Fourier Analysis of Waves
|
|
- Αγάπη Αλεβίζος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman Lectures on Physics by Richard Feynman, Robert Leighton, Matthew Sands, et al. 36 Fourier Analysis of Waves. Refer to The Feynman Lectures on Physics Vol. I, Chapter 5. Fourier series over a period P where x is contained in the half-open interval [x, P). f(x) = a 2 + [a n cos ( 2nx P ) + b n sin ( 2nx P )] n= x +P a n = 2 P x x +P f(x) cos (2nx P ) dx b n = 2 P x f(x) sin (2nx P ) dx Euler s equation used to derive trigonometric identities. e i(θ±φ) = cos(θ ± φ) + i sin(θ ± φ) = e iθ e ±iφ = (cos θ + i sin θ)(cos φ ± i sin φ) = cos θ cos φ sin θ sin φ + i(cos θ sin φ ± sin θ cos φ) cos(θ ± φ) = cos θ cos φ sin θ sin φ sin(θ ± φ) = cos θ sin φ ± sin θ cos φ 2cos θ cos φ = cos(θ φ) + cos(θ + φ) 2sin θ cos φ = sin(θ + φ) sin(θ φ) e ix e ix = e = 1 = (cos x + i sin x)(cos x i sin x) = (cos x) 2 + (sin x) 2 e 2ix = cos 2x + i sin 2x = e ix e ix = (cos x + i sin x)(cos x + i sin x) = (cos x) 2 (sin x) 2 + i(cos x sin x + sin x cos x) cos 2x = (cos x) 2 (sin x) 2 = 1 (sin x) 2 (sin x) 2 = 1 2(sin x) 2 1
2 36.1 (a) y(x) = const. (b) y(x) = sin x <= x <= 2 * pi. (a) (sin x) 2 = 1 (1 cos 2x) 2 sin 2x = 2 cos x sin x y(x) = C x [, P] x +P a n = 2C P cos (2nx P ) dx x a n = 2C P P 2n x=x +P sin (2nx P )] x=x = C n sin [2n(x + P) ] C P n sin (2nx P ) sin [ 2n(x + P) ] = cos ( 2nx P P ) sin(2n) + sin (2nx P ) cos(2n) = sin (2nx P ) a n = C n [sin (2nx P ) sin (2nx P )] = x +P b n = 2C P sin (2nx P ) dx x b n = 2C P P 2n x=x +P cos (2nx P )] x=x = C n {cos [2n(x + P) ] cos ( 2nx P P )} = C n [cos (2nx P ) cos(2n) sin (2nx P ) sin(2n) cos (2nx P )] = C n [cos (2nx P ) cos (2nx P )] = a 2 = C a = 2C (b) y(x) = sin x x [,2] x =, P = 2 2 a = 1 sin x dx = 1 cos x] x= x=2 = 1 [cos(2) cos()] = 1 (1 1) = 2
3 2 a n = 1 sin x cos nx dx = [ sin(x + nx)dx sin(x nx)dx] = 1 { sin[(1 + n)x] dx sin[(1 n)x] dx 2 = 1 2 = 1 2 { cos[(1 + 2n)x] 1 + 2n { cos[(1 + 2n)x] 1 + 2n ] ] 2 x=2 x= x=2 x= + cos[(1 2n)x] ] 1 2n cos[(1 2n)x] 2n 1 ] } x=2 x= x=2 x= } = } = b n = 1 sin x sin nx dx = n > 1 2 b 1 = 1 (sin x)2 dx = 1 (1 cos 2x)dx = x [, ] f(x) = { 1 x (, 2) a n = 1 ( cos nx dx cos nx dx) = 1 n (sin nx] x= x= sin nx] x=2 x= ) = (a) b n = 1 ( sin nx dx sin nx dx) = 1 n (cos nx] x= x= cos nx] x= 2 = 1 [cos n + cos n 2] n b 2n+1 = 4( 1)2n+1 (2n + 1) = 4( 1)2n+2 (2n + 1) = 4 (2n + 1) f(x) = 4 sin[(2n + 1)x] (2n + 1) n= x=2 ) f ( 2 ) = 4 sin[(2n + 1) 2 ] (2n + 1) n= sin[(2n + 1) 2] = sin(n + 2) = cos n sin( 2) + sin n cos( 2) = ( 1) n 3
