Chapter 5 - The Fourier Transform
|
|
- Νικόμαχος Παπαστεφάνου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 M. J. Robrs - /7/ Chapr 5 - Th ourir Trasorm Soluios (I his soluio maual, h symbol,, is usd or priodic covoluio bcaus h prrrd symbol which appars i h x is o i h o slcio o h word procssor usd o cra his maual.). Th rasiio rom h CTS o h CTT is illusrad by h sigal, or x()= rc comb w T T ()= x T rc w =. Th complx CTS or his sigal is giv by X[ k]= Aw kw sic T T. Plo h modiid CTS, [ ]= ( ), T X k Awsic w k or w = ad = 5.,. ad. vrsus k or h rag < k <. 5-
2 M. J. Robrs - /7/ T X[k] - k T X[k] - k - = 5. T X[k] - k T X[k] - k - =. T X[k] - k T X[k] - k - =. 5-
3 M. J. Robrs - /7/. Suppos a ucio, m( x), has uis o kg 3 ad is a ucio o spaial posiio, x, i m mrs. Wri h mahmaical xprssio or is CTT, M( y). Wha ar h uis o M ad y? M = yx y m x dx Th uis o M ar kg m ad h uis o y ar m. 3. Usig h igral diiio o h ourir rasorm, id h CTT o hs ucios. (a) x()= ri() = () = ( + ) X ri d cos si d X( )= ( cos ) d = cos d cos d X si cos d = si X( )= + si cos = ( ) ( ) cos X( )= si d d si d = ( ) cos x Th, usig si( x) si( y)= [ cos( x y) cos( x + y) ] si ( x )= ( ) si X( )= = sic ( ) 5-3
4 M. J. Robrs - /7/ (b) x()= δ+ δ X= + d si δ δ = =. I igur E hr is o xampl ach o a lowpass, highpass, badpass ad badsop sigal. Idiy hm. x() (a) x() (b) x() (c) x() (d) (a) (b) (c) (d) badsop badpass lowpass highpass igur E Sigals wih dir rqucy co 5. Sarig wih h diiio o h CTT id h radia-rqucy orm o h gralizd CTT o a cosa. Th vriy ha a chag o variabl, ω, yilds h corrc rsul i cyclic-rqucy orm. Chck your aswr agais h ourir rasorm abl i Appdix E. L g()= A. Th = = G A ω σ ω d lim A cos ω si ω d + σ σ G lim A σ ( ω)= { cos( ω) d si( ω) d σ + v 3 { v 3 v odd 5-
5 M. J. Robrs - /7/ = σ G ω lim A cos ω d σ + = σ G ω lim A cos ω d σ + az az Usig cos( bz) dz= ( acos( bz)+ bsi( bz) ), a + b σ or ω, lim A =. σ σ ω + + σ G( ω)= lim A si cos σ ω ω ω σ ω + σ + ( ) σ G( ω)= lim A σ + σ + ω σ Th ara udr A σ + ω is Ara = σ A d σ + ω ω. Usig dx bx = a a + b x ab a ω Ara = Aσ a A =. σ σ Thror h CTT pair is A Aδ ω. or h orm h pair is Lig = ω i h scod pair, A Aδ. A Aδ ω A = δ ( ω ). QED. 5-5
6 M. J. Robrs - /7/ 6. Sarig wih h diiio o h CTT, id h gralizd CTT o a si o h orm, Asi( ω ) ad chck your aswr agais h rsuls giv abov. Chck your aswr agais h ourir rasorm abl i Appdix E. ()= L g Asi. Th ω = ( ) = ( ) + G Asi ω σ ω ω d lim A si ω cos ω si ω d σ σ G A lim σ ( ω)= { si( ω ) cos( ω) d si( ω ) si( ω) d σ + v 3 3 { v 3 3 odd v odd odd = σ G ω A lim si ω si ω d σ + σ + σ G( ω)=a lim cos( ( ω ω) ) cos( ( ω + ω) ) d az az Usig cos( bz) dz= acos bz bsi bz a + b [ ] ( + ) σ si cos σ ω ω ω (( ω ω ) ) σ (( ω ω ) ) + ( ) G( ω)=a lim+ σ σ si cos σ + ( ω + ω) ω (( ω + ω ) ) σ ( ω + ω ) ( ) σ σ G( ω)=alim lim + + σ σ + ( ω ω) σ σ + ( ω + ω) By h sam rasoig as i Exrcis 5, wh ω ω, G( ω)= lim σ + ad, whω ω G( ω)= lim σ + σ σ + ω ω = σ =. σ + ω + ω 5-6
7 M. J. Robrs - /7/ Th aras udr hs ucios ar Ara σω d =A σlim + σ + ω ω σω d ad Ara =A σlim + σ + ω + ω Makig h chag o variabl, ω ω = λ dω = d λ, i h irs igral, Ara σλ d =A σlim + σ + λ =A Similarly, Ara = σλ d A σlim + σ + λ = A. Ths aras ar idpd o h valu o σ. Thror [ ] G( ω)= A δ( ω + ω)δ( ωω ). QED. 7. id h CTS ad CTT o ach o hs priodic sigals ad compar h rsuls. Ar idig h rasorms, ormula a gral mhod o covrig bw h wo orms or priodic sigals. ()= (a) x Acos A Th CTS is simply wo impulss, X[ k]= ( δ[ k]+ δ [ k + ] ). A Th CTT is X( )= ( δ( )+ δ( + ) )= X[] δ( )+ X[ ] δ ( + ). ()= () (b) x comb Th CTS is oud rom X = [ ] ( ) X k δ k k = 5-7
8 M. J. Robrs - /7/ T ( k ) ( k ) X[ k]= comb() d= () d= T δ. T Th CTT is = = ( )= [ ] ( ) X comb δ k X k δ k k= k=. L a sigal b did by ()= + x cos 5cos 5. id h CTT s o x ad x + ad idiy h rsula phas shi o ach siusoid i ach cas. Plo h phas o h CTT ad draw a sraigh li hrough h phas pois which rsul i ach cas. Wha is h gral rlaioship bw h slop o ha li ad h im dlay? x = cos cos x = cos + 5cos5 { { phas phas shi shi 5 5 x ( )+ ( + ) [ ] δ δ δ δ x ( ) + ( + ) δ δ δ δ x+ cos cos =
9 M. J. Robrs - /7/ 3 x+ = cos + + 5cos5+ { 5 { phas phas shi shi 5 5 x+ ( )+ ( + ) [ ] δ δ δ δ x+ ( ) + ( + ) δ δ δ δ X( ) Slop = Slop = Th slop o h li is ims h dlay. 9. Usig h rqucy-shiig propry, id ad plo vrsus im h ivrs CTT o + X( )= rc + rc. ()= + = x sic sic sic cos x()
10 M. J. Robrs - /7/. id h CTT o x()= sic(). Th mak h rasormaio,, i x() ad id h CTT o h rasormd sigal. sic rc () sic rc rc( ) rc rc( ) - rc( ) -. Usig h muliplicaio-covoluio dualiy o h CTT, id a xprssio or y which dos o us h covoluio opraor,, ad plo y(). ()= () (a) y rc cos y()= sic δ + δ + y()= sic sic + + δ δ y()= + + = + + δ δ δ δ y()= cos y() ()
11 M. J. Robrs - /7/ ()= () (b) y rc cos y()= sic [ δ( )+ δ( + ) ] y()= δ sic()+ δ + sic = y() - - (c) y()= sic() sic y()= { rc rc }= { rc }= sic y() ()= () (d) y sic sic y()= { rc ri }= { rc ri }== { ri }= sic y() - ()= () () y u si ()= y δ( + )δ + [ ] = δ + + δ + 5-
