με την ενέργεια που έχει μια πέτρα που πετάτε με

Διαβάστε περισσότερα

### !"#\$%&' ()*%!&"' «\$+,-./0µ12 3410567/8+9 5+9 :1/.;./:69 <.5-8+9: \$=5-.>057=9/7/=9» !"#\$%&\$'( trafficking %)*+!,,-.\$. /0"1%µ\$)\$ 2"(%3\$)*4 5"67+\$4

1!"#\$%&' ()*%!&"' «\$+,-./0µ12 3410567/8+9 5+9 :1/.;./:69 057=9/7/=9»!"#\$%\$&"'\$ «NOVOTEL» ()*. +,-. 4-6, /01#/ 14 & 15 /23)4567 2011!"#\$%&\$'( trafficking %)*+!,,-.\$. /0"1%µ\$)\$ 2"(%3\$)*4 5"67+\$4

Διαβάστε περισσότερα

### Karl Pearson (27 March April 1936)

ar a t a d o l a Vio 2 Karl Pearson (27 March 1857 27 April 1936) F1 1 2 3 4 1 11 6 9 14 40 2 7 6 7 9 29 3 14 5 7 11 37 4 11 4 7 20 42 5 22 2 12 16 52 65 23 42 70 200 r 1 n c 1 συχν τητα κελιο 100

Διαβάστε περισσότερα

### 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Πρώτοι αριθµοί και τα Βασικά Θεωρήµατά τους Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 1 Πρωτοι αριθµοι και τα Βασικα Θεωρηµατα τους Στη µνήµη

Διαβάστε περισσότερα

### H περιοδικότητα των ιδιοτήτων των ατόμων των στοιχείων-iοντικός Δεσμός. Εισαγωγική Χημεία

H περιοδικότητα των ιδιοτήτων των ατόμων των στοιχείων-iοντικός Δεσμός Εισαγωγική Χημεία 2013-14 1 Μέγεθος Ιόντων Κατιόντα: Η ακτίνα τους είναι πάντοτε μικρότερη από την αντίστοιχη των ουδέτερων ατόμων.

Διαβάστε περισσότερα

### -! " #!\$ %& ' %( #! )! ' 2003

-! "#!\$ %&' %(#!)!' ! 7 #!\$# 9 " # 6 \$!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&\$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! \$ - (( 6 6 \$ % 7 7 \$ 9!" \$& & " \$! / % " 6!\$ 6!!\$#/ 6 #!!\$! 9 /!

Διαβάστε περισσότερα

### Σημείωση. Δημήτρης Φουσκάκης Λέκτορας ΕΜΠ

Σημείωση Οι σημειώσεις αυτές περιλαμβάνουν λύσεις ασκήσεων Πιθανοτήτων και συγκροτήθηκαν εν όψει των αναγκών των σπουδαστών ΣΕΜΦΕ στo μαθήματα Πιθανότητες του ου εξαμήνου από τον διδάσκοντα Δ Φουσκάκη

Διαβάστε περισσότερα

### Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

### ΣΧΑΣΗ. Τονετρόνιοκαιησχάση. Πείραµα Chadwick, 1930. Ανακάλυψη νετρονίου

ΣΧΑΣΗ Τονετρόνιοκαιησχάση Πείραµα Chadwick, 1930 4 9 12 2 α+ 4 Be 6 C+ Ανακάλυψη νετρονίου 1 0 n Irène & Jean Frédéric Joliot-Curie 1934 (Nobel Prize) Σειράπειραµάτων: Βοµβαρδισµόςελαφρών στοιχείων µε

Διαβάστε περισσότερα

### CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4)

CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Διακλαδωμένες Χρονικές λογικές CTL σύνταξη και ερμηνεία Έλεγχος μοντέλου για τη CTL Σύγκριση των PLTL

Διαβάστε περισσότερα

### Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Να χαρακτηρίσετε µε Σ (Σωστό) ή Λ (Λάθος) τους παρακάτω ισχυρισµούς:. Για κάθε α R ισχύει ότι : α =α.. Για κάθε α R ισχύει ότι : α = α.. Για κάθε α R ισχύει ότι

Διαβάστε περισσότερα

### ΕΠΙΣΗΜΗ ΕΦΗΜΕΡΙΔΑ ΤΗΣ ΚΥΠΡΙΑΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΚΥΡΙΟ ΜΕΡΟΣ ΤΜΗΜΑ Α

ΕΠΙΣΗΜΗ ΕΦΗΜΕΡΙΔΑ ΤΗΣ ΚΥΠΡΙΑΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΚΥΡΙΟ ΜΕΡΟΣ ΤΜΗΜΑ Α Αριθμός 4672 Παρασκευή, 8 Φεβρουαρίου 2013 119 Αριθμός 88 Ο Παναγιώτης Κουτσού, μόνιμος Τεχνικός Επιθεωρητής, Τμήμα Δημοσίων Έργων, απεβίωσε

Διαβάστε περισσότερα

### Χρωματισμός γραφημάτων

Χρωματισμός γραφημάτων Εφαρμογές χρωματισμού γραφημάτων Έστω γράφημα G Αποδίδουμε 1 ακριβώς χρώμα σε κάθε κορυφή του G έτσι ώστε κορυφές που συνδέονται με ακμή να λαμβάνουν διαφορετικά χρώματα Αν η διαδικασία