4 (b) (c) n= 1 = 4 ( 1)n (2n + 1) n= ( 1)n = (2n + 1) 4 n= ( 1)n ( 1)m (2n + 1) (2m + 1) = ( 4 )2 = 2 16 m= ( 1)n+m = 1 (2n + 1)(2m + 1) 2 1 (2n + 1) 2 = 2 16 n= m= n= 1 (2n + 1) 2 = 2 8 n= 4 n n= = = (2n + 1) m = (2n + 1) 2 4 m n= m= n= m= = = g(x) = { 1 + x x [, ) x x [, 2) a = 1 g(x) dx = 1 2 x dx + 1 dx + 1 dx 1 2 x dx 2 = (2 ) 2 2 [(2)2 2 ] = = 1 a n = 1 g(x) cos nx dx = 1 x cos nx dx + 1 cos nx dx + 1 cos nx dx 1 x cos nx dx d(uv) = udv + vdu 2 d(uv) = uv = udv + vdu
5 x cos nx dx = x n sin nx] 1 sin nx x= n 2 x= 2 = (2n + 1) 2 x cos nx dx = x n sin nx] x= 2 x=2 = 1 n 2 [1 ( 1)n ] = udv = uv vdu u(x) = x dv = cos nx dx cos nx dx = 1 sin nx n 2 1 sin nx n dx = 1 n 2 cos nx] x= x= = 1 n 2 (cos n 1) = 1 n 2 [( 1)n 1] 2 (2n + 1) 2 dx = 1 n 2 cos nx] x= x=2 = 1 (cos 2n cos n) n2 2 a 2n+1 = (2n + 1) (2n + 1) 2 2 = 4 (2n + 1) 2 2 b n = 1 g(x) sin nx dx = 1 x sin nx dx + 1 sin nx dx + 1 sin nx dx 1 x sin nx dx u(x) = x dv = sin nx dx sin nx dx = 1 cos nx n x sin nx dx = x n cos nx] 1 cos nx x= n x sin nx dx = x n cos nx] x= x=2 x= 2 1 cos nx n 2 dx = 2( 1)n n dx = 2 n 2( 1)n n b n = 1 n 2 [( 1)n + ( 1) n 2] 2 1 (cos 2n cos n) = n n 2 [4( 1)n 4] 2 n [1 ( 1)n ] 8 b 2n+1 = (2n + 1) (2n + 1) = 4 (2n + 1) (1 2 ) g(x) = (2n + 1) 2 cos[(2n + 1)x] + 2 (2n + 1) (1 2 ) sin[(2n + 1)x] n= n= 2 5
6 (a) (b) g() = g(2) = = (2n + 1) 2 2 n= n= 2 1 (2n + 1) 2 = 8 [ 1 (2n + 1) 2 ] n= 2 = 4 64 ( ) ( ) = ( ) ( ) ( ) ( ) = s + 1 (2n + 1) 4 1 (2n + 1) 4 n= = 4 64 s n= s = 2 [ ( ) + ] s = s = δ δ δ = 96 (1) 1 (2n + 1) 4 n= 6 = (2n + 1) (2n + 2) 4 = 1 n 4 n= n= n=
7 (2) 1 (2n + 2) 4 = (n + 1) 4 n= 1 16 dx (x + 1) 4 1 n 4 n= n= = 1 16 dy y 4 = = t t = (n + 1) n= t = 96 9 t = = = 4 9 t = (n + 1) 4 = 1 16 ( ) = m 4 = ζ(4) 16 n= m=1 = = = Evaluate the following integral: ζ(4) = 4 9 x3 dx e x = x3 e x dx 1 1 e x 1 1 e x = 1 + e x + e 2x + e 3x + = (e x ) n 7 n= x3 e x dx 1 e x = x 3 e (n+1)x dx n= u(x) = x 3 dv = e (n+1)x dx v(x) = e (n+1)x dx = e (n+1)x n + 1 = e nx n=
8 x 3 e (n+1)x dx = 3 n + 1 x2 e (n+1)x dx u(x) = x 2 dv = e (n+1)x dx v(x) = e (n+1)x dx = e (n+1)x n + 1 x 2 e (n+1)x dx = 2 n + 1 x e (n+1)x dx u(x) = x dv = e (n+1)x dx 36.5 x v(x) = e (n+1)x dx = e (n+1)x n + 1 e (n+1)x dx = 1 n e (n+1)x dx = (n + 1) 2 x3 e x dx 1 e x = 6 1 (n + 1) 4 n= = 6ζ(4) = 64 9 = 4 15 y(x, t) = 8h 2 ( 1)n+1 1)x (2n 1)at sin [(2n ] cos [ ] (2n 1) y (1, 2 a ) = 8h 2 ( 1)n+1 1) sin [(2n ] cos[(2n 1)] = 8h (2n 1) ( 1)n+1 ( 1) n+1 ( 1) n+1 (2n 1) = 8h 2 ( 1)3n+3 (2n 1) 2 = 8h 2 ( 1)n+1 (2n 1) 2 = 8h 2 ( ) y(1,) = 8h 2 ( 1)n+1 1) sin [(2n ] = ( 1)n+1 ( 1) n+1 (2n 1) 2 2 (2n 1) 2 = 8h 2 4 = 2h = 8h 2 ( 1)2n+2 (2n 1) 2 = 8h 2 1 (2n 1) 2 = 8h 2 ( ) = A 1 A = 1, A 2 A =, A 3 A = = 1 9 8
9 2 a n = 1 h(x) cos nx = dx = h(x) = x x [,2) 2 x cos nx dx = x 2 n sin nx] x= x=2 2 1 sin nx n dx = 1 n 2 cos nx] x=2 x= Conjecture: 2 2 b n = 1 h(x) sin nx x sin nx dx = x n cos nx] x= 2 dx = 1 2 x=2 b n = 1 n a = 1 h(x) dx = x 2 2 x sin nx dx 2 2 h(x) = sin nx n 1 cos nx dx = 2 n n dx = x2 ] x=2 x= = h ( 2 ) = sin (n 2 ) = 1 n 2 1 ( 1)n+1 = 1 (2n 1) 2 1 ( ) =.25 = = ( 1)n+1 = (2n 1) 4 = tan 1 1 S 2 y x 2 σ 2 y t 2 = S tension and σ mass density x A x [, x x p ] p y(x, ) = A (1 x x p ) x (x { L x p, L] p y (x, ) = A amplitude, L the length of the string 9
10 y(x, t) = sin ( nx L ) [a n sin ( nct L ) + b n cos ( nct L )] y (x, t) = nc sin (nx L L ) [a n cos ( nct L ) b n sin ( nct L )] c = S σ y(x, ) = 8A 2 a n = 2L 2 sin ( nx p b n = A L ) n 2 2 x p (L x p ) y(x, t) = 2A L2 sin ( nx p L ) sin (nx n 2 2 x p (L x p ) L ) cos ( nct L ) y(x, ) = 2A L2 sin ( nx p L ) sin (nx n 2 2 x p (L x p ) L ) T = 2L c = 2L σ S y(x, t) = 8A 1 n 2 sin (nx 2 L ) cos ( nct L ) 1 sin (nx n2 L ) = 8A 2 [sin (x L ) + 1 sin (2x 4 L ) + 1 sin (3x 9 L ) + ] T 2 = L c y (x, L c ) = 8A 1 n 2 sin (nx 2 L ) cos(n) = 8A 2 [ sin (x L ) + 1 sin (2x 4 L ) 1 sin (3x 9 L ) + ] 36.8 y ( L 2, L c ) = 8A 2 ( 1)n+1 n 2 f(x) = sin x x [, ) f(x) = a 2 + [a n cos(2nx) + b n sin(2nx)] 1
11 a = 2 sin x dx = 2 cos x} x= x= = 2 ( 1 1) = a n = 2 sin x cos(2nx) dx = 2 { sin[(1 + 2n)x] dx sin[(1 n)x] dx} = 1 = 1 cos[(1 + 2n)x] { ] 1 + 2n { cos[(1 + 2n)x] 1 + 2n ] x= x= x= x= + cos[(1 2n)x] ] 1 2n cos[(1 2n)x] 2n 1 ] x= x= x= x= } = a 1 = 1 cos(3) [ cos 1] = 1 (2 3 2) = 1 ( ) = a 2 = 1 cos(5) [ cos(3) ] = 2 ( ) = 2 ( ) = a 2 = 1 cos(7) [ cos(5) ] = 2 ( ) = 2 ( ) = b n = 2 sin x sin(2nx) dx sin x = ( 1)n x 2n+1 (2n + 1)! n= = x x3 3! + x5 5! sin x sin(2nx) dx = x sin(2nx) dx 1 3! x3 sin(2nx) dx + 1 5! x5 sin(2nx) dx u(x) = x dv = sin(2nx) dx v(x) = 1 2n cos(2nx) x sin(2nx) dx = x x= 2n cos(2nx)] + 1 x= 2n cos(2nx) dx = 1 n 2 sin(2nx)] = x= u(x) = x 3 dv = sin(2nx) dx } x= 11
12 v(x) = 1 2n cos(2nx) x 3 sin(2nx) dx = x3 x= 2n cos(2nx)] + 3 2n x2 cos(2nx) dx x= u(x) = x 2 dv = cos(2nx) dx Conjecture: (a) x 2 cos(2nx) v(x) = 1 2n sin(2nx) dx = x2 x= 2n sin(2nx)] x= x 2n+1 sin(2nx) dx = b n = 1 x sin(2nx) dx = n 1 f(x) 2 dx = a 2 + a n 2 (b) 2 = ( ) = 2a + a 2 ( ) a 2 = 4 15 = a 15 Fourier coefficients and graph for Exercise 36.1 (a) for f(x) = 1 for all x in the half-open interval [x, P). 12
13 13
14 14
15 Fourier coefficients and graph for Exercise 36.1 (b) f(x) = sin x for all x in the half-open interval [, 2). 15
16 16
17 Fourier coefficients and graph for Exercise 36.2, the square wave. 17
18 18
19 19
20 2
21 21
22 Fourier coefficients and graph for Exercise 36.3, the triangle wave. 22
23 23
24 24
25 25
26 26
27 Fourier coefficients and graph for Exercise 36.6, the sawtooth wave. 27
28 28
29 Fourier coefficients and graph for Exercise 36.8, the rectified sine wave. 29
30 3
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.