12 M. J. Robrs - /7/ ()= y δ( + ) δ( ) ( + )( + ) ( )( ) δ δ = + ( ) ( + ) ()= y [ ] δ( + )δ( )+ δ( + )+ δ + ( ) ()= y [ ] δ( + )δ( ) ( + )+ δ δ + ( ) + ( ) Th, usig w g ()= y + si cos Acos( x)+ Bsi( x)= A + B cos xa ()= y + ( ) cos +. 5 B A. y() Usig h CTT o h rcagl ucio ad h diriaio propry o h CTT id h ourir rasorm o x()= δ δ( + ). Chck your aswr agais h CTT oud usig h abl ad h im-shiig propry. L y()= rc. Th x d ()= ( d y () ). rc Usig h diriaio propry o h CTT, sic( ) 5-
13 M. J. Robrs - /7/ d d rc sic( ) sic [ ]= d d rc si( ) = si ( ) Usig h dirc approach, + δ δ( + ) si =. Chck. 3. id h CTS ad CTT o hs priodic ucios ad compar aswrs. (a) x()= rc() comb T k X[ k]= rc() comb d rc comb T = () T k X[ k]= d = [ cos( k) si( k) ] d si k X[ k]= cos( k) d= k k si k sic = = k X ( )= sic ( ) k comb ( )= sic ( ) δ k = k k X( )= sic X k k δ = [ ] δ k= ()= (b) x ri comb T k= k ( k ) k X[ k]= ri comb d= ri d T T d 5-3
14 M. J. Robrs - /7/ = [ ]= X k ri cos k si k d ri cos k d X[ k]= ( ) cos( k) d = cos( k) d cos( k) d k si( k) si( k) X[ k]= cos k d cos d k ( ) = k ( k ) λ λ λ si k k 5 5 k X[ k]= si si d k ( k ) λ λ 5 λ λ si k 5 k X[ k]= ksi k cos k ( k ) [ λ ] si k 5 X[ k]= ksi k cos k + k ( k ) cos k 5 5 X[ k]= k X( )= X( )= sic comb = sic 5 k= X( )= 5 k = k si 5 5 δ( k)= k 5 k sic δ( k) 5 k = k= δ( k) k cos 5 δ( k) k 5-
15 M. J. Robrs - /7/ X( )= k cos 5 5 δ ( k). Chcks wih CTS. k k =. Usig Parsval s horm, id h sigal rgy o hs sigals. (a) x()= sic 5 = () = = = x E x d X d rc 5 d rc 5 d ()= (b) x sic 3 Ex = d = E = () d = ( x ) d = x X ri d = d ri E x = 3 3 d = d = + d ri E = x + = = Wha is h oal ara udr h ucio, g()= sic 3 g d G () = ()? G = rc G()= 3 = g() d 6. Usig h igraio propry, id h CTT o hs ucios ad compar wih h CTT oud usig ohr propris. 5-5
16 M. J. Robrs - /7/ (a) ()= g, <, < <, lswhr g() g'() g 3 3 g = rc+ rc 3 3 g = rc+ rc sic sic () sic 3 3 sic ( )= 3 3 () g 3sic 3 sic si 3 si( 3 )= sic( ) Alra Mhod: g()= rc rc sic () sic Chck. (b) g()= rc g = δ + δ 6si 3 () g = si( 3 ) si = ( 3 ) 6 = sic ( 3 ) 3 Alra Mhod: () g sic( 3 ) Chck. 5-6
17 M. J. Robrs - /7/ 7. Skch h magiuds ad phass o h CTT s o hs sigals i h orm. (a) x()= δ( ) X= X( ) - Phas o X( ) - - (b) x()= u() u X = + δ x()= u() u X= ( ), (impulss cacl) + x()= u() u X= = sic X( ) -5 5 Phas o X( )
18 M. J. Robrs - /7/ + (c) x()= rc X sic 5 = ( ) X( ) - Phas o X( ) - - (d) x()= 5sic( ) X =. 5rc X( ) 3 - Phas o X( ) - - [ ] () x()= 6si( ) X= 3 δ( + )δ 5-
19 M. J. Robrs - /7/ X( ) 3 - Phas o X( ) - - () u() + 3 x()= u( 3) X= = X( ) - Phas o X( ) - (g) x()= = X= =
20 M. J. Robrs - /7/ X( ) Phas o X( ) Skch h magiuds ad phass o h CTT s o hs sigals i h ω orm. (a) x()= comb X comb k ( )= ω ω = δ ω k = X(ω) - Phas o X(ω) ω - ω - ()= (b) x sg X( ω)= ω 5-
21 M. J. Robrs - /7/ X(ω) 6 - Phas o X(ω) ω - ω - (c) x()= ri X( ω)= sic ω ω X(ω) - ω Phas o X(ω) - ω - (d) ()= x + sic X( ω)= ri ω ω 5-
22 M. J. Robrs - /7/ X(ω).3 - ω Phas o X(ω) - ω - () ()= x cos X( )= + ω δ ω δ ω + ω ()= x ()= x cos X( )= [ ( )+ ( + )] ω ω δω δω cos X( ω)= δω ( ) + δω ( + ) + X(ω) ω -7 7 Phas o X(ω) ω () x()= u()= u( 3) X( ω)= 3 ω
23 M. J. Robrs - /7/ X(ω) - ω Phas o X(ω).57 - ω -.57 (g) x()= 7 X( )= ω 5 + ω 7 = 5 + ω X(ω) 3 - ω Phas o X(ω) - ω - 9. Skch h ivrs CTT s o hs ucios. (a) x()= 6sic X=5rc x()
24 M. J. Robrs - /7/ (b) ()= x rc sic X( )= x() - (c) a a a +,, x() x 3 x()= 6 X= 9 + x() () (d) a u, a > a +,, x() x x()= u() X= + x() () cos δ( )+ δ + [ ] 5-
25 M. J. Robrs - /7/ δ( 3)+ δ + 3 x()= cos( 6) X= 3 6 x() () x()= X δ 5 δ 5 5 = = x() - (g) sg () x()= 3sg() X= 3 x() Skch h ivrs CTT s o hs ucios. ω (a), ω ω, x() x x()= X( 6 ω 6 ω ω )= = ω = 5-5
26 M. J. Robrs - /7/ x(). - ω (b) ri() sic, ω ω (), x x 7 x()= ri X sic = ω ω 7 x() - [ ] (c) si( ω ) δ( ω + ω )δ ωω [ ] x()= si( ) X( ω)= δ( ω + )δ ω x() ω (d) comb() comb, ω ω (), x x ω comb x()= comb X ( )= ω 5 x()
27 M. J. Robrs - /7/ () sg () ω, δ( ω) 5 x()= sg()+ 5 X ω 5 ω = + δ( ω) x() - - () () a u, a > a + ω 3 6 x()= 6 u() X( ω)= 3 + ω x() (g) sic () ri ω, ω 6ω, x() x x()= sic X( ω)= ri( ω) 6 x().5 -. id h CTT s o hs sigals i ihr h or ω orm, whichvr is mor covi. 5-7
28 M. J. Robrs - /7/ ()= + (a) x 3cos si 3 5 X= δ δ δ δ 3 X( )= δ δ.. X= δ δ X = ( ) ω 5 δ ω 5 δ ω (b) x()= comb comb = = X comb comb comb = ( )= X comb comb si X ω ω ω ( ω)= comb si x() 6 (a) X(ω) -6 (b) x() - Phas o X(ω) - - X( ) ω ω Phas o X( ) - - (c) x()= sic sic sic + 5-
29 M. J. Robrs - /7/ X( )= rc rc rc X( )= rc rc + rc rc cos = ()= + ω ω ω X( ω)= rc rc cos [ ( ) ] () + (d) x u Usig a u (), a > a + ω X( ω)= + = + ω + + ω Alra Soluio: X( ω)= X( )= ()= + ω + ω ω + ω ω ( + + ) [ ( ) ] ()= + x u cos u a Usig cos ω u a+ ω ω + a ω ( ) () + X( ω)= ω + ω
30 M. J. Robrs - /7/ (c) x() X( ) - - x() (d) - Phas o X( ) - - X( ) ()= () x Phas o X( ) Usig a a a ( a)> + ω, R, 6 + ω ω 6 () x() = + 56ω X(ω) ω Phas o X(ω) ω Skch h magiuds ad phass o hs ucios. Skch h ivrs CTT s o h ucios also. 3 5 (a) x()= ( ) u() X( ω)= 3 + ω 5 + ω 5-3
31 M. J. Robrs - /7/ x() 6 X(ω) - - Phas o X(ω) - - ω ω (b) x()= 6rc cos X= sic + sic + x() X( ) Phas o X( ) - + (c) x ()= 6. sic ( ) si X= ri ri x() X( ) Phas o X( ) (d) δ( + 5)+ δ( + 95) x()= [ cos( )+ cos( 9) ] X= + δ( 95)+ δ( 5) or δ( + 5)+ δ( + 95) x()= cos( ) cos( ) X= + δ( 95)+ δ( 5) 5-3
