ECE 222b Applied Electromagnetics Notes Set 3b
|
|
- Δαίμων Λιάπης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 C b Appl lcomancs Nos S 3b Insuco: Pof. Val Loman Dpamn of lccal an Compu nnn Unvs of Calfona San Do
2 Rflcon an Tansmsson. Nomal ncnc T R T R Fs fn h manc fls:
3 3 Rflcon an Tansmsson T R T R T R T R R T Soluon: hn If. hn If. T R T R Spcal cas:
4 4 Rflcon an Tansmsson 3. Oblqu ncnc A. Ppncula polaaon -pol. sn sn sn T T R R sn sn sn sn sn sn T R
5 Rflcon an Tansmsson 4 n o an an R n o an T sn sn Phas machn: R an sn T sn sn sn sn sn sn sn sn Snll s law of flcon sn sn sn sn Snll s law of facon 5
6 6 T R T R T R Soluon: Z Z Z Z R Z Z Z T Z Rflcon an Tansmsson 5 Ths fomulas a v smla o hos n ansmsson lns!
7 7 Rflcon an Tansmsson 6. Oblqu ncnc B. Paalll polaaon -pol. sn sn sn T R sn sn T R Rsul:
8 Rflcon an Tansmsson 7 L Z R Z Z Z Z T Z Z Z Bws anl No flcon A. Fo -polaaon Bws anl If B R R Toal ansmsson B sn sn B sn Snll s law 8
9 Rflcon an Tansmsson 8 Soluon: sn B. Fo -polaaon B ± B If R Bws anl Fo R unlss! no oal ansmsson Toal ansmsson sn B ± sn B ± f 9
10 Rflcon an Tansmsson 9 Ccal anl Toal flcon: Snll s law of facon sn sn sn sn sn sn sn sn π c - sn - c sn f < Ccal anl I ss onl f
11 Rflcon an Tansmsson Whn : R T c T T sn sn sn * R S S S c c c av av av All ncn pow s flc bac! Whn os h pow n mum com fom???
12 Rflcon an Tansmsson Wha happns whn? > c T sn Whn sn > > c sn > T sn sn ± sn sn Anuaon consan: sn α v p < v sn Phas vloc: p Non-unfom plan wav Applcaon: Opcal fb
13 Rflcon an Tansmsson Tansmsson no a lf-han mum: 3
14 Rflcon an Tansmsson 3 Phas machn: sn sn Ponn vco: T S sn Pn s pfc lns a plan-wav pcu 4
15 5 Plan Wavs n Unaal Ma Opcal as Fo a unaal mum: B D < > nav unaal : posv unaal : Cons a plan wav:
16 6 Plan Wavs n Unaal Ma
17 7 Plan Wavs n Unaal Ma 3 Fo non-val soluons: ] [ Two possbl soluons:. D B Ona wav. pmv wh a hos n an soopc mum wav bhavs h sam as Ths
18 8 4 Plan Wavs n Unaal Ma 4. Dspson laon D B D
19 Plan Wavs n Unaal Ma 5 D B Obsvaon: Thus s no ppncula o. As a sul h Ponn vco s no n h con of. aona wav Spcal Cass:. If h wav popaas ppncula o h opcal as : Fo ona wavs Fo aona wavs o o 9
20 Plan Wavs n Unaal Ma 6 Phas vloc: o p po v v Bfnnc A h fon: Af passn houh h slab: o o o Lnal pola
21 cculal pola Plan Wavs n Unaal Ma 7 o o ± ± ± 3 If π π 4 If o o o o o o o λ λ λ λ λ λ λ π λ π λ π π π Qua-wav pla
22 Plan Wavs n Unaal Ma 8. Polao σ ~ as : o h opcal paalll Fo aona wavs as : ppncula o h opcal Fo ona wavs σ σ σ o aona wavs wll b anua. s anua houh passs Smlal σ σ
23 3 Plan Wavs n Goopc Ma Fo a oopc mum: Cons a plan wav: W fn
24 4 Plan Wavs n Goopc Ma Fo non-val soluons: 4 4 Dfn : sn Rw: 4 C B A 4 4 sn sn C B A
25 5 Plan Wavs n Goopc Ma 3 Two soluons: A AC B B 4 ± sn sn sn sn sn ẑ Spcal cass:
26 6 ± ± ± ± 4 - han cculal pola wav lf a p v Plan Wavs n Goopc Ma 4
27 Plan Wavs n Goopc Ma 5 b Cons h - han cculal pola wav v p Lnal pola RCP LCP 7
28 8 Faaa oaon Plan Wavs n Goopc Ma 6 A : co / / / / lnal pola wav wh an anl a Sll F
29 9 π p v a b 4 4 Plan Wavs n Goopc Ma 7 llpcall pola.
30 Plan Wavs n Chal Ma Consuv laons: χ - chal paam Mawll s quaons: 3
31 Plan Wavs n Chal Ma Assum : D B χ χ χ χ χ χ χ χ Soluons: ± ± χ ± 3
32 Plan Wavs n Chal Ma 3 LCP: v p χ RCP: v p χ Obsvaon: Faaa oaon bfnnc cpocal oopc mum. 3
ECE 222b Applied Electromagnetics Notes Set 3a
C b lid lcomagnics Nos S 3a Insuco: Pof. Viali Lomakin Damn of lcical and Comu ngining Univsi of Califonia San Digo Unifom Plan Wavs Consid Mawll s quaions: In a losslss mdium ε and µ a al and σ : Sinc
Reflection & Transmission
Rflc & Tasmss 4 D. Ray Kw Rflc & Tasmss - D. Ray Kw Gmc Opcs (M wavs flc fac - asmss cdc.. Sll s Law: s s 3. Ccal agl: s c / 4. Tal flc wh > c ly f > Rflc & Tasmss - D. Ray Kw Pla Wav λ wavfs λ λ. < ;
Electromagnetic Engineering MAPTele
lcomagc gg MAPTl 8-9 Faculdad d ghaa Pogam lcomagc wavs Popagao Icdc Wavguds Tasmsso ls Radao Iês Cavalho Asssa Pofsso Faculdad d ghaa, Uvsdad do Poo www.f.up.p/~ms/ ms@f.up.p Popagao Faculdad d ghaa Sudg
General theorems of Optical Imaging systems
Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp
ϕ be a scalar field. The gradient is the vector field defined by
Amn Halloc Math Ecss E-mal : amn@sthths bpa : sthths/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I an thn scala
webpage :
Amn Halloc Mah Ecss / 7 E-mal : amn@shhs bpag : shhs/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I and hn scala
Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.
Eaa S Pag can E Ccn Eq. (. q q k W/ K k W/ K A A 6 n as bu 6 s q lns s q T k T k Q.. Wall s aus n gvn Wall s aus a an C. 7 n, lf kc cs ( s sn kc cs ( s sn s f cs k sn cs k sn quan C ( s C ( s an ln 6 sn
webpage :
Amin Haliloic Mah Eciss E-mail : amin@shkhs wbpa : wwwshkhs/amin MATH EXERISES GRADIENT DIVERGENE URL DEL NABLA OERATOR LALAIAN OERATOR ONTINUITY AND NAVIER-STOKES EQUATIONS VETOR RODUTS I and hn scala
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
Chapter 1 Fundamentals in Elasticity
D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -
Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS
alculus and Diffrnial Equaions pag of 7 ALULUS and DIFFERENTIAL EQUATIONS Th following 55 qusions concrn calculus and diffrnial quaions. In his vrsion of h am, h firs choic is always h corrc on. In h acual
LAPLACE TRANSFORM TABLE
LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf
Chapter 4 : Linear Wire Antenna
Chapt 4 : Lina Wi Antnna nfinitsima Dipo Sma Dipo Finit Lngth Dipo Haf-Wavngth Dipo Lina mnts na o on nfinit Pfct Conductos nfinitsima Dipo Lngth
Probabilistic Image Processing by Extended Gauss-Markov Random Fields
Pobablsc mage Pocessng b Eended Gauss-Makov Random Felds Kauuk anaka Munek asuda Ncolas Mon Gaduae School of nfomaon Scences ohoku Unves Japan and D. M. engon Depamen of Sascs Unves of Glasgow UK 3 Sepembe
A Predator Prey Model with Discrete Time Delay Considering Different Growth Function of Prey
Avancs n Al Mahmacal Boscncs. ISSN 8-998 Volm, Nmb,. -6 Innaonal Rsach Pblcaon Hos h://www.hos.com A Pao P Mol wh Dsc Tm Dla Consng Dffn Gowh Fncon of P M.A. Ha Damn of Al Mahmacs Unvs of Wsn Onao, Lonon,
Reflection Models. Reflection Models
Reflecon Models Today Types of eflecon models The BRDF and eflecance The eflecon equaon Ideal eflecon and efacon Fesnel effec Ideal dffuse Thusday Glossy and specula eflecon models Rough sufaces and mcofaces
21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics
I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized
ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field
L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd
Linear electro-optic effect:
EE6.4686.568 Elcto-optcs Elcto-optc optc ffct: D ρ, B E, t B, D H j, t D ε E P εe K ffct 3 P ε χ E χ E χ E 3..., La lcto-optc ffct: ε ε χ χ E ε E jk, j j jk k k Pockls ffct Wh o E appld, ε ε ε ε x ε 33
UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA) FOR THE CURRENT DISTRIBUTION
UVERSÀ DEG SUD D BOOGA DPAREO D GEGERA EERCA Vl Rogo - 36 BOOGA (AA AAYCA SOUOS FOR HE CURRE DSRBUO A RUHERFORD CABE WH SRADS. F. Bch Ac h gocl o of h ol co coffc og h of Rhfo cl vg. h olo fo h gl l c
ϕ be a scalar field. The gradient is the vector field defined by
Amn Halloc Math Ecss E-mal : amn@sthths bpa : sthths/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I and thn scala
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <
4.2 Differential Equations in Polar Coordinates
Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-
!"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
Chapter 7a. Elements of Elasticity, Thermal Stresses
Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess;
Tutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ
ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ Θρεπτικό διάλυμα Είναι ένα αραιό υδατικό διάλυμα όλων των θρεπτικών στοιχείων που είναι απαραίτητα για τα φυτά, τα οποία βρίσκονται διαλυμένα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama
MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************
Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009
Facudad d Ennharia Transmission ins EECTROMAGNETC ENGNEERNG MAP TEE 8/9 Transmission ins Facudad d Ennharia transmission ins wavuids supportin TEM wavs most common typs para-pat wavuids coaxia wavuids
ON THE MEASUREMENT OF
ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΒΙΟΔΙΑΣΠΩΜΕΝΑ ΠΟΛΥΜΕΡΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΤΣΟΥΓΙΑΝΝΗ ΣΤΥΛΙΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΝΙΚΟΛΑΟΣ
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
Curvilinear Systems of Coordinates
A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Transmission Line Theory
Tansmiss Thy Micwav Engg EE 7 D. Ray Kwk Tansmiss - D. Ray Kwk RF Spctum km mm µm Å Advancd ight Suc Bky ab Tansmiss - D. Ray Kwk RF / Micwav icuit wis GND pt ntwk put suc pt ntwk utput ad Tansmiss - D.
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Ανταλλακτικά για Laptop Toshiba
Ανταλλακτικά για Laptop Toshiba Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000901 Inverter Satellite A10 Series, A10 PSA10L-033X4P F000000902 Inverter
Application of Object Oriented Programming to a Computational Fluid Dynamics
C03- Alicaion of Objec Oiened Pogamming o a Comaional Flid Dnamics 4--inose@aies.dse.ibaaki.ac.j 4--ishigo@ic.ibaaki.ac.j Takashige Inose, Gadae School of Science and Engineeing, Ibaaki Uniesi, 36-85 Jaan
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Εκτέλεση της εντολής1 και στη συνέχεια εκτέλεση της ΕΝΟΤΗΤΑΣ και της εντολής2 όσο η ΣΥΝΘΗΚΗ είναι αληθής.
ΟΙ 3 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ ΣΤΗΝ ΓΛΩΣΣΑ C Η εντολή for: Η γενικευμένη σύνταξη της εντολής είναι: for (εντολή1; ; εντολή2) ΕΝΟΤΗΤΑ Η ΕΝΟΤΗΤΑ μπορεί να είναι μία ή περισσότερες εντολές (block) μέσα
Approximate System Reliability Evaluation
Appoximate Sytem Reliability Evaluation Up MTTF Down 0 MTBF MTTR () Time Fo many engineeing ytem component, MTTF MTBF i.e. failue ate, failue fequency, f Fequency, Duation and Pobability Indice: failue
Ανάκλαση και Διάθλαση Ηλεκτρομαγνητικών Κυμάτων
Ανάκλαση και Διάθλαση Ηλεκτρομαγνητικών Κυμάτων Γιώργος Φικιώρης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ε. Μ. Πολυτεχνείο emal: gf@ece.nua.g Πολλοί τρόποι διάδοσης ηλεκτρομαγνητικών κυμάτων
38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS
DCS Input/Output Relay Card Series STANDARD RACK MODEL 38BXCS MODEL & SUFFIX CODE SELECTION 38BXCS MODEL CONNECTOR Y1 :Yokogawa KS2 cable use Y2 :Yokogawa KS9 cable use Y6 :Yokogawa FA-M3/F3XD32-3N use
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια Συνέχεια ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ mail: info@iliaskosgr wwwiliaskosgr f] g,! R f] g,, f] g
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Lossy Medium EE142. Dr. Ray Kwok
Lssy Mdium EE4 D. Ray Kwk fn: Fundamntals f Engining Eltmagntis, David K. Chng (Addisn-Wsly) Eltmagntis f Engins, Fawwaz T. Ulaby (Pnti Hall) Lssy Mdium - D. Ray Kwk Ohm s Law A E V V El IR ( JA) E Jρ
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
A Lambda Model Characterizing Computational Behaviours of Terms
A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities
EXERCICIOS DE REFORZO: RECTAS E PLANOS
EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto
1. Διατήρηση της Ενέργειας
. Διατήρηση της Ενέργειας Η ολική ενέργεια σε κάθε απομονωμένο σύστημα διατηρείται, οτιδήποτε και να συμβαίνει μέσα στο σύστημα. α) Σε σύγκρουση σωμάτων μεγάλης ελαστικότητας η κινητική ενέργεια διατηρείται.
ΠΑΤΜΑΝΙΔΗΣ PATMANIDIS Δημητρας 15 Ακαδημια Πλάτωνος Αθήνα 10442 Τηλ 2105141807, 2105157906, 2105141132 Φαξ 2105153030.
ΡΟΥΜΠΙΝΕΤΟ AD50 44300-11B00 ΡΟΥΜΠΙΝΕΤΟ AD50 44300-11B00 Κωδικός: 49001001 209000912 ΡΟΥΜΠΙΝΕΤΟ C50 16950-086-000 Κωδικός: 49001002 209000992 ΡΟΥΜΠΙΝΕΤΟ C50 16950-086-000 Κωδικός: 49001003 209000900 ΡΟΥΜΠΙΝΕΤΟ
Fisatech s.r.o., Hlavná 361/53, Z. Teplica, tel.: , BALL JOINTS for HYDRAULIC CYLINDERS
Fisatech s.r.o., Hlavná 361/53, 076 64 Z. Teplica, tel.: 08 1 761, e-mail: info@fisatech.sk www.fisatech.sk BALL JOINT for HYDRAULIC CYLINDER Fisatech s.r.o., Hlavná 361/53, 076 64 Z. Teplica, tel.: 08
ΚΑΤ' ΕΞΟΥΣΙΟΔΟΤΗΣΗ ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. /... ΤΗΣ ΕΠΙΤΡΟΠΗΣ. της 3.5.2013
ΕΥΡΩΠΑΪΚΗ ΕΠΙΤΡΟΠΗ Βρυξέλλες, 3.5.2013 C(2013) 2458 final ΚΑΤ' ΕΞΟΥΣΙΟΔΟΤΗΣΗ ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. /... ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 3.5.2013 που συμπληρώνει την οδηγία 2010/30/ΕΕ του Ευρωπαϊκού Κοινοβουλίου και
μικροκλίμα και υπαίθριοι χώροι
μικροκλίμα και υπαίθριοι χώροι 2Τ141. ΣΥΓΧΡΟΝΕΣ ΘΕΩΡΗΣΕΙΣ ΓΙΑ ΤΟ ΣΧΕΔΙΑΣΜΟ ΕΝΕΡΓΕΙΑΚΩΝ ΚΕΛΥΦΩΝ. 20-05-2014 Βιοκλιματικός σχεδιασμός υπαίθριων χώρων Βιοκλιματικός σχεδιασμός κτιρίων: Έχει στόχο τη δημιουργία
ΚΕΦΑΛΑΙΟ 5 Το Πρόβλημα της Συνάντησης Πολλών Πρακτόρων
k 2 n k n k n n k n k k S S k 2 n O(n) O(k n) O(kn) O( n) ) O(k n) O(n) O( n) O(n) O( k) O(n k) O( k) O( n n n k n k > 2 Ω( n + k) k n n k k n n n/2 S = d 1,..., d k m > 1 j 1 m, j k k S S O(k n) k n k
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
New symmetries of Black-Scholes equation
Proceedngs of he 03 Inernaonal Conference on Appled Mahemacs and Compuaonal Mehods New symmeres of Black-Scholes equaon TSHIDISO MASEBE Tshwane Unversy of Technology Mahs,Scence& Tech Deparmen No Aubrey
A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N
I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i
ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ + 1+ = =
ΚΕΦ. DTFT ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ. Βρείτε το φάσµα δηλ. τον Μετασχ. Fourir ιακριτού Χρόνου (DTFT) για τα επόµενα σήµατα: α) x(n)δ(n)+δ(n-)+δ(n-) β) x(n)δ(n+)-δ(n-) γ) x(n)u(n+)-u(n-4) α) x(n)δ(n)+δ(n-)+δ(n-)
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2
SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin
QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks
QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Έλεγχος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Σχεσιακοί Τελεστές και Ισότητας Ένα πρόγραμμα εκτός από αριθμητικές πράξεις
cunctis laudibus honoranda omni calamitate cunctos cunctis laudibus honoranda omni calamitate cunctos
168 ω (omega) solo solo 1 O ab cunctis laudibus honoranda omni calamitate cunctos l M ter bera solo O ab cunctis laudibus honoranda omni calamitate cunctos l M ter bera solo solo 2 O ab cunctis laudibus
Fundamental Equations of Fluid Mechanics
Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
ΔΙΑΛΕΞΗ 11 Συνδυασμός περιστροφής και στρωμάτωσης (Quasi-geostrophic dynamics in stratified fluids)
ΙΑΛΕΞΗ Συνδυασμός πειστοφής και στωμάτωσης (Qus-eosrophc dnmcs n sred luds) Πειεχόμενα: Qus-eosrophc dnmcs Broclnc ossb wves Broclnc nsbl eulbrum dens surce osclln dens surce
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
Εγκατάσταση ηλιακών συλλεκτών κενού για την πλήρη κάλυψη των αναγκών σε ΖΝΧ, ηλιακή ψύξη με ψύκτη απορρόφησης & υποβοήθηση της θέρμανσης
Αυτοτελές Τμήμα ΕΟΧ Εθνικό Σημείο Επαφής Διαχειριστής Προγράμματος Εγκατάσταση ηλιακών συλλεκτών κενού για την πλήρη κάλυψη των αναγκών σε ΖΝΧ, ηλιακή ψύξη με ψύκτη απορρόφησης & υποβοήθηση της θέρμανσης
ΠΑΝEΠΙΣTΗΜΙΟ ΠΑTΡΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΙΣ ΒΑΣΙΚΕΣ ΙΑΤΡΙΚΕΣ ΕΠΙΣΤΗΜΕΣ
ΠΑΝEΠΙΣTΗΜΙΟ ΠΑTΡΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΙΣ ΒΑΣΙΚΕΣ ΙΑΤΡΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΠΑΘΗΣΕΩΝ ΔΙΑΜΕΣΟΥ ΠΝΕΥΜΟΝΙΚΟΥ ΙΣΤΟΥ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΤΟΜΟΓΡΑΦΙΑ ΜΕΣΩ ΑΛΓΟΡΙΘΜΩΝ ΑΥΤΟΜΑΤΗΣ
14PROC
Β Γ Ω Γ. Β/. Ω Β/ Β. & Γ Θ Ω α. Β/ : α & 2 α.. : 104 37 α φ ί : Γ. π υ φ : 210 52.37.312 FAX : 210 52.36.769 E-mail : d5.b1@1990.syzefxis.gov.gr α 13/05/2014. π.:β5 1074406 2014 14PROC002048988 2014-05-14
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Χρωματογραφία Λεπτής Στιβάδας TLC
Χρωματογραφία Λεπτής Στιβάδας TLC Χρωματογραφία Λεπτής Στιβάδας TLC Εφαρμογές TLC Έλεγχος καθαρότητας μιας ουσίας (ιδιαίτερη εφαρμογή έχει στην ανίχνευση συγγενών ουσιών και αποτελεί μέθοδο που προτείνεται
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Chapter 5 - The Fourier Transform
M. J. Robrs - /7/ Chapr 5 - Th ourir Trasorm Soluios (I his soluio maual, h symbol,, is usd or priodic covoluio bcaus h prrrd symbol which appars i h x is o i h o slcio o h word procssor usd o cra his
Optimized Design of Fully Integrated VCO on Si Based Process
LSI VCO Optimized Desin of Fully Interated VCO on Si Based Proess Nobuyuki Itoh Semiondutor Company, Toshiba Corporation 47-8585 -5-1 -5-1, Kasama, Sakae-ku, Yokohama, 47-8585, Japan Tel: +81-45-890-41,
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
1. Στοιχεία ουσίας /παρασκευάσματος και της επιχείρησης /εταιρείας
1. Στοιχεία ουσίας /παρασκευάσματος και της επιχείρησης /εταιρείας Στοιχεία αναγνώρισης της ουσίας ή του παρασκευάσματος: Εκρηκτική ύλη σε ζελατινώδη μορφή. Είναι παρασκευασμένη κυρίως από Νιτρικό Αμμώνιο,
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 21Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 1 εκεµβρίου 15 Ανάλυση (ή Επιστηµονικοί 1Υπολογισµοί) εκεµβρίου