3 }t! t : () (f + g) f + g, (f g) f g (f g) f g + fg, ( f g ) f g fg g () [f(g(x))] f (g(x)) g (x) [f(g(h(x)))] f (g(h(x))) g (h(x)) h (x) (3) d vn n dv nv (4) dy dy, w v u x íªƒb N úb5} : () (e x ) e
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.
Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop
SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)
ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Homework#13 Trigonometry Honors Study Guide for Final Test#3
Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.
Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Ολοκλήρωση. Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι
Ολοκλήρωση Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι Το ζητούμενο Είδαμε μεθόδους υπολογισμού για το πώς μεταβάλλονται οι συναρτήσεις στιγμιαία. Αν αθροίσουμε αυτές τις στιγμιαίες μεταβολές θα έχουμε ένα
Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.
Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο 2016-17. Φυλλάδιο ασκήσεων επανάληψης. 1. Για καθεμία από τις παρακάτω συναρτήσεις ελέγξτε βάσει του ορισμού της παραγωγισιμότητας αν είναι παραγωγίσιμη στο αντίστοιχο
Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA
Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA 1 Eisagwg Οι σειρές Fourier είναι ένα ιδιαίτερα χρήσιμο εργαλείο του Λογισμού ου βρίσκει ολλές εφαρμογές σε διάφορα εδία της ειστήμης, χ στις
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Σειρές Fourier και Προβλήματα Συνοριακών Τιμών
Κεφάλαιο 9 Σειρές Fourier και Προβλήματα Συνοριακών Τιμών Στο κεφάλαιο αυτό θα μελετήσουμε αναπτύγματα συναρτήσεων σε σειρές Fourier και την εφαρμογή τους στην επίλυση προβλημάτων συνοριακακών τιμών (ΠΣΤ)
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Section 7.7 Product-to-Sum and Sum-to-Product Formulas
Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)
x sin x cosx e x lnx x3 + (sin x)/x e x {}}{ (f(g(x))) = f ( g(x)) g (x). }{{}}{{} f(g(x)) 3x cos(x 3 ). 3x cos(x 3 ) x 3 3x sin(x 3 ) (sin(x3 )) = cos(x 3 ) (3x ). 3x cos(x 3 ) = sin(x 3 ) + C. e ( +).
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε
Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε ηλεκτροµαγνητικό κύµα κυκλ. Συχνότητας ω. Παρατηρούµε ότι η πολωσιµότητα του µέσου εξαρτάται µε την εκφραση 2.42
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
[] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» σελ β) Ας είναι ux (, ) = x+ cos( π ) και vx (, ) = cos( π x) το πραγματικό και το φανταστικό μέρος
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
( y = 2, x R) και ( y = 0, x R ) ή ισοδύναμα πάνω στην ευθεία z = 2
ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγματικό μέρος uxy (, ) = ycosxκαι φανταστικό μέρος vxy (, ) = y sinx, όπου = x+ iy
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των
On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)
On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) 1 1 Introduction (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y)
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διπλά Ολοκληρώματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Ορθογώνια Χωρία Ορισμός n f( x, y) da lim f( x, y ) = Α Α 0 k
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)
C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
11.4 Graphing in Polar Coordinates Polar Symmetries
.4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Not for reproduction
COMPLEX NUMBERS Thomson Brooks-Cole copyright 7 _+i _-i FIGURE Complex numbers as points in the Argand plane i _i FIGURE i _i +i z=a+bi z=a-bi -i A complex number can be represented by an expression of
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
Λύσεις στο Επαναληπτικό Διαγώνισμα 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου
Name: Math Homework Set # VI. April 2, 2010
Name: Math 4567. Homework Set # VI April 2, 21 Chapter 5, page 113, problem 1), (page 122, problem 1), (page 128, problem 2), (page 133, problem 4), (page 136, problem 1). (page 146, problem 1), Chapter
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Κεφάλαιο ΙV : Εργαστηριακές ασκήσεις που αφορούν πίνακες και µεθόδους στη Java.