32 M. J. Robrs - /7/ x() X( ) - Phas o X( ) - - () or ()= x ()= x cos + cos( 9) cos + cos cos + cos( ) δ( + 5)+ δ( + ) X( )= + δ( + 95)+ δ( 95) + δ( )+ δ( 5) δ( + 5)+ δ( + ) X( )= + δ( + 95)+ δ( 95) + ( )+ ( δ δ 5) x() X( ) - Phas o X( ) Skch hs sigals vrsus im. Skch h magiuds ad phas o hir CTT s i ihr h or ω orm, whichvr is mor covi. (a) x rc comb rc comb ()= () X( )= sic comb ( ) X( )= sic comb( ) si k k k X= sic si k ( ) δ ( ) k = 5-3
33 M. J. Robrs - /7/ No-zro oly or odd valus o k. A hos odd valus, always valuas o +. Thror ( k) k si, k X( )= sic k δ ( ) k = k x() (b) x rc comb ()= + () X( )= sic comb δ X( ) - Phas o X( ) - - k k X= + sic k sic k ( δ )= δ δ( ) k= Sam as aswr i par (a). k= k x() X( ) Phas o X( ) - - ()= () (c) x u si X( ω)= X ω δω + = δω ( + )δω + ω [ ] δω
34 M. J. Robrs - /7/ Raioalizig h domiaor, X( ω)= X( ω)= ( ) + δω ( + ) δω + ( ) 6 [ δω ( + )δω ] x()= si cos + ( ) + ( ) ( ) [ δω ( + )+ δω ] ()= x si 3cos + 6 x(). X(ω) Phas o X(ω) - - ω ω [ ] ()= () (d) x rc comb X= sic comb k k X= sic ( k)= sic δ k δ ( ) k = k = k k k x sic k k ()= sic cos k = + k = k = 5-3
35 M. J. Robrs - /7/ x() X( ) - Phas o X( ) [ ] ()= () () () x rc ri comb X= sic sic comb All h comb impulss hav zro wigh xcp h o a zro. X= δ x()= x() X( ) - - Phas o X( ) - - ()= () () x sic. comb X( )= rc comb= δ( + )+ δ+ δ... x cos. ()= + [ ] 5-35
36 M. J. Robrs - /7/ x() X( ) Phas o X( ) - - ()= () (g) x sic 99. comb X( )= rc comb x 99. ()= = δ = x() X( ) - - Phas o X( ) - - ()= (h) x X= = x()= = x() X( ) - - Phas o X( ) - -. Skch h magiuds ad phass o hs ucios. Skch h ivrs CTT s o h ucios also. 5-36
37 M. J. Robrs - /7/ (a) X( )= sic δ( )+ δ + [ ] ()= ( + )= x rc rc cos X( ) - Phas o X( ) - - x() = (b) X sic comb x()= rc comb()= rc δ = X( ) x() - Phas o X( ) Skch hs sigals vrsus im. Skch h magiuds ad phass o h CTT s o hs sigals i ihr h or ω orm, whichvr is mor covi. I som cass h im skch may b covily do irs. I ohr cass i may b mor covi o do h im skch ar h CTT has b oud, by idig h ivrs CTT. ()= (a) x si ( ) ( ) X + = [ δ( + )δ( ) ]= 5-37
38 M. J. Robrs - /7/ x() X( ) Phas o X( ) - - (b) x cos comb cos δ ()= = X= [ δ( )+ δ( + ) ] comb + X( )= comb + comb 3 3 = comb = comb X( )= comb x(). -.. X( ). - Phas o X( ) - - [ ] ()= + (c) x cos cos X= + [ ( )+ ( + )] δ δ δ δ ( )+ δ + δ [ δ( )+ δ( + ) ] X( )= + δ( ) δ( )+ δ + + ( + ) ( )+ + δ δ δ [ ] [ ] [ ] 5-3
39 M. J. Robrs - /7/ δ( )+ δ( + ) X( )= + δ( )+ δ( + )+ δ( )+ δ + [ ] x() X( ) Phas o X( ) [ ] ()= + (d) x rc 5comb 5 cos 5 X= + sic comb δ δ ( 5 )+ δ [ ] k X= + sic k ( ) k δ δ 5 δ ( 5 )+ δ ( + 5 ) = [ ] [ δ( 5)+ δ( + 5) ] X( )= k + sic k k ( δ 5 5 )+ δ k = [ ]. x() X( ) -5 5 Phas o X( ) () x()= rc comb 7 () = = ( ) X 7sic 7 comb 7sic 7 δ k X= 7 sic 7 k k = ( ) k = 5-39
40 M. J. Robrs - /7/ x() X( ) 7 - Phas o X( ) Skch h magiuds ad phass o hs ucios. Skch h ivrs CTT s o h ucios also. (a) X( )= sic comb( ) ()= ()= ( ) x rc comb rc δ ()= ( ) x rc = = X( ) x() -6 6 Phas o X( )
41 M. J. Robrs - /7/ + (b) X( )= sic + sic comb ()= ( + ) ()= ( ) x rc comb rc cos δ ()= ( ) x rc cos = ( ( )) = X( ) x() - Phas o X( ) = (c) X sic sic x()= rc() rc rc rc = () Th rsul o h graphical covoluio ca b xprssd i h orm, x()= ri ri 3 3 X( ).5 x() - Phas o X( ) Skch hs sigals vrsus im ad h magiuds ad phass o hir CTT s. d (a) x()= [ sic() ]= d d d X= rc = si cos si 5-
42 M. J. Robrs - /7/ (a) x() X( ) Phas o X( ) - - d (b) x()= rc d 6 si( 6 X= ) sic( 6 )= = si ( 6 ) 6 Alra Soluio: d d rc = [ ( + ) ( ) δ δ ] [ δ( + 3)δ( 3) ] si x() X( ) Phas o X( ) (c) d x()= [ ri comb() ]= rc+ rc comb d () k X= sic comb= ksic k δ ( ) k = 5-
43 M. J. Robrs - /7/ x() X( ) Phas o X( ) - -. Skch hs sigals vrsus im ad h magiuds ad phass o hir CTT s. (a) x()= si( λ) dλ X( )= [ δ( + )δ( ) ]+ ( si ) δ = [ ] = δ( + ) δ X( )= = δ ( + )+ δ [ ] δ( + )δ x(). X( ) Phas o X( ) - -, < (b) x()= rc( λ) dλ = +, <, > sic( ) sic X( )= + rc [ ( ())] δ= = + δ x() X( ) Phas o X( ) - 5-3
44 M. J. Robrs - /7/ (c) x()= 3 sic( λ ) d λ L u = λ. Th x or : ()= x ()= x 3 or : ()= x ()= 3 u 3 sic du = si u du u si u si u 3 si u si u du du = du + du u u u u 3 si( λ) si( u) 3 d + du = + Si Si u = 3 ( ) λ λ 3 3 = Si = Si= 3 si u si u 3 si u si u du + du = du + du u u u u 3 x()= + Si 3 Thror, or ay, x()= + Si X( )= rc + [ 3sic ] δ= rc + δ( ) = x() X( ) Phas o X( ) rom h diiio, id h DTT o x[ ]= rc [ ]. 5-
45 M. J. Robrs - /7/ ad compar wih h ourir rasorm abl i Appdix E. rom h abl, X x rc = = = = [ ] = [ ] = m m X= ( ) = = m = m = si 9 X= = drcl, si = 9 9 ( + ) rc [ ] N N + w drcl, N w w rc [ ] 9drcl, 9 rc [ ] 9drcl, 9 Chck 3. rom h diiio, driv a gral xprssio or h ad orms o h DTT o ucios o h orm, x Asi Asi. [ ]= = ()= = (I should rmid you o h CTT o x Asi Asi ω.) Compar wih h ourir rasorm abl i Appdix E. X x Asi A = = = [ ] = ( ) = = Th, usig [ ( + ) ] = A X= x = comb( x) = 5-5
46 M. J. Robrs - /7/ w g A X= [ comb( )comb ( ) A comb comb ]= ( )+ X= A comb( + )comb( ) [ ] [ ] Th orm ca b oud by h rasormaio,. X A ( )= comb + comb [ ] X( )= A comb( + )comb 3. A DT sigal is did by x[ ]= sic. Skch h magiud ad phas o h DTT o x[ ]. rom h abl o rasorm pairs, sic wrc w comb w sic rc( ) comb sic [ comb ] rc sic k rc k = ( ) 5-6
47 M. J. Robrs - /7/ 3. A DT sigal is did by x[] -3 3 x[ ]= si. 6 X( ) - Phas o X( ) - - Skch h magiud ad phas o h DTT o x[ ] [ ] 3 ad x +. rom h abl, si( ) comb( + )comb [ ] Similarly, si comb + comb 6 3 si comb + comb 6 6 si 3 6 δ + k δ k 6 6 k = si 3 6 k k δ + k δ k k = = 3 = si 3 δ + k δ k + 6 k = 3 si comb + + comb 6 si + + k k δ + k δ k k = 5-7
48 M. J. Robrs - /7/ si + + ( k) k δ + k δ k + ( + ) 6 k = si + δ + k δ k 6 k = + si comb + comb 6 This is h sam as h rasorm o h ushid ucio bcaus a shi o is a shi ovr xacly o priod. x[] X( ) Phas o X( ) - - x[] X( ) Phas o X( ) Th DTT o a DT sigal is did by Skch x[ ]. X( )= rc rc comb + +. rom h abl, w sic wrc comb w sic rc comb 5-
49 M. J. Robrs - /7/ 5-9 sic comb rc + sic comb rc sic comb rc rc sic cos comb + + rc rc Thror x sic cos [ ]= -6 6 x[] - 3. Skch h magiud ad phas o h DTT o x rc cos [ ]= [ ] 6. Th skch x [ ]. rom h abl, rc drcl, N w w w N N [ ] + +
50 M. J. Robrs - /7/ ad rc N ( ) si Nw + [ ] w si cos( ) comb+ comb + [ ] Th ucio, si 9 si Th si 9 X= comb comb si ( ) is priodic wih priod, o. To prov ha, l k b ay igr. si 9 + k si 9 9k si 9 cos 9k si 9k cos 9 = si + k si + k si cos k si k cos = ( ) si 9 + k si 9 si 9 si + k si si = =, k odd ( ) si 9 + k si 9 si + k si =, k v X= Sic si 9 si Thror, or ay k, X= si 9 k k si + + δ δ k = 6 6 si9 k + si k δ k + δ + k k = 6 6 sik + si k 6 6 si9 k 6 si9 k + 6 is priodic wih priod, o, so ar ad. sik 6 sik + 6 si9 k 6 sik 6 3 si = si 6 = = ad si9 k + 6 sik si = = = si 6 5-5
51 M. J. Robrs - /7/ ad hror X= comb comb comb comb + = Th, usig ad, hror, cos( ) comb+ comb + [ ] + + cos comb comb x[ ]=cos 6 x[] X( ) Phas o X( ) Skch h ivrs DTT o = [ ] X rc comb comb. rom h abl, sic wrc( w) comb ad combn comb w [ ] N Thror usig muliplicaio-covoluio dualiy, x[ ]= sic comb [ ]. 5-5
52 M. J. Robrs - /7/.5 x[] Usig h dircig propry o h DTT ad h rasorm pair, ri + cos( ), id h DTT o ( δ[ + ]+ δ[ ]δ[ ]δ( ) ). Compar i wih ourir rasorm oud usig h abl i Appdix E. Th irs backward dirc o ri is ( δ[ + ]+ δ[ ]δ[ ]δ( ) ). Applyig h dircig propry, ri ri cos ( + ) ( δ[ + ]+ δ[ ]δ[ ]δ[ ] ) cos ( δ[ + ]+ δ[ ]δ[ ]δ[ ] ) + ( + ) + + ( δ[ + ]+ δ[ ]δ[ ]δ[ ] ) + + ( δ[ + ]+ δ[ ]δ[ ]δ[ ] ) + Ohr rou o h DTT: ( δ[ + ]+ δ[ ]δ[ ]δ[ ] ) + Chck. 37. Usig Parsval s horm, id h sigal rgy o 5-5
53 M. J. Robrs - /7/ x[ ]= sic si. E x X d x = [ ] = = rom h abl, ad sic wrc w comb w si( ) comb( + )comb [ ] Usig h muliplicaio-covoluio dualiy o h DTT, sic si rc( ) comb comb + comb Priodic covoluio is h sam as apriodic covoluio wih o priod. sic si 5rc( ) comb + δ δ sic si 5rc( ) comb + comb sic si 5 ( ) comb + ( ) comb rc rc Ex = + d 5rc comb rc comb Sic w ar igraig oly ovr a rag o o, oly o impuls i ach comb is sigiica. E = 5 ( x ) + d rc δ rc δ 5-53
54 M. J. Robrs - /7/ Ex = 5 rc + d rc Th squar o h sum quals h sum o h squars bcaus hr is o cross produc; h wo rcagls do o ovrlap. E = x + d d + 5 rc rc + + Ex = 5 d + d = + 5 = 5 3. Skch h magiud ad phas o h CTT o ad o h CTS o ()= () x rc x()= rc() comb. or compariso purposs, skch X ( ) vrsus ad T k o axs. (T is h priod o x () ad T =.) X sic = k X[ k]= sx( sk)= sic X [ ] vrsus k o h sam s 5-5
55 M. J. Robrs - /7/ X ( ) T X [ k] - - k Phas o X ( ) Phas o T X [ k] - - k Skch h magiud ad phas o h CTT o ()= x cos ad o h DTT o x[ ]= x( T s ) whr T s = 6. or compariso purposs skch X sam s o axs. X = δ( )+ δ + [ ] ad T T s X ( x[ ]= cos( Ts)= cos X= comb comb + + X ( )= k k k + + δ δ = X ( T )= s k k k δ δ = X ( T s )= 3 δ( 6k)+ δ + 6k k = [ ] TsX ( Ts)= δ( 6k)+ δ + 6k k = [ ] s ) vrsus o h 5-55
56 M. J. Robrs - /7/ X ( ) T s X (T s ) Phas o X ( ) Phas o T s X (T s ) Skch h magiud ad phas o h DTT o ad o h DTS o sic 6 x[ ]= sic 6 x [ ]= comb [ ]. 3 or compariso purposs skch X o axs. vrsus ad N X [ k] vrsus k o h sam s rom h abl, sic wrc w comb w sic 6 rc( 6) comb 5-56
57 M. J. Robrs - /7/ hror ( ) X = rc 6 comb = rc 6 q. q = Th udamal rqucy o h priodic sigal is h rciprocal o is priod, = =. N 3 Usig h rsuls o h aalysis o priodic xsios o apriodic DT sigals, X X [ k]= X( k) N k k k k [ ]= X = 6 q q rc = rc q= X q= - Phas o X - - N X [k] - k Phas o X [k] -3 3 k
58 M. J. Robrs - /7/. A sysm is xcid by a sigal, x()= rc ad is rspos is ( + ) y()= ( ) u( + ) ( ) u + y()= ( ) u ( ) ( ) u Wha is is impuls rspos? Y ω [ + ( )] ω δ ω ω ω ω + δ( ω) + ω = + + ω ω Y( ω)= ( si ω ω + ω )= ω + ω. ω H( ω)= si( ω) ω + ω = ω sic 5 si( ω) ω + ω 5 = ω si( ω) ω + ω ω 5 5 H( ω )= ω ω + ω ω = + 5 h u ()= (). Skch h magiuds ad phass o h CTT s o h ollowig ucios. ()= (a) g 5δ 5 5δ + 3 (b) g()= comb comb + 3 comb comb comb comb 6 5-5
59 M. J. Robrs - /7/ + 3 comb comb comb + 3 comb comb si comb= + 3 Also, g()= comb comb = (a) G( ) (b) G( ) - - Phas o G( ) Phas o G( ) ()= + ( ) (c) g u u u+ u δ δ (d) g sg sg u u + ( ) ( + )+ δ ()= () ( ) sg () sg = 5-59
60 M. J. Robrs - /7/ (c) G( ) (d) G( ) - - Phas o G( ) Phas o G( ) () g()= rc + rc + rc + rc sic sic + + rc + rc sic cos () g()= rc rc sic () G( ) () G( ) - - Phas o G( ) Phas o G( )
61 M. J. Robrs - /7/ (g) g()= 5 ri ri 5 5ri ri 5sic 5 sic 5 3 (h) g()= rc rc 3 rc rc sic sic (g) G( ) 5 (h) G( ) Phas o G( ) Phas o G( ) Skch h magiuds ad phass o h CTT s o h ollowig ucios. (a) rc rc sic ω rc sic 5-6
62 M. J. Robrs - /7/ sic rc() - sic ( ) - - (b) rc δ () rc δ() sic = sic ω rc δ() sic sic - sic rc() δ() - - δ (c) rc rc δ sic = sic ω rc δ sic ω 5-6
63 M. J. Robrs - /7/ sic - rc() δ(-) - sic (d) rc δ rc δ sic = sic ω rc δ = sic sic - sic rc() δ() - - () rc comb() rc comb() sic comb( )= sic k rc comb() sic δ( k) k = k = δ( k) k k rc comb() sic δ ω k = sic k δω k= k= 5-63
64 M. J. Robrs - /7/ sic comb( ) - rc() comb() sic comb( ) () rc comb rc comb sic comb = sic k δ = k = k rc comb sic k k ( ) ( k )= sic ( k) 3 δ δ k= k= k rc comb() sic δωk k = Sam as par (). sic comb( ) - rc() comb(-) sic comb( ) (g) rc comb rc comb sic comb = sic δ k = k k rc comb sic ( k)= sic k δ δ ( ) k= k= 5-6
65 M. J. Robrs - /7/ k k rc comb sic k sic k δ ω = δω k= k= sic comb( )... - rc() comb() sic - comb( ) (h) rc() comb rc() comb sic comb sic δ () = k = rc comb sic δ k sic k δ k δ k= rc() comb δ ω k= k = ( )= = δ( ω) δ( ) rc() comb() δ( ) - -. Plo hs sigals ovr wo priods crd a =. (a) x()= cos( )+ si( )+ 3cos( )3si ()= + (b) x 5cos 7si 5-65
66 M. J. Robrs - /7/ x() (a) - x() (b) - Compar h rsuls o pars (a) ad (b). 5-66
67 M. J. Robrs - /7/ 5. A priodic sigal has a priod o our scods. (b) Hz Wha is h x-lows posiiv rqucy a which is CTT could b Wha is h lows posiiv rqucy a which is CTT could b o- (a) zro? ozro? Hz 6. Skch h magiud ad phas o h CTT o ach o h ollowig sigals (ω orm): (a) x ()=. rc X= sic( ) ω X( ω)= sic sic( ω ) ω sic( ) x() + 5 (b) x()= 3rc. - ω X = + sic
68 M. J. Robrs - /7/ ω X( ω)= 3sic 5 ω + 5 3sic( 5ω ) 5ω 3 ω 3 x() 3sic( 5ω ) 5ω ω 7 (c) x()= comb 5 5 X= 7comb( 5) 5ω X( ω)= 7comb = 7 k= 5ω δ k = 5 k δω 5 k= X(ω) x() X(ω) ω ω (d) x()= comb = comb = = X 7comb 5 7comb ω ω ω ω k X( ω)= comb δ k δω = 5 = k = k = k 5 5-6
69 M. J. Robrs - /7/ 5ω ω ω ω k X( ω)= comb δ k δω + 3 = = k = k = 6k + 5 X(ω) x() X(ω) ω ω 7. Skch h ivrs CTT s o h ollowig ucios: (a) X( )= rc x()= 6sic( ) X( ) - X( ) 6sic() (b) X( )= rc X( ) x()= 6sic+ 6 - X( ) 6sic[( + )]
70 M. J. Robrs - /7/ [ ] (c) X 5 = δ( + 5)+ δ( 5) X= [ δ( + 5) + δ( 5) ]= δ( + 5)+ δ 5 x()= cos( ) X( ) [ ] 5 5 X( ) (d) X= δ+ 5δ( 5)+ 5δ x()= + cos( ) 5 5 X( ) cos() X( ) +cos() id h ivrs CTT o his ral, rqucy-domai ucio (igur E) ad skch i. (L A =, = 95kHz ad = 5kHz.) + X= Arc + rc + [ ] ()= + x A sic sic 5-7
71 M. J. Robrs - /7/ ()= [ + ]= ( ) + x A sic A sic cos ()= ( ) x, sic, cos 5 - X( ) Α - igur E A ral rqucy-domai ucio x x() x id h CTT (ihr orm) o his sigal (igur E9) ad skch is magiud ad phas vrsus rqucy o spara graphs. (L A= B= ad l = ad =.) Hi: Exprss his sigal as h sum o wo ucios ad us h liariy propry. x()= Arc ( AB) rc = ( ) X Asic A B sic = X sic sic x() A - - B igur E9 A CT ucio 5-7
72 M. J. Robrs - /7/ X( ) 3 - Phas o X( ) I may commuicaio sysms a dvic calld a mixr is usd. I is simpls orm a mixr is simply a aalog muliplir. Tha is, is rspos sigal, y(), is h produc o is wo xciaio sigals. I h wo xciaio sigals ar ()= ad x ()= cos x sic 5 plo h magiud o h CTT o y(), Y( ), ad compar i o h magiud o h CTT o x (). I simpl rms wha dos a mixr do? ()= () ()= y x x 5sic cos 5 Y= X X= rc δ( )+ δ + [ ] 5 Y( )= rc + rc + X ( ) Y( )
73 M. J. Robrs - /7/ 5. Skch a graph o h covoluio o h wo ucios i ach cas: rc() * rc() (a) rc() rc() rc(- )* rc(+ ) (b) rc rc+ () (c) ri ri ri() ri(-) - ri(-τ) ri(τ-) τ or < -, h o-zro porios o h wo ucios do o ovrlap ad h covoluio is zro. or > 3, h o-zro porios o h wo ucios do o ovrlap ad h covoluio is zro. or - < < : Th o-zro porios ovrlap or < τ < + ad, i ha rag o τ, 5-73
74 M. J. Robrs - /7/ ri( τ)= + τ ad ri( τ )= τ Thror, or - < <, or < < : + + [ ] ri() ri( )= ( + ) d = ( + τττ ) τ τ dτ 3 τ τ ri() ri= ( + ) = = ri(-τ) ri(τ-) -- + τ ri() ri= ri( τ) ri( τ) dτ Th o-zro porios ovrlap or < τ < + ad, i ha rag o τ, hr ar hr cass o cosidr, < τ <, < τ < ad < τ < +. Thror ri() ri= ri( τ) ri( τ) dτ + ri( τ) ri( τ) dτ + ri( τ) ri( τ) dτ Cas : < τ < ri( τ)= + τ ad ri( τ )= τ + Cas : < τ < Cas 3: < τ < + ri( τ)= + τ ad ri( τ )= τ ri( τ)= + τ ad ri( τ )= τ Thror ri() ri= ( + τττ ) d + ( + τττ ) d + ( + τ) ( τ) dτ + 5-7
75 M. J. Robrs - /7/ [ ] + [ + ] + [ + ] ri() ri= τ + τ dτ ( ) τ τ dτ τ ( + ) τ + τ dτ 3 3 τ τ τ τ ri() ri= + + ( + ) + ( + ) τ τ τ τ 3 + ri ri 3 3 () = ( ) + + ( + ) ( + ) ( + ) ( + ) + ( + ) ( + ) ( + ) + ( + ) ri ri () ( )=( ) ri () ri= ( + ) 6 or h rmaiig rgios o, h covoluio simply rpas wih v symmry abou h poi, =. Th aalyical soluios ca b oud by h ollowig succssiv chags o variabl: +,, Ths hr succssiv chags o variabl ca b codsd io o, + Th, or < <, 3 3 ( ) ( ) ri() ri= = ad, or < < 3, ri () + ri= 6 3 = ( + )+ 6 + [ ]
76 M. J. Robrs - /7/ ri() * ri( -) δ() cos() () () (d) 3δ cos 3 () comb() rc() Th cosa,. () 5comb() ri() Th cosa,. 5. I lcroics, o o h irs circuis sudid is h rciir. Thr ar wo orms, h hal-wav rciir ad h ull-wav rciir. Th hal-wav rciir cus o hal o a xciaio siusoid ad lavs h ohr hal iac. Th ull-wav rciir rvrss h polariy o hal o h xciaio siusoid ad lavs h ohr hal iac. L h xciaio siusoid b a ypical houshold volag, Vrms a 6 Hz, ad l boh yps o rciirs alr h gaiv hal o h siusoid whil lavig h posiiv hal uchagd. id ad plo h magiuds o h CTT s o h rsposs o boh yps o rciirs (ihr orm). Hal-Wav Cas: [ ] ()= x cos rc 6comb 6 X= 6 [ δ( 6)+ δ( + 6) ] sic comb 6 X= [ δ( 6)+ δ( + 6) ] sic comb 6 X= k [ ( )+ ( + )] sic k δ 6 δ 6 δ k =
77 M. J. Robrs - /7/ X( )= 3 X( )= 3 k = k = k sic k [ δ ( 6 )+ δ ( + 6 ) ] δ 6 k sic k k δ ( 6 6 )+ δ [ ] ull-wav Cas: [ ] ()= x cos rc 6comb 6 X= 6 [ δ( 6)+ δ( + 6) ] sic comb δ 6 6 X= [ δ( 6)+ δ( + 6) ] sic comb δ 6 k X= 6 δ( 6) δ( + 6)+ sic k k δ ( 6 6 )+ δ k = [ ] X( ) X( ) id h DTT o ach o hs sigals: (a) x[ ]= u [ 3 ] X( )= x[ ] = u [ ] = 3 3 = X( )= m = = m + m ( + ) = 3 3 m = = m
78 M. J. Robrs - /7/ m X( )= = = 3 m = Alra Soluio: x[ ]= u u [ ]= 3 [ ] δ 3 [ ] Usig α u[ ] ad δ[ ] α x u δ 3 3 [ ]= [ ] [ ]= 3 3 x[ ]= 3 = 3 3 = 3 Scod Alra Soluio: x[ ]= u 3 3 X( )= 3 3 [ ] = 3 (b) x[ ]= si u [ ] si = si = cos x[ ]= cos u α cos α cos( ) u[ ] αcos + [ ] α, α < 5-7
79 M. J. Robrs - /7/ 5-79 X cos cos = + = Alra Soluio: x u u [ ]= [ ]= [ ] x u [ ]= [ ] [ ] u [ ] u X = X =
80 M. J. Robrs - /7/ 5- X = X cos = X cos = X si cos = + = (c) x sic sic [ ]= Usig sic comb w w w rc X comb comb = rc rc X comb = rc x sic [ ]=
81 M. J. Robrs - /7/ (d) x[ ]= sic Usig sic wrc w comb w X= comb comb rc rc X= comb comb rc rc X= comb rc rc X= ri comb ri comb = 5. Skch h magiuds ad phass o h DTT s o h ollowig ucios: (a) rc [ ] ( + ) Usig rc [ ] N N + w drcl, N w w, rc [ ] 5drcl, 5 X( ) 5 - Phas o X( )
82 M. J. Robrs - /7/ [ ] ( [ ]) (b) rc 5δ Usig δ[ ] ad x[ ] y[ ] X Y rc [ ] ( 5δ[ ] ) 5drcl (, 5) 5 5drcl, 5 = X( ) 5 - Phas o X( ) - - δ[ ] (c) rc [ ] Usig x[ ] X 6 rc [ ] 3δ [ + 3] 5drcl (, 5) X( ) 5 - Phas o X( ) - (d) rc [ ] ( 5δ[ ] )= rc [ ] ( 5δ[ ] ) - 5-
83 M. J. Robrs - /7/ rc [ ] ( 5δ[ ] ) 5drcl, 5 X( ) 5 - Phas o X( ) - - () rc [ ] comb [ ] Usig comb N [ ] comb N, [ ] [ ] rc comb 5drcl, 5 comb [ ] [ ] rc comb 5drcl (, 5) δ m m = 5 rc comb drcl, 5 m [ ] [ ] δ m = 5 m rc [ ] comb[ ] drcl, 5 m δ m = 5-3
84 M. J. Robrs - /7/ X( ).65 - Phas o X( ) - - () rc [ ] comb 3 [ ] Usig h rsul o () ad x[ ] X, 5 6 m rc comb 3 drcl, 5 m [ ] [ ] δ m = X( ).65 - Phas o X( ) - - [ ] [ ]= [ ] [ ]= [ ] ( ) (g) rc comb rc δ m rc δ m m= m= rc [ ] comb[ ]= rc [ ] δ m rc comb m = [ ]= [ ] [ ] [ ] Thror 5-
85 M. J. Robrs - /7/ [ ] [ ] rc comb 5 drcl, 5 comb [ ] [ ] rc comb 5 drcl (, 5 ) δ m m = 5 rc comb drcl, 5 m [ ] [ ] δ m = 5 m rc [ ] comb[ ] drcl, 5 m δ m = X( ).5 - Phas o X( ) - - (h) rc [ ] comb [ ] 5 [ ] [ ] rc comb5 5drcl, 5 comb 5 [ ] [ ] rc comb5 5drcl (, 5) δ 5 m m = 5 rc comb5 drcl, 5 m [ ] [ ] δ 5 5 m = m rc [ ] comb5[ ] drcl, 5 5 m δ 5 m = Th, usig drcl, m comb m m = [ ] 5-5
86 M. J. Robrs - /7/ rc [ ] comb5[ ] comb5[ m] m δ 5 m = [ ] [ ] rc comb comb 5 [ ] [ ]=. ad, sic comb, ha implis ha rc comb5 X( ) - Phas o X( ) Skch h ivrs DTT s o hs ucios. (a) X comb comb = Usig comb( ) ad x[ ] X combcomb + combcomb ( + ) si combcomb si combcomb 5-6
87 M. J. Robrs - /7/ cos ( + ) + si ( + ) si combcomb cos ( + ) si + si ( + ) si combcomb 3 3 = si si combcomb x[] - (b) X= comb + comb Usig comb( ) ad x[ ] X comb + comb si comb + comb si comb + comb x[]
88 M. J. Robrs - /7/ (c) X= sic sic comb + + Usig T sic comb w cos drcl, T ( )= + w w w w rom Appdix A (bcaus T w is a igr), X= cos drcl, cos drcl, cos d cos d + cos ( ) [ ] d + d cos [ ] cos( ( + 5) )+ si( ( + 5) ) d cos + [ cos( ( 5) )+ si( ( 5) )] d Ths igrals ar zro ulss =±5. Thror ( δ[ + 5]+ δ[ 5] ) cos ( ). ( + ) Th usig rc [ ] N N + w drcl, N w w, Combiig ivrs rasorms, rc [ ] 9drcl, 9 ( δ[ + 5]+ δ[ 5] )+ rc [ ] cos( )+ 9drcl (, 9). 5-
89 M. J. Robrs - /7/ Th, usig x[ ] X ( δ 5 δ 5 9 [ + ]+ [ ])+ [ ] + 9 rc cos drcl, ad ( [ + ]+ [ ])+ [ ] δ 5 δ 5 rc cos 9drcl, 9. Th, ially δ 5 δ 5 9 ( [ + ]+ [ ])+ rc [ ] cos + drcl, 9 + ( δ[ + 5]+ δ[ 5] )+ rc [ ] + cos + 9drcl, Th impulss o h l sid cacl ad w g cos 9drcl, rc 9 [ ] + cos 5 + cos + 9drcl, x[] - -. (d) X= + + comb δ δ 3 δ X= + + comb comb + δ δ δ
90 M. J. Robrs - /7/ comb δ δ δ 6 6 X= comb δ δ δ comb + comb + comb 6 6 X= + comb comb comb Th, usig comb( ) ad x[ ] X w g 3 5 comb + comb + comb comb + comb + comb 6 6 or comb + comb + comb comb + comb + comb or 3 5 comb comb comb cos + cos + cos comb + comb + comb 6 6 x[] Usig h rlaioship bw h CTT o a sigal ad h CTS o a priodic xsio o ha sigal, id h CTS o 5-9
91 M. J. Robrs - /7/ x()= rc comb w T T ad compar i wih h abl ry. X= wsic( w) w w X k X k wsic wk sic T [ ]= = = T k 57. Usig h rlaioship bw h DTT o a sigal ad h DTS o a priodic xsio o ha sigal, id h DTS o ad compar i wih h abl ry. rc N [ ] [ ] comb w N rom h x, Thror, ( + ) X= N + drcl, N X p w [ k]= X( kp). N N w + k X p[ k]= drcl, N w +. N N p w 5-9
Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS
alculus and Diffrnial Equaions pag of 7 ALULUS and DIFFERENTIAL EQUATIONS Th following 55 qusions concrn calculus and diffrnial quaions. In his vrsion of h am, h firs choic is always h corrc on. In h acual
i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <
MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics
M645-POBBILIY & NDOM POCESS UNI-IV-COELION ND SPECL DENSIIES By K.VIJYLKSHMI Dp. of pplid mhmics COELION ND SPECL DENSIIES Dfiniion: uo Corrlion h uo Corrlion of rndom procss {x}is dfind by xx xx im vrg
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
Sequential Bayesian Search Appendices
Squnial Baysian Sarch Appndics Zhn Wn Branislav Kvon Brian Eriksson Sandilya Bhamidipai A Proof of Thorm Assum ha a h binnin of am, h sysm s blif in h usr s prfrnc is P crainy-quival usr prfrnc durin am
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Appendix A. Stability of the logistic semi-discrete model.
Ecological Archiv E89-7-A Elizava Pachpky, Rogr M. Nib, and William W. Murdoch. 8. Bwn dicr and coninuou: conumr-rourc dynamic wih ynchronizd rproducion. Ecology 89:8-88. Appndix A. Sabiliy of h logiic
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
POISSON PROCESSES. Ανάλυση και Μοντελοποίηση Δικτύων - Ιωάννης Σταυρακάκης / Αντώνης Παναγάκης (ΕΚΠΑ) 1 COUNTING (ARRIVAL) PROCESS
5-Oc-6 OIO ROC 6 Ανάλυση και Μοντελοποίηση Δικτύων - Ιωάννης Σταυρακάκης / Αντώνης Παναγάκης ΕΚΠΑ COUIG ARRIVAL ROC ω> dfid o o apl pac Ω i calld a coig proc providd ha: i i o-dcraig i icra by jp oly 3
POISSON PROCESSES. N t (ω) {N t (ω);t>0} defined d on some sample space Ω is called a. that: t 1 t 2 t 3 t 4
OIO ROC 4 ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης ικτύων ΕΚΠΑ COUIG ARRIAL ROC ω> dfid d o o apl pac Ω i calld a coig proc providd ha: i i o-dcraig i icra by jp oly 3 i i righ coio 4 ω= ω 3 4 ΠΜΣ54:
[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi
NSW BOS Mhics Esio Soluios 8 F dowlod d pi fo wwwiuco Do o phoocopy opyigh 8 iuco Q L u 5 d ( ) c u u 5 Q Qc ( ) ( ) d 5 u d c d d l c d [ ] [ ] ( ) d l ( ) l l Qd L u fo > ( ) u d Wh u ; wh u d d ( u
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
POISSON PROCESSES. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης ικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 1
OISSO ROCSSS ΠΜΣ54: Μοντεοποίηση και Ανάυση Απόδοσης ικτύων Ι. Σταυρακάκης - ΕΚΠΑ COUIG ARRIVAL ROCSS ω;> dfid o o apl pac Ω i calld a coig proc providd ha: i i o-dcraig i icra by jp oly 3 i i righ coio
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT. Οκτώβριος 2005 ΨΕΣ 1
Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT Οκτώβριος 2005 ΨΕΣ 1 Γενικά Μορφές Μετασχηµατισµού Fourir Σήµατα που αντιστοιχούν στους τέσσερους τύπους µετασχηµατισµών α Μετασχηµατισµός Fourir FT β Σειρά
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009
Facudad d Ennharia Transmission ins EECTROMAGNETC ENGNEERNG MAP TEE 8/9 Transmission ins Facudad d Ennharia transmission ins wavuids supportin TEM wavs most common typs para-pat wavuids coaxia wavuids
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
LAPLACE TRANSFORM TABLE
LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf
h(t) δ(t+3) ( ) h(t)*δ(t)
f()* δ ( ) = f( ) x () = δ ( + 3) = 3 h () = u () u ( ) h()* δ ( + 3) = h ( + 3) = u ( + 3) u ( + 1) 1 h() * -3 δ(+3) ( ) h()*δ() 1-3 -1 MY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #6 Μοντέλα διαφορικών εξισώσεων
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Reflection & Transmission
Rflc & Tasmss 4 D. Ray Kw Rflc & Tasmss - D. Ray Kw Gmc Opcs (M wavs flc fac - asmss cdc.. Sll s Law: s s 3. Ccal agl: s c / 4. Tal flc wh > c ly f > Rflc & Tasmss - D. Ray Kw Pla Wav λ wavfs λ λ. < ;
Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi
Joural o Egirig ad aural Scic Mühdilik v F ilimlri Drgii Sigma 8 5-5 Rarch ricl / raşırma Makali GREE S FUCTIO OF DISCOTIUOS OUDRY VLUE PROLEM WITH EIGEPRMETER I OUDRY CODITIOS Fama YDI KGÜ* Yildiz Tchical
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Ψηφιακή Επεξεργασία Σήματος. Γιάννης Κοψίνης Γραφείο: Ι (γιώτα) 3, (Δευτέρα 14:00-15:00)
Ψηφιακή Επεξεργασία Σήματος Γιάννης Κοψίνης Email: kopsiis@i.org Γραφείο: Ι γιώτα 3, Δευτέρα 4:00-5:00 Σήματα x x x x Συστήματα Τεχνητά συστήματα Αποθορυβοποίηση Ακύρωση θορύβου ois Cacllatio Ακύρωση Αντιλάλου
webpage :
Amin Haliloic Mah Eciss E-mail : amin@shkhs wbpa : wwwshkhs/amin MATH EXERISES GRADIENT DIVERGENE URL DEL NABLA OERATOR LALAIAN OERATOR ONTINUITY AND NAVIER-STOKES EQUATIONS VETOR RODUTS I and hn scala
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
UNIT 13: TRIGONOMETRIC SERIES
UNIT : TRIGONOMETRIC SERIES UNIT STUCTURE. Larg Objctvs. Itroducto. Grgory s Srs.. Gral Thorm o Grgory s Srs. Summato of Trgoomtrc Srs.. CS Mthod.. Srs Basd o Gomtrc or Arthmtco-Gomtrc Srs.. Sum of a Srs
PULLEYS 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS. Groove dimensions and tolerances for Hi-Power PowerBand according to RMA engineering standards
1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS Figur 3 - Groov dimnsion nomnclatur or V-blts α go lp b Ectiv diamtr Datum diamtr d Tabl No. 1 - Groov dimnsions and tolrancs or Hi-Powr PowrBand according to
Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών
Rlativ Valuatio Αρτίκης Γ. Παναγιώτης Rlativ Valuatio Rlativ Valuatio Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Ø Επιλογή οµοειδών επιχειρήσεων σε όρους κινδύνου, ανάπτυξης
Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I
Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o
α ]0,1[ of Trigonometric Fourier Series and its Conjugate
aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #7 Μοντέλα διαφορικών εξισώσεων για ΓΧΑ Συστήματα Επίλυση Διαφορικών Εξισώσεων Η γραμμική διαφορική εξίσωση δεύτερης τάξης Παραδείγματα Μοντέλα διαφορικών εξισώσεων
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8
ECE 222b Applied Electromagnetics Notes Set 3b
C b Appl lcomancs Nos S 3b Insuco: Pof. Val Loman Dpamn of lccal an Compu nnn Unvs of Calfona San Do Rflcon an Tansmsson. Nomal ncnc T R T R Fs fn h manc fls: 3 Rflcon an Tansmsson T R T R T R T R R T
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
EGR 544 Communication Theory
EGR 544 Commucato hory 8. Spctral charactrstcs of Dgtally Modulats Sgals Z. Alyazcoglu Elctrcal ad Computr Egrg Dpartmt Cal Poly Pomoa Spctral charactrstcs of Dgtally Modulats Sgals Spctral charactrstcs
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +
Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie
On Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師
A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d
From the course textbook, Power Electronics Circuits, Devices, and Applications, Fourth Edition, by M.S. Rashid, do the following problems
ECE 427 Homework #2 From he course exbook, Power Elecronics Circuis, Devices, and Applicaions, Fourh Ediion, by M.S. Rashid, do he following problems 1. Problem.1 on page 1. Draw he oupu volage and inpu
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πρώτης και δεύτερης τάξης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ECE 222b Applied Electromagnetics Notes Set 3a
C b lid lcomagnics Nos S 3a Insuco: Pof. Viali Lomakin Damn of lcical and Comu ngining Univsi of Califonia San Digo Unifom Plan Wavs Consid Mawll s quaions: In a losslss mdium ε and µ a al and σ : Sinc
= 0.927rad, t = 1.16ms
P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now
Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator
Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene
General theorems of Optical Imaging systems
Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Computing Gradient. Hung-yi Lee 李宏毅
Computing Gradient Hung-yi Lee 李宏毅 Introduction Backpropagation: an efficient way to compute the gradient Prerequisite Backpropagation for feedforward net: http://speech.ee.ntu.edu.tw/~tkagk/courses/mlds_05_/lecture/
1. Τριγωνοµετρικές ταυτότητες.
. Τριγωνοµετρικές ταυτότητες. co( y co( co( y i( i( y i( y i( co( y co( i( y ± m (. ± ± (. π m (. 3 co ± i( i ± π ± co( (. co( co ( i ( (. 5 i( i( co( (. 6 j j co( + (. 7 j j j i ( (. 8 ( ( y ( y + ( +
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :
: : C : : C : : : .. ).. (................... ٢ ( - ). :.... S MP. T S..... -. (... ) :. :. : :. - - - - ٣ sweep :X. :Y. :. CCD.. ( - ) ( - ) ( - ) ( ) ( ) ( ) X : gnd -.... ٤ DC AC - AC DC DC - Y ( )
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers
2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 30ής ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ
K.AJI. 75/2004 ΠΑΡΑΡΤΗΜΑ ΤΡΙΤ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ Αρ. 906 της 0ής ΣΕΠΤΕΜΒΡΙΥ 2004 ΑΙΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ ΜΕΡΣ Ι Κννιστικές Διικητικές Πράξεις Αριθμός 75 Ι ΠΕΡΙ ΦΑΡΜΑΚΩ ΑΘΡΩΠΙΗΣ ΡΗΣΗΣ (ΕΛΕΓΣ
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Novel rotor position detection method of line back EMF for BLDCM
14 12 2010 12 ELECTRI C MACHINES AND CONTROL Vol. 14 No. 12 Dc. 2010 1 2 2 1. 430073 2. 430074 TM 351 A 1007-449X 2010 12-0096- 05 Novl rotor position dtction mthod of lin back EMF for BLDCM LI Zi-chng
Fourier Transform. Fourier Transform
ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Original Lambda Lube-Free Roller Chain
ambda (ub-fr) llr Ca Orgal ambda ub-fr llr Ca ambda a rass prduvy ad savs my. du maa m. Elma prdu ama. du dwm. g lf ad lw maa ambda as us spal l-mprgad busgs prvd lubra ad prlg war lf. mb Tmpraur: 10 C
Digital Signal Octave Codes (0B)
Digital Signal Aliasing and Folding Frequencies Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).
ΜΑΣ 7: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να βρεθεί το πολυώνυμο παρεμβολής Lagrage για τα σημεία (, ), (, ) και (4, ) Λύση: Για τα σημεία x, x, x 4, y, y, y υπολογίζουμε x x x x () x x x x x x 4 L
και τα οφέλη για τον τομέα ανάπτυξης γης και οικοδομών
www.pwc.com Η νέα φορολογική νομοθεσία (VAT) και τα οφέλη για τον τομέα ανάπτυξης γης και οικοδομών Σεπτέμβριος 2012 Χρυσήλιος Πελεκάνος chrysilios.pelekanos@cy.pwc.cy (Συνέταιρος Υπεύθυνος Έμμεσης Φορολογίας
Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +
Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που
I haven t fully accepted the idea of growing older
I haven t fully accepted the idea of growing older 1 Peter Authorship Questions Πέτρος ἀπόστολος Ἰησοῦ Χριστοῦ ἐκλεκτοῖς παρεπιδήμοις διασπορᾶς Πόντου, Γαλατίας, Καππαδοκίας, Ἀσίας 1 Peter Authorship