EGR 544 Communication Theory
|
|
- Ευθύμιος Κοντολέων
- 7 χρόνια πριν
- Προβολές:
Transcript
1 EGR 544 Commucato hory 8. Spctral charactrstcs of Dgtally Modulats Sgals Z. Alyazcoglu Elctrcal ad Computr Egrg Dpartmt Cal Poly Pomoa Spctral charactrstcs of Dgtally Modulats Sgals Spctral charactrstcs Chal badwh lmtato for ral chal Radom procss Powr spctral dsty PAM (Larly modulatd dgtal sgal) CPM (CPFSK) (Nolar Modulatd dgtal sgal) Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR 544-8
2 Powr Spctra of Larly Modulats Sgal h bad-pass sgal s gv as form of j f t { vt π } c st () = R () whr v(t) s quvalt low-pass sgal h autocorrlato fucto of s(t) j f { } c φ ( τ) = R φ ( τ) ss π τ h Fourr trasform of φ ss (τ) spctrum ss( f) = ( f fc) +( f fc) [ ] gvs us th th powr dsty whr (f) s th powr dsty spctrum of v(t). So, w d to fd th th powr dsty spctrum of v(t) frst. Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of Larly Modulats Sgal For th lar dgtal modulato mthods, v(t) ca b gv as puls shap fucto vt () = Igt ( ) = whr trasmsso rat s /=R/k symbol/s, I rprstato of k-bt blocks dgtal formato, g( ) s a rmstc puls fucto Not that {I } s a dscrt tm radom procss. I s ral ad corrspods to ampltud valus of trasmsso sgal for PAM I s complx sc sgal s two-dmsoal for PSK, QAM, ad PAM-PSK. h autocorrlato fucto of v(t) s prodc wth prod * φ( t+ τ; t) = E v ( t) v( t τ) + * * = E ( ) ( ) IIm g t g t+ τ m = m= Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
3 Powr Spctra of Larly Modulats Sgal Assum that {I } s wd-ss statoary wth ma ad autocorrlato fucto s * φ ( m) = E II + m h autocorrlato fucto of v(t) * ( t+ ; t) = ( m ) g ( t ) g( t+ m) = m= * = φ( kg ) ( t gt ) ( + τ k) k= = * = φ( k) g ( t ) g( t+ τ k) k= = φ τ φ τ = k= φ ( k) K( t, τ, k) whr Lt k=m- * (, τ, ) = ( ) ( + τ ) K t k g t g t k = Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of Larly Modulats Sgal Sc K( t+, τ, k) = K( t, τ, k) s prodc ad prod φ ( t+ + τ, t+ ) = φ ( t+ τ, t) Ad th ma valu of v(t) [ ] E v() t = E[ I ] g( t ) = µ g( t ) = = PAM, v(t) has prodc ma ad autocorrlato fucto wth prod. hrfor, t s calld a cyclostatoary procss or a prodcally statoary procss th wd ss Powr spctrum dsty of a cyclostatoary φ (, radom t τ procss s ) wo dmsoal Fourr trasform of Avrag powr spctrum dsty of a cyclostatoary radom procss s / / * ( ) = ( + ; ) = [ ( ) ( )] / + / φ τ t t E v t v t φ τ τ Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
4 Powr Spctra of Larly Modulats Sgal m-avrag autocorrlato fucto for cyclostatoary procss Whr / φ( τ) = ( t ; t) φ + τ / / * = φ( k) g ( t ) g( t k) / k + τ = = / * = φ( k) g ( t) g( t k) / k + τ = = * = φ( k) g ( t) g( t τ k) + k= = φ( k) φgg ( τ k) φ ( ) gg τ k= df tm-autocorrlato fucto of g(t) as * gg ( ) = g ( tgt ) ( + ) φ τ τ t' = t t for t = / t' = / W trprt ths tm autocorrlato fucto Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of Larly Modulats Sgal jπ fτ ( f) = φ ( τ) dτ φ( τ) = φ ( m) φgg ( τ k) k= jπ fτ = φ( k) φgg ( τ k) dτ k= jπ fτ = φ( k) φgg ( τ k) dτ k= jπ fk j π fτ' = φ( k ) φgg ( τ ') dτ ' k= jπ fk = φ( k ) j π fτ ' gtgt ( ) ( + τ' ) dτ ' k= = ( f) G( f) Avrag powr spctrum dsty h avrag powr spctrum dsty of PAM sgal s rmd by th puls shap, as wll as th dgtal put formato Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
5 Powr Spctra of Larly Modulats Sgal h Fourr trasform gvs us th avrag powr spctrum dsty of v(t) ( f) = G( f) ( f) G(f) Ergy spctrum dsty whr G(f) s Fourr trasform of g(t) ad (f) th powr dsty of th formato squc ( f) = φ( m) m= jπ fm h autocorrlato fucto φ (m) ca b obtad form (f) as ( (f) prodc ad prod ) / π fm m = f df / φ ( ) ( ) Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of Larly Modulats Sgal Exampl: Iput formato s ral ad mutually ucorrlatd Whr σ σ + µ ( m = ) φ( m) = µ ( m ) dots th varac of a formato squc h powr dsty spctrum of formato squc ( f) = σ + µ jπ fm m= hs s prodc ad prod s, thrfor, µ m = + ( f) σ δ( f ) m= Rmmbr that F{}=δ(f) If Samplg wth prod m F{} = δ ( f ) m= Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR 544-8
6 Powr Spctra of Larly Modulats Sgal h powr dsty spctrum of v(t) wll b σ µ m ( f) = G( f) + G( f) δ ( f ) m= h powr dsty spctrum of v(t) σ µ m ( f) = G( f) + G( f) δ ( f ) m= Cotuous spctrum Dscrt spctrum Wth zro ma put formato,th dscrt spctrum s zro, th avrag powr dsty spctrum s rmd by G(f) Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Exampl: Powr Spctra of Larly Modulats Sgal A jπ ft G( f) = A hrfor g(t) s( π f ) = A π f = A s c( f ) jπ f jπ f G( f) = ( A) sc ( f) σ µ m ( f) = G( f) + ( ) ( ) G f δ f m= = σ As c ( f) + µ Aδ( f) t h avrag powr spctrum dsty for rctagular pulss f <.5 F{s c( t)} = ( f) = f >.5 f F{( x at)} = X( ) a a jπt f F{( x t t)} = X( f) F{ x( t)} = X( f) F{ X( t)} = x( f) Dscrt spctra compots Cal Poly Pomoa Elctrcal & Computr Egrg vash Dpt. for m EGR 544-8
7 Exampl: Powr Spctra of Larly Modulats Sgal A g(t) / jπ ft G( f) = cos ( t ) A π t A s c( f ) j f π = f t A π t g() t = cos ( t ), t h avrag powr spctrum dsty of rasd cos sgal g(t)? σ µ m ( f) = G( f) + G( f) δ ( f ) m= σ As c ( f) µ A µ A µ A = + δ( f) + δ( f ) + δ( f + ) 4( f ) Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of Larly Modulats Sgal Exampl: What th avrag powr spctrum dsty of PAM sgal for th put formato squc I? {I } assum to b mutually ucorrlatd,ach havg zro ma ad ut varac ( m = ) j φ( m) = ( f) = φ( m) o.w. m= = ( f) = G( f) ( f) = G( f) π fm Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
8 Powr Spctra of Larly Modulats Sgal Exampl: If th put formato squc I gv as followg, what th avrag powr spctrum dsty of I? I = b + b {b } assum to b mutually ucorrlatd,ach havg zro ma ad ut varac ( m = ) φ( m) = ( m= ± ) ( ow..) ( f) = φ ( m) m= jπ fm jπ f jπ f = + + = + = [ π f ] cos( ) 4cos( f ) h corrspodg powr dsty spctrum of th low-pass modulatd sgal v(t) s Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR ( f) = G( f) cos ( π f) π Powr Spctra of CPFSK ad CPM sgal Costat Ampltud CPM sgal: Assum that I ca tak {±, ±3, ±(M-) ad thy ar statstcally dp ad cally dstrbutd wth pror probablts P = P( I = ) = ±, ± 3,..., ± ( M ) k CPM sgal: whr s() t = Acos[ π f t+ φ(; t I)] φ(; t I) = πh I q( t k) k= k c ad /, t L qt () =, t, h quvalt low-pass sgal vt () = j (;) t φ I Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
9 Powr Spctra of CPFSK ad CPM sgal h autocorrlato fucto of quvalt low-pass sgal * φ( t+ τ; t) = E ( ) ( ) v t+ τ v t jφ( t+ τ; I) jφ( t; I) = E j[ φ( t+ τ; I) φ( t; I)] = E = E xp j πh Ik[ qt ( + τ k) qt ( k)] k= φ( t+ τ; t) = E xp( [ ( ) ( )]) j πhik qt+ τ k qt k k= = E xp( j πhik[ q( t + τ k ) q( t k )]) k= j h[ q( t k) q( t k)] P π + τ = k= { Ik } Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR { I } d... k Powr Spctra of CPFSK ad CPM sgal h avrag autocorrlato fucto φ( τ) = ( t ; t) φ + τ Lt β τ< (β+) j πh[ q( t+ τ k) q( t k)] = P k= { Ik } ad t < qt ( ( L ) ) t ( L ) [( L ), L ) qt ( k) qt () t [, ) k -L qt ( + τ ( β + L ) ) t + τ ( β + L ) [( L ),( L + ) ) qt ( + τ k) qt ( + τ ( β + ) ) t + τ ( β + ) [(, ) ½-/= k (β+)-l (β+) max(,) (M-) β + j πh[ q( t+ τ k) q( t k)] φ( τ) = P k= m( β + L, L) = ( M ) odd Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
10 Powr Spctra of CPFSK ad CPM sgal φ τ β ( β + ) j πh[ q( t+ τ k) q( t k)] ( ) = P, f k= ( L) { Ik } Cosdr th cas of (β+) L > (β L) φ β L j πh[ q( t k)] j πh[ ] ( τ) = P P k= ( L) { Ik} k= { Ik} β + j πh[ q( t+ τ k)] P k= β + L { Ik } Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal M- j π h[ q( t k)] φ( τ) = P [ ( jh)] Ψ k= ( L) = ( M ) odd M- m= L = ( M ) odd P β L = [ Ψ ( jh)] λτ ( β ) whr M - ψ ( jh) = P π = ( M ) odd j h j πhqt [ ( + τ ( m+ β) )] β L λξ ( ) = (a) Charactrstc fucto of radom squc {I } M- j π h[ q( t k)] M- j h[ q( t k)] P π + ξ P k= ( L) = ( M ) k= L = ( M ) odd odd Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR 544-8
11 Powr Spctra of CPFSK ad CPM sgal Avrag Powr spctral dsty of CPFSK jπ fτ f d ( ) = φ ( τ) τ jπ fτ jπ fτ = φ ( τ) dτ + φ ( τ) dτ jπ fτ jπ fτ = φ( τ) + φ( τ) dτ = R ( ) jπ fτ φ τ dτ φ ( τ) = φ ( τ) sc L jπ fτ jπ fτ jπ fτ ( ) = ( ) + ( ) L φ τ dτ φ τ dτ φ τ dτ L ( m+ ) jπ fτ jπ fτ ( ) ( ) m m= L = φ τ dτ + φ τ dτ Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal L jπ fτ jπ fτ jπ fτ φ( τ) dτ = φ( τ) dτ + φ( τ) dτ L L ( m+ ) jπ fτ m L jπ fτ = ( ) + [ ( )] ( ) m m= L Lt ξ = τ m φ τ dτ ψ jh λ τ m dτ L jπ fτ jπ fτ m L j π f ( ξ+ m) ( ) = ( ) + [ ( )] ( ) m= L φ τ dτ φ τ dτ ψ jh λ ξ dξ Lt = m L L π τ ( ) jπ fτ j f φ( τ) dτ = φ ( τ) dτ jπ f j π f ( ξ+ L) + [ ( )] ( ) = ψ jh λξ dξ Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR 544-8
12 f ψ ( jh) < = Powr Spctra of CPFSK ad CPM sgal [ ψ ( jh)] jπ f = ψ ( jh) jπ f h avrag Powr spctral dsty of CPM sgal s L j π fτ j π f ( ξ+ L) ( f ) = R φ( τ) dτ + λ( ξ) dξ jπ f ψ ( jh) Lt s look at th cas of Ψ ( jh) = M- jπ hi ψ ( jh) = E = P = ( M ) odd jπ h Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal Dscuss th cas of ψ ( jh) = ( ) j π ψ jh = P h =, f h = tgr { ( M )...,,..( M )} Wthout loss of gralty, w ca st ψ jπvh jπv ( jh) = = v <, sc ψ ( jh) = j f π j π v j π f [ ψ ( jh)] = = = = = j π( f v/ ) h Fourr rasform of samplg ut stp fucto v v π( f ) jπ f [ ψ( jh)] = + δ( f ) j = = = Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
13 Powr Spctra of CPFSK ad CPM sgal jπ f [ ψ( jh)] = + δ( f ) j cot π ( f ) = = v v Fourr trasform of u(t) s U( f) = δ ( f ) j π f Fourr trasform of u(t) samplg wth samplg prod j U( f ) = δ ( f ) = = = π( f ) j = δ ( f ) cot π ( f ) cotπ t = = = π ( t ) Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal hus, th avrag powr spctrum dsty of CPM sgal cotas mpulss locato at f + v =, =,,... h tr avrag powr spctrum dsty cluds cotus compot ad a dscrt spctrum compot. Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
14 Powr Spctra of CPFSK ad CPM sgal Spcal cas o th avrag powr spctral dsty of CPFSK sgals. Assum that I s qual probabl P =,forall. M ( M ) jπ h ψ ( jh) = M = ( M ) odd j( M ) πh jπhm ( ) = jπ h M jmπh jπhm = jπh jπh M s( Mπ h) = It s ral umbr. M s( π h) Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal Also, φ τ β ( β + ) j πh[ q( t+ τ k) q( t k)] ( ) = P, f k= ( L) { Ik } ( πhmqt+ τ k qt k ) ( π + τ ) ( ) β + s [ ( ) ( )] = k= ( L) M s h[ q( t k) q( t k)] It s also ral umbr.. L j π fτ j π f ( ξ+ L) ( f ) = R φ( τ) dτ + λ( ξ) dξ jπ f ψ ( jh) L ( L+ ) jπ fτ = φ( τ)cos( π fτ) dτ + R λ( τ L) dτ jπ f ψ ( jh) L L Not: φ( τ) = [ ψ( jh)] λ( τ β) for β τ < ( β + ) mpls that φ( τ) = λ( τ β) for L τ < ( L+ ), (applyg β = L) Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
15 Powr Spctra of CPFSK ad CPM sgal L ( L+ ) jπ fτ ( f ) = φ( τ)cos( π fτ) dτ + R φ ( ) j f τ dτ π ψ ( jh) L jπ fτ L ( L+ ) = φ( τ)cos( π fτ) dτ + φ( τ)r dτ L ( ) jπ f ψ jh L ( L+ ) cos( π fτ) js( π fτ) ( f) = φ( τ)cos( π fτ) dτ + φ( τ)r dτ L ψ ( jh )cos( π f ) + jψ ( jh )s( π f ) L ( f) = φ( τ)cos( π fτ) dτ ( L+ ) cos( π fτ) js( π fτ) ψ( jh)cos( π f) jψ( jh)s( π f) + φ( τ )R d L τ ψ ( jh )cos( π f ) + jψ ( jh )s( π f ) ψ ( jh )cos( π f ) jψ ( jh )s( π f ) L ( f) = φ( τ)cos( π fτ) dτ ( L+ ) cos( π fτ)[ ψ( jh)cos( π f)] ψ( jh)s( π f)s( π fτ) + φ( τ) d L τ ψ ( jh) ψ( jh)cos( π f ) Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal Fally, + [ ψ( jh) cos( π f )] ( L+ ) φ( τ)cos( π fτ) dτ ψ jh ψ jh π f L L ( f) = φ( τ)cos( π fτ) dτ ( ) ( )cos( ) Ψ( jh)s( π f ) ( L+ ) φ ( )s( ) τ π fτ dτ ψ ( jh) ψ( jh)cos( π f ) L W oly d to drv tgrato of th avrag autocorrlato fucto ovr [,L) ad [L,(L+)). Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
16 Powr Spctra of CPFSK ad CPM sgal Assum that th puls shap s rctagular puls g(t) full rspos mployd (L=) β + j πhqt [ ( + τ k) qt ( k)] φ( τ) =, f ( ) β τ < β + k= LM { Ik } β + j πh[ q( t+ τ k) q( t k)] = k= M { Ik } β + M j πh( M)[ qt ( + τ k) qt ( k)] = k= M m= Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Cas: β = ( τ < ) φ ( τ) φ ( τ) Powr Spctra of CPFSK ad CPM sgal M j πh(m M )[ q( t+ τ k ) q( t k )] = k= M m= ( πhm q t + τ k q t k ) ( π + τ ) s [ ( ) ( )] = k= M s h[ q( t k) q( t k)] Cas: β = ( τ < ) M j πh(m M)[ qt ( + τ k) qt ( k)] = k= M m= ( πhm q t + τ k q t k ) ( π + τ ) s [ ( ) ( )] = k= M s h[ q( t k) q( t k)] Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
17 Powr Spctra of CPFSK ad CPM sgal Fally,w obta th avrag Powr Spctrum dsty of CPFSK as = + M M M ( f ) A ( f) ( ) ( ) ( ) Bm f A f Am f M = M = m= whr h A ( f ) = sc f - (-- M) B m cos( π f αm) ψ cos( αm) ( f ) = + ψ ψ cos( π f ) αm = πhm ( + M) Modulato dx s Mπ h ψ = ψ ( jh) = M sπ h h = f d Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal Avrag powr spctrum dsty of th quvalt low-pass CPFSK sgal s plottr Oly Uppr sd bad plottd bcaus of avrag powr spctrum dsty s symmtry Spctrum dsty Spctral dsty for two lvl CPFSK M= =.5 H=f d Normalz frq f Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
18 Powr Spctra of CPFSK ad CPM sgal Spctrum dsty Spctral dsty for two lvl CPFSK M= =.5 H=f d Normalz frq f Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal Spctrum dsty Spctral dsty for two lvl CPFSK M= =.5 H=f d Normalz frq f Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
19 Powr Spctra of CPFSK ad CPM sgal Spctrum dsty Powr Spctrum dsty for two lvl CPFSK M= =.5 h=f d Normalz frq f Avrag spctrum rlatvly smooth for h< Avrag spctrum bcoms broadr. hat s th raso CPFSK s usd h< Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal M=4 =.5 h=f d Impuls appars wh h s clos to, h badwh bcoms almost twc of M=, 4 lvl CPFSK carrrs twc dgtal formato tha -lvl CPFSK Powr Spctrum dsty for quatrary CPFSK Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
20 Powr Spctra of CPFSK ad CPM sgal M=8 =.5 h=f d Powr Spctrum dsty for octal CPFSK Impulss appars wh h clos to, h badwh bcoms almost twc of M=4, 8 lvl CPFSK carrrs twc dgtal formato tha 4-lvl CPFSK Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal Spcal cas of MSK sgal h=/ ad M= ad ψ= s Mπ h sπ ψ = ψ ( jh) = M sπh = s π / = A ( f ) = sc f - (-3) 4 cos( π f α ) ψ cos( α ) B ( f ) = = cos( π f α ) m m m + ψ ψ cos( π f ) π αm = πhm ( + M) = ( m+ 3) hrfor, th avrag powr spctrum of MSK sgals 6 cos ( f) ( f ) A ( f) ( ) ( ) ( ) Bm f A f Am f M M = = m= π ( 6 f ) = + = m π Normalzd avrag powr spctrum of MSK sgals ( f ) cos ( π f ) = () ( 6 f ) Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
21 Powr Spctra of CPFSK ad CPM sgal Offst QPSK wth rctagular puls shap v() t = [ I g( t ) ji g( t )] = + t < OQPSK wth rctagular puls shap gt () = o.w. φ ( t+ τ; t) = E[[ I I ] g( t ) g( t+ τ m) m = m= + E[[ I+ Im+ ] g( t ) g( t+ τ m ) = m= j E[[ IIm+ ] gt ( ) gt ( + τ m ) = m= j E[[ I+ Im] g( t ) g( t+ τ m) = m= Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal If {I }ar statstcally dp ad cally dstrbutd wth uform margal dstrbuto φ( t+ τ; t) = gt ( ) gt ( + τ ) + gt ( ) gt ( + τ ) = = = gt ( ) gt ( + τ ) = τ τ ( t ; t), t φ + τ = = < τ τ φ( t + τ; t) = + =, t < φ ( ) τ = + τ, τ <, o.w. th avrag powr spctrum of Offst QPSK sgals f s ( π f) ( f ) = F /\ sc ( f) = = ( π f) Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
22 Powr Spctra of CPFSK ad CPM sgal MSK fall off cosdrably fastr tha Offst QPSK log ( f ) () Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR Powr Spctra of CPFSK ad CPM sgal MSK s mor badwh-ffct tha Offst QPSK Cal Poly Pomoa Elctrcal & Computr Egrg Dpt. EGR
UNIT 13: TRIGONOMETRIC SERIES
UNIT : TRIGONOMETRIC SERIES UNIT STUCTURE. Larg Objctvs. Itroducto. Grgory s Srs.. Gral Thorm o Grgory s Srs. Summato of Trgoomtrc Srs.. CS Mthod.. Srs Basd o Gomtrc or Arthmtco-Gomtrc Srs.. Sum of a Srs
General theorems of Optical Imaging systems
Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
LAPLACE TRANSFORM TABLE
LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <
Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.
Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I
Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o
Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT. Οκτώβριος 2005 ΨΕΣ 1
Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT Οκτώβριος 2005 ΨΕΣ 1 Γενικά Μορφές Μετασχηµατισµού Fourir Σήµατα που αντιστοιχούν στους τέσσερους τύπους µετασχηµατισµών α Μετασχηµατισµός Fourir FT β Σειρά
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,
E.E. Πρ. ll () 429 Κ.Δ.Π. 50/ Αρ. 7, 24.6. Αρθμός 50 ΠΕΡ ΤΑΧΥΔΡΜΕΩΝ ΝΜΣ (ΚΕΦ. 0 ΚΑ ΝΜ 42 ΤΥ 96 ΚΑ 7 ΤΥ 977) Δάτγμ δνάμ τ άρθρ 7() Τ Υπργκό Σμβύλ, σκώντς τς ξσίς π πρέχντ Κ»>. 0. σ' τό δνάμ τ δφί τ άρθρ
Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών
Rlativ Valuatio Αρτίκης Γ. Παναγιώτης Rlativ Valuatio Rlativ Valuatio Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Ø Επιλογή οµοειδών επιχειρήσεων σε όρους κινδύνου, ανάπτυξης
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
Linear electro-optic effect:
EE6.4686.568 Elcto-optcs Elcto-optc optc ffct: D ρ, B E, t B, D H j, t D ε E P εe K ffct 3 P ε χ E χ E χ E 3..., La lcto-optc ffct: ε ε χ χ E ε E jk, j j jk k k Pockls ffct Wh o E appld, ε ε ε ε x ε 33
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
ITU-R P (2012/02)
ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics
M645-POBBILIY & NDOM POCESS UNI-IV-COELION ND SPECL DENSIIES By K.VIJYLKSHMI Dp. of pplid mhmics COELION ND SPECL DENSIIES Dfiniion: uo Corrlion h uo Corrlion of rndom procss {x}is dfind by xx xx im vrg
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
ITU-R P (2012/02) khz 150
(0/0) khz 0 P ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0 (ITU) khz 0 (0-009-00-003-00-994-990)
Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers
2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x
! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $
[ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::
Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019
Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών ΜΕΜ 74 Λύσεις Θεμάτων Εξέτασης Ιούνη 9 Ζήτημα Α Α. Δείξτε ότι αν p, q πραγματιϰά πολυώνυμα ίδιου βαϑμού, τότε p q ϰαϑώς ±. Λύση. Αρϰεί να δείξουμε ότι για με αρϰετά μεγάλο
Examples of Cost and Production Functions
Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
κ α ι θ έ λ ω ν α μ ά θ ω...
{ ( a -r ν ρ ι -Μ Π ώτ 1 Γ '- fj T O O J CL κ α ι θ έ λ ω ν α μ ά θ ω < US η ixj* ί -CL* λ ^ t A u t\ * < τ : ; Γ ν c\ ) *) «*! «>» Μ I Λ 1,ν t f «****! ( y \ \, 0 0 # Περικλή_ Χαντζόπουλο κ α ι θ έ λ
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης
KEΦAΛAIO 5 Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης Όπως είδαμε στο Κεφάλαιο 4, η δυναμική μελέτη ενός φυσικού/ χημικού συστήματος οδηγεί συχνά στη διερεύνηση της δυναμικής συμπεριφοράς μιας γραμμικής,
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
!()"%#*+#,-,#". !"#$$%"#&'#' "#$%&''()#*$%$+,-.*'')/012$+.* ñ.'âáóéëüðïõëïò (2&20''&34''"4"(&20(.* Êýêëùìá Óõíôïíéóìïý Óôáèìïý
!"#$$%"#&'#' "#$%&''()#*$%$+,-.*'')/01$+.* (&0''&34''"4"(&0(.*!()"%#*+#,-,#". Êýêëùìá Óõíôïíéóìïý Óôáèìïý L C ÁðïäéáìïñöùôÞ! Äéüäïõ ÌåãÜöùíï ñ.'âáóéëüðïõëïò 000 ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ 1. ΕΙΣΑΓΩΓΗ Επικοινωνώ :
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error
onvcton rvtvs brry 7, nt Volm Mtho or onvcton rvtvs Lrry rtto Mchncl ngnrng 69 omttonl l ynmcs brry 7, Otln Rv nmrcl nlyss bscs oncl rslts or son th sorc nlyss Introc nt-volm mtho or convcton Not n or
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του
Introduction to Time Series Analysis. Lecture 16.
Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8
ITU-R F.1891 (2011/05) ! "# . /) 0 1 ",MHz ,
(0/05)! "# &' () * $ + # $ %. /) 0 ",MHz 7 075-5 850, F ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA RS
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
1. Τριγωνοµετρικές ταυτότητες.
. Τριγωνοµετρικές ταυτότητες. co( y co( co( y i( i( y i( y i( co( y co( i( y ± m (. ± ± (. π m (. 3 co ± i( i ± π ± co( (. co( co ( i ( (. 5 i( i( co( (. 6 j j co( + (. 7 j j j i ( (. 8 ( ( y ( y + ( +
Phasor Diagram of an RC Circuit V R
ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
BandPass (4A) Young Won Lim 1/11/14
BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
The Multi-Soliton Solutions to The KdV Equation by Hirota Method
Progrss Appld Mhcs Vol. 8, o., 4, pp. -5 OI:.968/69 ISS 95-5X [Pr] ISS 95-58 [Ol].cscd..cscd.org Th Mul-Solo Soluos o Th KdV Equo y Hro Mhod MA L [],* [] pr of Mhcs Sccs, zhou Uvrsy, zhou, Ch. *Corrspodg
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
ΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ
ΣΤΗΑ ΨΕΣ -3 4/4/3 : πµ ΑΝΤΙΚΕΙΜΕΝΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Ψηφιακή Επεξεργασία Σήµατος ΨΕΣ Η Επεξεργασία Σήµατος µέσω της ψηφιοποίησής του και της επεξεργασίας µε ηλεκτρονικό υπολογιστή ή ειδικά ολοκληρωµένα κυκλώµατα
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2 3.4: Πολυπλεξία Ορθογωνικών Φερόντων (Quadrature Amplitude Modulation, QAM) 3.5: Μέθοδοι Διαμόρφωσης
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Διαμόρφωση Συχνότητας. Frequency Modulation (FM)
Διαμόρφωση Συχνότητας Frequency Modulation (FM) Παραγωγή σημάτων FM Διαμόρφωση FM στενής ζώνης [ π φ π ] st () A cos(2 ft) ()sin(2 t ft) c c c Διαμορφωτής PM m (t) + s(t) A c sin(2 π ft) c +90 0 ~ A c
Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009
Facudad d Ennharia Transmission ins EECTROMAGNETC ENGNEERNG MAP TEE 8/9 Transmission ins Facudad d Ennharia transmission ins wavuids supportin TEM wavs most common typs para-pat wavuids coaxia wavuids
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)
ECE 222b Applied Electromagnetics Notes Set 3b
C b Appl lcomancs Nos S 3b Insuco: Pof. Val Loman Dpamn of lccal an Compu nnn Unvs of Calfona San Do Rflcon an Tansmsson. Nomal ncnc T R T R Fs fn h manc fls: 3 Rflcon an Tansmsson T R T R T R T R R T
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field
L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Διαμόρφωση Συχνότητας. Frequency Modulation (FM)
Διαμόρφωση Συχνότητας Frequency Modulation (FM) Τι συμβαίνει με τις γραμμικές διαμορφώσεις; Στη γραμμική διαμόρφωση CW (Carrier Wave) δηλαδή, AM, DSB, SSB, VSB Το πλάτος ενός ημιτονικού φέροντος μεταβάλλεται
Chapter 5 - The Fourier Transform
M. J. Robrs - /7/ Chapr 5 - Th ourir Trasorm Soluios (I his soluio maual, h symbol,, is usd or priodic covoluio bcaus h prrrd symbol which appars i h x is o i h o slcio o h word procssor usd o cra his
Κεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace
Κεφάλαιο 7 Μετασχηματισμός Laplace Σε αυτο το κεφάλαιο θα μελετήσουμε τη μέθοδο του μετασχηματισμού Laplace, η οποία αποτελεί μία από τις βασικές τεχνικές μαθηματικών προβλημάτων: μετασχηματίζει δύσκολα
ΤΥΠΟΛΟΓΙΟ ΜΤΜ 2011 [ ] B A
ΤΥΠΟΛΟΓΙΟ ΜΤΜ π s cos και cos cos π s α β s α cos β cosα s β s α β sα cos β cosα s β cos α β cosα cos β s α s β cos α β cosα cos β sα s β cos α cos β [ cos α β cos α β ] s α cos β s α β s α β [ ] cos Bs
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Chapter 1 Fundamentals in Elasticity
D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max