Κεφάλαιο ΙV : Εργαστηριακές ασκήσεις που αφορούν πίνακες και µεθόδους στη Java. Στο παρόν κεφάλαιο παρουσιάζονται εργαστηριακές ασκήσεις οι οποίες αφορούν την χρήση πινάκων και την δηµιουργία και χρήση
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.6: Τριγωνομετρικά Ολοκληρώματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.6:
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
MATH 150 Pre-Calculus
MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree
Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43
Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji
Cursul 14 ) 1 2 ( fg dµ <. Deci fg L 2 ([ π, π]). Prin urmare,
D.Rs, Teoia măsii şi integala Lebesge 6 SERII FOURIER ÎN L ([, ]) Csl 4 6 Seii Foie în L ([, ]) Consideăm spaţil c măsă ([, ], M [,], µ), nde M este σ-algeba mlţimilo măsabile Lebesge, ia µ este măsa Lebesge.
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (x+)(x 2 +) (ϐ) Να υπολογισθεί το ολοκλήρωµα f(x) f(x)+f(x+) για κάθε
Solutions to Mock IIT Advanced/Test - 3[Paper-2]/2013
Solutions to Mock IIT Advanced/Test - [Paper-]/0 [CHEMISTRY] VMC/0/Solutions 6 Mock IIT Advanced/Test - /Paper- VMC/0/Solutions 7 Mock IIT Advanced/Test - /Paper- VMC/0/Solutions 8 Mock IIT Advanced/Test
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Ολοκληρώµατα ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 85 3 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των ολοκληρωµάτων πραγµατικών συναρτήσεων
Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας 1
Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) Να ϐρεθεί το πεδίο ορισµού των συναρτήσεων :. f (x) = log x (5x + 3) + sin x. f (x) = (x + ) sin x 3. f 3 (x) = 3 sin
CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant
CHAPTER 7 DOUBLE AND TRIPLE INTEGRALS EXERCISE 78 Page 755. Evaluate: dxd y. is integrated with respect to x between x = and x =, with y regarded as a constant dx= [ x] = [ 8 ] = [ ] ( ) ( ) d x d y =
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018
ΝΙΚΟΛΑΟΣ M. ΣΤΑΥΡΑΚΑΚΗΣ: «Μερικές Διαφορικές Εξισώσεις & Μιγαδικές Συναρτήσεις: Θεωρία και Εφαρμογές» η Έκδοση, Αυτοέκδοση) Αθήνα, ΜΑΡΤΙΟΣ 06, Εξώφυλλο: ΜΑΛΑΚΟ, ΕΥΔΟΞΟΣ: 5084750, ISBN: 978-960-93-7366-
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ., x 1
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Τρόποι ολοκλήρωσης-θεµελειώδες θεώρηµα Θέµα lnx+, x > x ίνεται η συνάρτηση f(x) =. Να αποδειχθεί ότι η f είναι x, x x + ολοκληρώσιµη στο διάστηµα [,] και να υπολογιστεί
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ιαφορικές Εξισώσεις µε Μερικές Παραγώγους, Απαντήσεις-Παρατηρήσεις στην Τελική Εξέταση Περιόδου Ιουνίου.
ιαφορικές Εξισώσεις µε Μερικές Παραγώγους, Ααντήσεις-Παρατηρήσεις στην Τελική Εξέταση Περιόδου Ιουνίου. Ανδρέας Ζούας 8 Σετεµβρίου Οι λύσεις αλώς ροτείνονται και σαφώς οοιαδήοτε σωστή λύση είναι αοδεκτή!
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ
ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
f(x) dx. f(x)dx = 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemann Α Οµάδα
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemnn Α Οµάδα. Εστω f : [, ] R. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας).
CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets
System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions
Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice
Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Ανασκόπηση-Μάθημα 17 Κανόνας αλυσίδας - Παράγωγος κατά κατεύθυνση
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 17 Κανόνας αλυσίδας - Παράγωγος κατά κατεύθυνση Στο δέκατο έβδομο μάθημα (6/11/2018),
Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται