UNIT 13: TRIGONOMETRIC SERIES
|
|
- Λεωνίδας Μιχαλολιάκος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 UNIT : TRIGONOMETRIC SERIES UNIT STUCTURE. Larg Objctvs. Itroducto. Grgory s Srs.. Gral Thorm o Grgory s Srs. Summato of Trgoomtrc Srs.. CS Mthod.. Srs Basd o Gomtrc or Arthmtco-Gomtrc Srs.. Sum of a Srs of Ss (or Coss) of Agls Arthmtcal Progrsso.. Summato of Srs usg Bomal Srs.. Summato of Srs usg of Epotal Srs..6 Summato of Srs usg Logarthmc Srs ad Grgory s Srs.. Dffrc Mthod. Lt Us Sum Up.6 Aswrs to Chck Your Progrss. Furthr Radg.6 Modl Qustos. LEARNING OBJECTIVES Aftr gog through ths ut, you wll b abl to: kow about Grgory s srs dscrb th summato of trgoomtrc srs.. INTRODUCTION I prvous ut, w dscussd DMovr s Thorm ad ts som mportat dductos. W wll troduc Grgory s srs. Fally, w wll dscuss summato of trgoomtrc srs. Classcal Algbra ad Trgoomtry (Block ) 9
2 Ut Trgoomtrc Srs. GREGORY S SERIES Statmt: If ls wth th closd trval π π.., f, th ta ta ta ta π π,, s Proof: W hav ( ta) ( ) ( s) sc. Now, takg logarthm of both sds, w hav log( ta) log(sc. ) [log(ab) logalogb] logsc log log sc () Now, sc ls btw.., ta s umrcally ot gratr tha. W hav from () π π ad, ta ls btw ad, logsc log( ta ) (By Logarthmc srs (..) ta - ( ta ta ta ) ta (ta ) ta (ta ) to to ta ta ta (ta ) ( ) () Equatg magary part o both sds, w gt ta ta ta () s kow as Grgory s srs. Som Importat Dducto: ) Now w put ta So that ta Th w hav from () () ta whr 0 Classcal Algbra ad Trgoomtry (Block )
3 Trgoomtrc Srs Ut ) W quat th ral parts o both sds of (), w gt logsc ta ta ta Gral Thorm o Grgory s Srs Statmt: If ls btw π π ad π π.., π π π π, th, Proof: W put π ta ta ta π, th π Th gv codto rducs to Hc, ta ta(π ) s ta s sc. π π. Now, takg logarthm log( ta) log(sc. ) π π Θ π π ta(π π ) ta ta π ta ta(π ) log( ta ) ca b padd powrs of ta. log( ta ) ta ta ta ta (ta ta ) (ta ) to ta ta ta (ta ) ( )... log(sc ) Classcal Algbra ad Trgoomtry (Block ) (ta ) Equatg th magary parts o both sds, w hav
4 Ut Trgoomtrc Srs Or, ta ta π ta ta Eampl : Prov that: Soluto: L.H.S ta ta. π ( ) ( ) ( ) ta 6. π 6 π R.H.S Eampl : Sum th srs )... ).. Soluto: ) Th gv srs ) ( ) ( ) ( ) ta (By Grgory s srs ) Th gv srs..... Classcal Algbra ad Trgoomtry (Block )
5 Trgoomtrc Srs Ut ( ) ( ) ( ) (Grgory s srs)... ta Eampl : Prov that: π Soluto: R.H.S, ( π ). π ta ta (Grgory s srs) ta ta ta 9 ta ta. ta π R.H.S Eampl : Prov that π 8 ( ).9 Soluto: Th th trm of th srs s gv by ( ) T.9 ( ). Classcal Algbra ad Trgoomtry (Block )
6 Ut Trgoomtrc Srs T, T, T T Hc,, ad so o. S T T T T..... ta ta ta ta. ta ta ta ta. π L.H.S CHECK YOUR PROGRESS Q.: Prov that: Q.: Prov that: π Q.: Q.: π Prov that:.. ta If ls btw 0 ad π, prov that ta ta ta 6 ta 0 Classcal Algbra ad Trgoomtry (Block )
7 Trgoomtrc Srs Ut. SUMMATION OF TRIGONOMETRICAL SERIES Hr, w shall dscuss mportat mthods for summg up trgoomtrc srs whch may b ft or ft. Thr ar two mportat mthods for summato. Ths ar (a) mthod... C S Mthod Cosdr th srs: ad 0,a, a C C S mthod, (b) th dffrc a0 a ( β) a ( β) () S a0 s a s( β) a s( β) () Th abov srs may b ft or ft.th coffcts a... ad, β,... may b ay umbrs ral or compl. I th srs (), w hav trms whch cota s of umbrs.it s calld srs ad ts sum s dotd by C. Th srs () cotas ss of umbrs.it s calld s srs ad ts sum s dotd by S. C a Now, usg Eulr,s Thorm S a0( s) a[ ( β) s( β) ] [ ( β) s( β) ] ( β) ( β) a a a () C a 0 S a0( s) a[ ( β) s( β) ] [ ( β) s( β) ] ( β) ( β) a a a () 0 From th srs () ad (),w us C [(C S) (C S) ] ad S [(C S) (C S) ] to fd th valus of C ad S rspctvly. Classcal Algbra ad Trgoomtry (Block )
8 Ut Trgoomtrc Srs.. Srs Basd o Gomtrc or Arthmtco- Gomtrc Srs Sum of trms G.P a ar ar r a r or ar... ar r a r Sum of th ft Gomtrc srs: a ar ar ar... ar accordg as r < or r >. a, f r <.., < r <. r ar.. Sum of a Srs of Ss(or Coss) of Agls Lt Arthmtcal Progrsso { ( β} S s s( β) s( β) s( β) s ) W assum that, { ( β} C ( β) ( β) ( β) ) So, C S ( s) { ( β) s( β) } { ( β) s( β) } [ { ( ) β} s{ ( β} ] ) ( β) ( β) { β β ()β } β β β β. β β ( β ) ( β) β ( β β ( ) ) ( β) β { () β} { () β} { () β} ( s) { ( β) s( β) } { ( β) s( β) } [ { ( ) β} s{ ( ) β} ] ( β) 6 Classcal Algbra ad Trgoomtry (Block )
9 Trgoomtrc Srs Ut [ ( β) ( β) { () β} ] [ s s( β) s( β) s{ () β} ] ( β Equatg ral ad magary parts, w gt ( β) ( β) C ( β) ( β ) { ( ) β} [ { ( ) β} ] { ( β) ( β) } ( β) β β β β β s β β β β s β β β.s s β s β βs β s s s( β) s( β) s{ ( ) β} ad S ( β) [ s s{ ( ) β} ] { s( β) s( β) } ( β) s β β s β β β s s β β β β s Classcal Algbra ad Trgoomtry (Block )
10 Ut Trgoomtrc Srs β β s β.s s β s β s βs β s Hc, s s( β) s ( β) { ( ) β} { ( ) β} β s β s β s β β s β s () () Partcular cas (): Puttg β () ad (), w gt s s s s s s s ad s π β ) If β, th s sπ 0 () ad (), π π th, s s s to trms 0 ad π π to trms 0 Eampl : Sum to trms of th srs s s( β) s( β) s( β) Soluto: Lt S s s( β) s( β) s( β) to trms s s( π β) s(π β) s(π β) to trms 8 Classcal Algbra ad Trgoomtry (Block )
11 Trgoomtrc Srs Ut - s π β s s ( π β) s ( π β) ( -)( π β) ( π β) s β Eampl : Sum to trms of th srs: s s ( β) s ( β) Soluto: S s s ( β) s ( β) to trms - - ( β) - ( β) to trms ( to trms).β.s.β. s β. [ ( β) ( β) to trms] { (. ) β}.s( β) sβ Eampl : Sum th srs: to trms Soluto: C... to trms. Now, s s s S to trms ( s) ( s) ( s) C S sc ( sc ) sc sc ( sc )( sc ) ( sc )( sc ) sc to trms to trms Classcal Algbra ad Trgoomtry (Block ) 9
12 Ut Trgoomtrc Srs sc sc sc () sc sc sc sc ( ) sc sc sc ( sc ) () () sc sc sc sc sc sc ta sc sc [ ( ) s( ) ] sc ( s) sc( s) ta ( ) sc sc sc ta Equatg ral parts o both sds,w gt sc C sc sc sc sc s( ) sc s sc ta ( ) sc sc ta ( ) sc ta ( ) sc ta sc s ta [ ( ) ] ta ss ta CHECK YOUR PROGRESS Q.: Sum th srs: a) s s s to trms b) ( β) ( β) to trms c) to trms d) s s s to trms ) to trms 0 Classcal Algbra ad Trgoomtry (Block )
13 Trgoomtrc Srs Ut.. Summato of Srs usg Bomal Srs W should rmmbr th followg formula : ) Wh s a postv tgr ad,a ar ay compl umbr, ) w hav ( )! ( a) a ( )! ( a) a ( )! a a a ( )( )! ( ) a ( ) ( )! ( )( )! ( ) Wh s ay ratoal d ad s a compl umbr such that <, w hav ( ) ( ) ( ) ( )! ( )! ( )! ( )( )! ( )( )! ( )( )! ( ) Also, ( ) ( ) ad ( ) ( ) Eampl : Sum th Srs: Soluto: Lt Now, S s s s s.... s to. C to. Th, usg Boomal Thorm s to Classcal Algbra ad Trgoomtry (Block )
14 Ut Trgoomtrc Srs C S.. ( s) ( s) ( s) to ε [ ].... to to ( s)[ s s] ( s) ( s ) (s ) π π ( s ) ( s) s π π ( s ) ( s) s π π ( s ) s (Sc ( s)( φ sφ) ( φ) s( φ) ) π π ( s ) s Equatg th magary parts o both sds,w gt π ( s ) s S Eampl : Sum th srs Soluto: Lt Th, C S s s s C S...6 ( s) ( s) ( s ) Classcal Algbra ad Trgoomtry (Block )
15 Trgoomtrc Srs Ut... whr...6 ( ) ( ) ( s) s s s [By D Movr s Thorm] Equatg ral parts, w gt C.. Summato of Srs usg of Epotal Srs Th followg srs ar frqutly usd. )!! ) ) v)!! s!!!! Classcal Algbra ad Trgoomtry (Block )
16 Ut Trgoomtrc Srs v) sh!! v) h!! Eampl : Sum th Srs Soluto: Lt ad Th, C S β C β S sβ β! β! sβ! (β sβ)! β! β! sβ! (β sβ)! ( β sβ) β β β β ( β s β).! s β β! β { ( sβ) s( c sβ) } Equatg ral parts o both sds, w gt C β ( sβ) Eampl : Fd th sum of th srs Soluto: Lt ad c c!! c c C!! c c S s s!! c! Th C S ( s) ( s) c! c! ( ) h c { ( ) } h c s c! Classcal Algbra ad Trgoomtry (Block )
17 Trgoomtrc Srs Ut { c( s) } ( c c s) h( c ) ( c s) sh( c ) s( c s) Equatg ral parts, w gt C h( c ) ( c s)..6 Summato of srs usg Logarthmc srs ad Grgory s srs ) log( ) ) log( ) ) ta whr Eampl: Sum th Srs: ) ) s s s Soluto: Lt th srs () ad () b dotd by C ad S rspctvly.. C ad S s s s Th C S ( s) ( s) ( s ) log( ) by Logarthmc srs log( s) log ( { ) s } ta s s log( s ) ta Classcal Algbra ad Trgoomtry (Block )
18 Ut Trgoomtrc Srs log log ( ) ta s { ( ) } ta ta log. ta log. log. ta ta ta Equatg ral ad magary parts, w gt C log.. ) log ad. ) s s s S CHECK YOUR PROGRESS Q.6: Sum th srs:! ) ( β) ( β) ) ) v) β β!! s s s.. Dffrc Mthod 6 I ordr to sum a srs,somtms t s covt to splt up ach trm as th dffrc of two prssos such that o prsso of ach dffrc occurs succdg wth a oppost Classcal Algbra ad Trgoomtry (Block )
19 Trgoomtrc Srs Ut sg. Th splttg s do such a way that wh all th trms of th srs ar addd togthr, th compot trms cacl pars. Fally w ar lft wth two trms, o from th frst trm ad o from last trm. Suppos, w hav to fd th sum of u u u u Frst w wrt f( ) f() () u From () puttg u u u,,,...,, w gt f() f() f() f() f() f() u f( ) f() Addg vrtcally, w gt u u u u f( ) f() (sc all th trmdat trms cacl pars) Eampl: Sum th srs to trms ta Soluto: Hr T ta ta ta ta ta ta ( ) ( ) ( ) ta () Now, T ta ta T T ta ta ta ta T ta Addg, w gt ( ) ta Eampl : Sum th srs: Θ ta () ta ta y ta ( ) y y S T T T T ta ( ) ta ssc ssc s sc to trms Classcal Algbra ad Trgoomtry (Block )
20 Ut Trgoomtrc Srs Soluto: W hav s s ssc. T s s( ) s s ta [ ta ] Smlarly, T [ ta ta] [ ta ta ] T [ ta ta ] T [ ta ta ] T Addg ths,w hav th rqurd sum S T T T T [ ta ] ta, othr trms cacllg ach othr. CHECK YOUR PROGRESS Q.: Sum th srs to trms by Dffrc Mthod. a) ta ta ta ta 9 6 ( ) b) ss s s s s c) tata ta ta ta ta 8 Classcal Algbra ad Trgoomtry (Block )
21 Trgoomtrc Srs Ut. LET US SUM UP If ls wth th closd trval th srs ta ta ta π π,,.., f ta π π, th s calld Grgory s srs.w also drv mportat rsults from Grgory s srs. W dscuss mportat mthods for summg up trgoomtrc srs whch may b ft or ft.thr ar two mportat mthods for summato.ths ar (a) C S mthod (b) Th dffrc mthod..6 ANSWERS TO CHECK YOUR PROGRESS As. to Q. No. : W hav ta.. π π 8 As. to Q. No. : From R.H.S, Classcal Algbra ad Trgoomtry (Block ) 9
22 Ut Trgoomtrc Srs ta ta (By Grgory s srs ) ta ta ta ( ) ta 9 ta ta. π Th L.H.S As. to Q. No. : L.H.S - ad.f.. ad.f.. ta By Grgory, s srs bcaus <. R.H.S As to Q No : W hav - ta ta s ta ta () π Sc ls btw 0 ad π ls btw ad,so that ta <. - ta ta π Sc ls btw 0 ad s ta π ls btw ad,so that ta ta <. 60 Classcal Algbra ad Trgoomtry (Block )
23 Trgoomtrc Srs Ut Thrfor, ta ta ca b padd by Grgory s srs. ta ta ta ta 6 0 ta - ta ta - Hc, from () ad (), w hav ta () - ta ta As. to Q. No. : a) Lt S b) Lt S - ta 6 ta 0 - Hc provd. s s s s 6 () s s ( ) sc ( 6 ) ( ( β) ( β) ( β) ) ( ) {( ( β) } { ( β) } { ( ( } ) [ ( β) ( β) ( ( ) ] ( ) β (β) s β s ( ( ) β)sβ cβ c) Lt S ( ) ( ) ( 6) ( ) Classcal Algbra ad Trgoomtry (Block ) 6
24 Ut Trgoomtrc Srs [ 6 ] () s s d) Try yourslf Lt S ( ) s s s ) Try yourslf Lt S s s ( ) s s s ( s s s ) s s As. to Q. No. 6: ) Lt C ( β) ( β)!! ad S s s( β) s( β) th C S! ( s) [ ( β) s( β) ] [ ( β) s( β) ]! ( β) ( β) β. ( ). β β ( β s β) β.! ( s β) β [ ( sβ) s( sβ) ] Equatg ral parts o both sds, β w gt C.( sβ) ths s a potal srs 6 Classcal Algbra ad Trgoomtry (Block )
25 Trgoomtrc Srs Ut C S C S ) Lt C β β ) S sβ sβ s ( β sβ) ( β sβ) ( β sβ) Lt β β β ( s) ( β) s S s ( β) ( β) s( β)! C!!! ( β) ( β)! [ ( β) s( β) ] [ ( β) s( β) ] ( β)! β!!! ( β) β β ( ) By srs ( s) (β sβ) ( s)[ (β)(sβ) s(β)s(sβ) ] ( s)[ (β)h(sβ) s(β)sh(sβ) ] ( s)[ (β)h(sβ) s(β)sh(sβ) ] ( β)h(sβ) s( β)sh(sβ) ( β)h(sβ) s( β)sh(sβ) s ( β)h(sβ) s s(β)sh(sβ) [ (β)h(sβ) s s(β)sh(sβ) ] Equatg magary parts, w gt S s ( β)h(s β) s( β)sh(s β) ) Lt C!! ad S s s s!! Classcal Algbra ad Trgoomtry (Block ) 6!
26 Ut Trgoomtrc Srs! Th ( ) ( ) ( s) C S ( ) s! ( s ). s! s! By potal srs [ ( s) s( s) ] ( ) s s ( s ) Equatg th ral parts o both sds,w gt C ( s) v) Lt S s s s ad C Th C S ( s) ( s) ( s) log ( ) ( ) log s log ( ) ( s) By Logarthmc srs ta Equatg magary parts, w gt S ta As. to Q. No. : a) Hr Puttg s (Sparatg ral ad magary parts) s (cpt wh ),,,..., T ta T ta T ta ta ( ) ta ta ta ta ta ( ) ( ) ta, w hav ( ) 6 Classcal Algbra ad Trgoomtry (Block )
27 Trgoomtrc Srs Ut T ta ta T ta ( ) ta Addg, w gt th rqurd sum to trms S T T T T ta ( ) ta ( ) ta ta b) Hr, ss.ss T T [ ] s s.s s [ ] T T Addg up th abov rlatos, w th rqurd sum S T T T T d) Try yourslf. R qurd sum ta ta. FURTHER READING ) Durll, C. V. ad Robso, A; Advacd Trgoomtry. ) J. Smth, Karl; Esstals of Trgoomtry. ) N. Aufma, Rchard, C. Barkar, Vro & D. Nato, Rchard; Collg Algbra. Classcal Algbra ad Trgoomtry (Block ) 6
28 Ut Trgoomtrc Srs.8 MODEL QUESTIONS Q.: Fd th sum of th followg srs:! a) s s( β) s( β) b) s. s s c) s s s d) ) 9 - f) ta ta ta to trms 9 g) - ta ta ta ta 9 9 *** ***** *** 66 Classcal Algbra ad Trgoomtry (Block )
29 REFERENCES ) Bal, N. P.; Trgoomtry, for B.A/B.Sc. Classs (st Edto), Nw Dlh: Lam Publcato (P) Ltd. ) Ksha, Har (00); Trgoomtry; (st Edto), Nw Dlh: Atlatc Publshrs. ) Lpschtz, Symour; Lar Algbra: Schum Solvd Problms Srs; Tata McGraw Hll. ) Mapa, S. K.; Hghr Algbra (Classcal). ) Ray, M. & Sharma, H. S.; A Tt Book of Hghr Algbra. 6) Vasstha, A.R. & Sharma, S. K.; Trgoomtry. ) Vasstha, A. R.; Matrcs; Mrut: Krsha Prakasha Madr. Classcal Algbra ad Trgoomtry (Block ) 6
Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I
Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o
EGR 544 Communication Theory
EGR 544 Commucato hory 8. Spctral charactrstcs of Dgtally Modulats Sgals Z. Alyazcoglu Elctrcal ad Computr Egrg Dpartmt Cal Poly Pomoa Spctral charactrstcs of Dgtally Modulats Sgals Spctral charactrstcs
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2
Journal of Rlablty and Statstcal Studs; ISSN (Prnt: 0974-804, (Onln: 9-5666 Vol. 0, Issu (07: 79-0 A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND- G.S. Davd Sam
i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
General theorems of Optical Imaging systems
Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
Transparency and liquidity in securities markets*
Trasarcy ad lqudty scurts marts Taash U Isttut for Motary ad Ecoomc Studs Ba of Jaa (E-mal: taashu@bojorj Abstract Ths ar rods a framwor whch dals wth arous tys of trasarcy cocr th comosto of ordr flow
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
LAPLACE TRANSFORM TABLE
LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error
onvcton rvtvs brry 7, nt Volm Mtho or onvcton rvtvs Lrry rtto Mchncl ngnrng 69 omttonl l ynmcs brry 7, Otln Rv nmrcl nlyss bscs oncl rslts or son th sorc nlyss Introc nt-volm mtho or convcton Not n or
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών
Rlativ Valuatio Αρτίκης Γ. Παναγιώτης Rlativ Valuatio Rlativ Valuatio Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Ø Επιλογή οµοειδών επιχειρήσεων σε όρους κινδύνου, ανάπτυξης
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師
A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field
L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS
alculus and Diffrnial Equaions pag of 7 ALULUS and DIFFERENTIAL EQUATIONS Th following 55 qusions concrn calculus and diffrnial quaions. In his vrsion of h am, h firs choic is always h corrc on. In h acual
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Appendix A. Stability of the logistic semi-discrete model.
Ecological Archiv E89-7-A Elizava Pachpky, Rogr M. Nib, and William W. Murdoch. 8. Bwn dicr and coninuou: conumr-rourc dynamic wih ynchronizd rproducion. Ecology 89:8-88. Appndix A. Sabiliy of h logiic
Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes
Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII
3.1. DIRAC EQUATION SUMMARY AND NOTATION April, 015 Lctur XXXIII Rlativsitic Quantum Mchanics 3.1 Dirac Equation Summary and notation W found that th two componnt spinors transform according to A = ± σ
PULLEYS 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS. Groove dimensions and tolerances for Hi-Power PowerBand according to RMA engineering standards
1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS Figur 3 - Groov dimnsion nomnclatur or V-blts α go lp b Ectiv diamtr Datum diamtr d Tabl No. 1 - Groov dimnsions and tolrancs or Hi-Powr PowrBand according to
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Examples of Cost and Production Functions
Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
The Multi-Soliton Solutions to The KdV Equation by Hirota Method
Progrss Appld Mhcs Vol. 8, o., 4, pp. -5 OI:.968/69 ISS 95-5X [Pr] ISS 95-58 [Ol].cscd..cscd.org Th Mul-Solo Soluos o Th KdV Equo y Hro Mhod MA L [],* [] pr of Mhcs Sccs, zhou Uvrsy, zhou, Ch. *Corrspodg
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα
[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION
SARAJEVO JOURNAL OF MATHEMATICS Vol1 (5), No, (016), 05 15 DOI: 105644/SJM107 NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION WENCHANG CHU AND NADIA N LI Abstract By meas of two ad three term relatos
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
Περισσότερα+για+τις+στροφές+
ΤεχνολογικόEκπαιδευτικόΊδρυμαKρήτης Ρομποτική «Τοπικήπαραμετροποίησηπινάκωνστροφής,γωνίεςEuler, πίνακαςστροφήςγύρωαπόισοδύναμοάξονα» Δρ.ΦασουλάςΓιάννης 1 Περισσότεραγιατιςστροφές ΗστροφήενόςΣΣμπορείνααντιστοιχηθείσεένα
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION. Zhihao Ge
Mathmatical and Computational Applications, Vol. 5, No. 5, pp. 76-767, 00. Association for Scintific Rsarch DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION Zhihao G Institut of Applid Mathmatics
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Chapter 3 Prior Information
Chatr Pror Iorato Subjtv Dtrato o th Pror Dst Svral usul aroah a b us to tr th ror st Th ar th hstogra aroah th rlatv llhoo aroah athg a gv utoal or 4 CDF trato () Th hstogra aroah Dv th aratr sa to trvals
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS
Differentiation of Trigonometric Functions MODULE - V DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Trigonometry is the branch of Mathematics that has mae itself inispensable for other branches of higher
Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook
Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Βήμα 1: Step 1: Βρείτε το βιβλίο που θα θέλατε να αγοράσετε και πατήστε Add to Cart, για να το προσθέσετε στο καλάθι σας. Αυτόματα θα
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Φυγόκεντρος αποθήκευσης Κανονική n 1k Αγωγή n 2k
Άσκηση 3. Τα παρακάτω δεδομένα δίνουν το πλήθος y των φυτών που διατήρησαν μια ιδιότητα όταν n φυτά βρέθηκαν κάτω από διαφορετικές συνθήκες. Ένας ποιοτικός παράγοντας (αγωγή) ήταν η αποθήκευση σε θερμοκρασία
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Modbus basic setup notes for IO-Link AL1xxx Master Block
n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
ΕΛΤΙΟ Ε ΟΜΕΝΩΝ ΑΣΦΑΛΕΙΑΣ
ΕΛΤΙΟ Ε ΟΜΕΝΩΝ ΑΣΦΑΛΕΙΑΣ ΤΜΗΜΑ 1: Ταυτοποίηση ουσίας/παρασκευάσματος και εταιρείας/επιχείρησης 1.1. Αναγνωριστικός κωδικός προϊόντος Όνομα της ουσίας Πολυβινυλική ακετάλη Εμπορική ονομασία της ουσίας Αριθμός
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
ECON 381 SC ASSIGNMENT 2
ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi
NSW BOS Mhics Esio Soluios 8 F dowlod d pi fo wwwiuco Do o phoocopy opyigh 8 iuco Q L u 5 d ( ) c u u 5 Q Qc ( ) ( ) d 5 u d c d d l c d [ ] [ ] ( ) d l ( ) l l Qd L u fo > ( ) u d Wh u ; wh u d d ( u