Διαβάστε περισσότερα

### Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

### ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί

Διαβάστε περισσότερα

### ο χάρτης το γράφημα Σχήμα 5.3

KΕΦΑΛΑΙΟ 5 ΓΡΑΦΗΜΑΤΑ 5.1. Ανακάλυψη Ο W. Leibniz, σε επιστολή του το 1679 προς τον C. Huygens, παρατήρησε ότι "μας χρειάζεται ένα άλλο είδος ανάλυσης, γεωμετρικής ή γραμμικής, που να ασχολείται απ' ευθείας

Διαβάστε περισσότερα

### !"#\$ % &# &%#'()(! \$ * +

,!"#\$ % &# &%#'()(! \$ * + ,!"#\$ % &# &%#'()(! \$ * + 6 7 57 : - - / :!", # \$ % & :'!(), 5 ( -, * + :! ",, # \$ %, ) #, '(#,!# \$\$,',#-, 4 "- /,#-," -\$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

### ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2007.. 38.. 6 Š Ÿ ˆŸ Œ Ÿ ˆ Š ƒ. ƒ. Š ³ ±,.. ŠÊ ² μ μ ± μ Ê É Ò Ê É É, μ μ, μ Ö. Œ. Ê ²Ó ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ Œμ ±μ ±μ μ μ Ê É μ μ Ê É É ³. Œ.. μ³μ μ μ, Œμ ± ˆ

Διαβάστε περισσότερα

### III.5 Μέθοδοι Παραγοντοποίησης

III.5 Μέθοδοι Παραγοντοποίησης III.5. Μέθοδος διάσπασης LU Η µέθοδος πραγµατοποίησης η διάσπασης διάσπασης ενός πίνακα Α στη µορφή LU αναφέρεται στο πρόβληµα της A=LU (III.5.) Όπου Ο L είναι κάτω τριγωνικός

Διαβάστε περισσότερα

### Θεωρι α Γραφημα των 1η Δια λεξη

Θεωρι α Γραφημα των η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 205 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των η Δια λεξη Φεβρουα ριος 205 / 22 Εισαγωγη Διδα σκων: Αντω νιος Συμβω νης ΣΕΜΦΕ, κτι

Διαβάστε περισσότερα

### Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

### * * } t. / f. i ^ . «-'. -*.. ;> * ' ί ' ,ΐ:-- ΙΣ Τ Ο Λ Ο Γ ΙΑ Τ Α ΣΥΣΤΗ Μ Α ΤΑ ΟΡΓΑΝΟΝ. Ο.Β.Κ δτο ΥΛΑΣ

% r,r,»v: ' \$ & '"- -.,.. -., * *» # t -..* ' T. < - 'ί" : ', *».- 7 Λ CV';y * ' f y \ '. :.-ή ; / ' w, * * } t ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΠΑΝΝΙΝΠΝ ΙΑΤΡΙΚΗ ΣΧΟΛΗ V* ι Λ-Α..;. «* '. ft A 1^>>,- 7 - ^Λ' :.-.. ν -»V-

Διαβάστε περισσότερα

### βιβλίο περιλήψεων Καινοτόμες και στοχευμένες παρεμβάσεις για την πρόληψη της παιδικής κακομεταχείρισης

ΣΤΡΟΓΓΥΛΕΣ ΤΡΑΠΕΖΕΣ βιβλίο περιλήψεων Στρογγυλή Τράπεζα Καινοτόμες και στοχευμένες παρεμβάσεις για την πρόληψη της παιδικής κακομεταχείρισης Εισηγητής: Γ. Γιαννακόπουλος, Παιδοψυχίατρος Διδάκτωρ Ιατρικής

Διαβάστε περισσότερα

### ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Œ Œ ˆ ˆ ˆŠ ˆˆ 58. ˆ. Œ. ƒμ É. Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ±

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2010.. 41.. 1 Œ ˆ ˆ ˆŠ ˆˆ ƒ ˆ Šˆ š Š ƒ Œ ˆ Š Š Ÿ ˆˆ ˆ. Œ. ƒμ É Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ± ˆ 49 ˆ ˆ Šˆ Šˆ 50 ˆ ˆ Œ ˆ ˆˆ ˆ Š 54 Œ Œ ˆ ˆ ˆŠ ˆˆ 58 ˆ ˆ

Διαβάστε περισσότερα

### Ενισχυτής κοινής πηγής (common source amplifier)

Εισαγωγή στην Ηλεκτρονική Βασικά κυκλώµατα ενισχυτών µε transstr MOS Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Transstr ως ενισχυτής Ενισχυτής κοινής πηγής (cmmn surce amplfer (κύκλωµα αντιστροφέα

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Θεμελιώσεις Επιστήμης Η/Υ ΠΛΗ30 Τελική Εξέταση 2 Ιουλίου 2014 Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Φοιτητή Τμήμα Υπογραφή Φοιτητή Υπογραφή Επιτηρητή Διάρκεια: 180 Ερώτημα Μονάδες Βαθμολογία 1 8+8+4 2

Διαβάστε περισσότερα

### ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

### Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ

Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ 60 Κεφάλαιο ο Ι. ΣΥΝΑΡΤΗΣΕΙΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ. Σ 0. i) Σ. Σ. Σ 0. ii) Σ 3. Σ 3. Σ. Σ 4. Λ 4. Λ. Λ 5.

Διαβάστε περισσότερα

### Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και

Διαβάστε περισσότερα

### Εφαρμοσμένα Μαθηματικά ΙΙ

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

### Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα