HMY 220: Σήματα και Συστήματα Ι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "HMY 220: Σήματα και Συστήματα Ι"

Transcript

1 HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #7 Μοντέλα διαφορικών εξισώσεων για ΓΧΑ Συστήματα Επίλυση Διαφορικών Εξισώσεων Η γραμμική διαφορική εξίσωση δεύτερης τάξης Παραδείγματα

2 Μοντέλα διαφορικών εξισώσεων (Differeial equaio models) Πολύ συχνά τα ΓΧΑ μοντελοποιούνται με συνήθεις γραμμικές διαφορικές εξισώσεις ς( (liear ordiary differeial equaios) )με σταθερούς συντελεστές Παράδειγμα: x() y() S dy () d ay () = bx () Συνήθης: όχι μερικές παράγωγοι Γραμμική: όχι εξάρτηση η από (dy()/d) ) κλπ. Πρώτης τάξης: Διαφορικά πρώτης τάξης μόνο Σταθεροί συντελεστές

3 Μοντέλα διαφορικών εξισώσεων (Differeial equaio models) Ερώτηση: Η αναπαράσταση αυτή είναι γραμμική και χρονικά αμετάβλητη; Ναι, όταν το σύστημα βρίσκεται αρχικά σε ηρεμία, δηλ. η είσοδος και έξοδος είναι μηδενικές για < 0 όπου 0 κάποια χρονική στιγμή dy1() dy() ay1() = bx1(), ay() = bx() d d Γραμμική: ή Έστω x1 () = y1 () = 0, < 1 x () = y () = 0, < d ( a 1 y 1 ( ) + a y ( )) a ( a 1 y 1 ( ) + a y ( )) = b ( a 1 x 1 ( ) + a x ( )) d dy1() dy() a1( ay1( ) bx1( )) + a( ay( ) bx( )) = 0 y1( ) + y( ) = 0, < mi( 1, ) d d Χρονικά αμετάβλητη: dy() ay( ) = bx ( ) x ( ) = y( ) = 0, < d dy( 0) ay( ) = bx( ) y ( ) = y( ) = 0, < + d

4 Μοντέλα διαφορικών εξισώσεων Παραδείγματα: Κύκλωμα RC i() Va() x(), vc() y() x() = Ri() + y() dy() i () = C d dy() RC + y() = x() d Γραμμική διαφορική εξίσωση πρώτης τάξης

5 Μοντέλα διαφορικών εξισώσεων Κύκλωμα RLC V () x (),() i y() dy () 1 Ry () + L + y ( τ ) d τ = x () d C () () 1 () L d y + R dy + y() = dx d d C d Γραμμική διαφορική εξίσωση δεύτερης τάξης

6 Μοντέλα διαφορικών εξισώσεων Μηχανικό σύστημα f () x(), y() d y () Fo () = m d dy () d y () x () r ky () M d = d d y() dy() M + r + ky() = x() d d

7 Μοντέλα διαφορικών εξισώσεων Γενική μορφή: Συνήθης γραμμική διαφορική εξίσωση τάξης με σταθερούς συντελεστές m d y() dy() d x() dx() a a1 + a0y( ) = bm b1 + b0x( ) m d d d d k m k d y () d x () ak = b k k k k= 0 d k= 0 d 1 dy d y d y με αρχικές συνθήκες: y(0), (0), (0),..., (0) 1 d d d Γενικά για τη λύση μιας διαφορικής εξίσωσης τάξης απαιτούνται αρχικές συνθήκες

8 Εξισώσεις διαφορών (Differece equaios) Σε διακριτό χρόνο: a y [ k ] + a y [ k + 1] a y [ k ] = b x [ k m ] b 1 0 m 0 a y[ k l] = b x[ k l] m k l= 0 l= 0 k με αρχικές συνθήκες y[ 1],y[ ], y[ ]. Για την επίλυση μιας εξίσωσης διαφορών τάξης απαιτούνται επίσης αρχικές συνθήκες.

9 Επίλυση διαφορικών εξισώσεων Η Ηγενική ήλύση της m d y() dy() d x() dx() a a1 + a0y( ) = bm b1 + b0x( ) m d d d d έχει τη μορφή: y () = y () + y () y () H H P Λύση ομογενούς διαφορικής εξίσωσης (homogeeous soluio) Φυσική απόκριση (aural respose) k = 0 a k k d yh k d () = 0 y () P Μερική λύση (paricular soluio) της εξίσωσης Βεβιασμένη απόκριση (Forced respose) Η συνολική λύση πρέπει να ικανοποιεί τις δοθείσες αρχικές συνθήκες

10 Επίλυση διαφορικών εξισώσεων m d y() dy() d x() dx() a a1 + a0y( ) = bm b1 + b0x( ) m d d d d Ειδικά στην περίπτωση ΓΧΑ συστημάτων, συχνά φέρνουμε τη λύση στη μορφή: y () = y ZI () + y ZS () yzi () Απόκριση μηδενικής εισόδου (zero ipu respose): Λύση ομογενούς διαφορικής εξίσωσης, η οποία επιπλέον ικανοποιεί τις δοθείσες αρχικές συνθήκες, δηλ. yzs () y ZI dyzi (0) dy(0) (0) = y(0), =,... d d Απόκριση μηδενικής κατάστασης (zero sae respose): Μερική λύση της εξίσωσης η οποία επιπλέον ικανοποιεί μηδενικές αρχικές συνθήκες, δηλ. y ZS dyzs (0) (0) = 0, = 0,... d

11 Επίλυση διαφορικών εξισώσεων a k m k d y() d x() = bk k d k k k= 0 d k= 0 Ισοδύναμα x () y () y () = y () + y () 1 dy d y d y 1 d d d () y(0), (0), (0),..., (0) ΓΧΑ ZI x() = 0 ZS ΓΧΑ y (0) y(0) y ZI x() + ΓΧΑ yzs () y (0) = 0

12 Η γραμμική διαφορική εξίσωση δεύτερης τάξης d y () dy () 1 0 a + a + a y() = x() d d dy με αρχικές συνθήκες y(0), (0) d Ομογενής εξίσωση: d y() dy() a + a1 + a0y() = 0 d d Θα αναζητήσουμε λύσεις της μορφής: y = Ce λ H () Αντικαθιστώντας: Ca ( λ + a1λ+ a0) e λ = 0 Επομένως: Χαρακτηριστική εξίσωση ή aλ + a1λ+ a0 = 0 Χαρακτηριστικό πολυώνυμο Διακρίνουσα: Δ= a 4a a 1 0

13 Η γραμμική διαφορική εξίσωση δεύτερης τάξης d y () dy () d 1 0 () 0 y dy a + a + a y = (0), (0) d d d a λ + a λ + a = Ρίζες χαρακηριστικού πολυωνύμου Λύση ομογενούς εξίσωσης Δ>0 Δύο πραγματικές άνισες ρίζες ρζ λ 1, λ a1 ± Δ λ1, = a Δ=0 Μια πραγματική ρίζα πολλαπλότητας a1 λ1 = λ = λ = a Δ<0, Δύο άνισες μιγαδικές ρίζες λ 1, λ α 1 0 a1 ± j Δ λ1, = = σ ± jω a y () = Ce + C e H λ 1 λ 1 y () = Ce + C e H λ 1 λ σ y H () = e [ C cos( ω ) + C si( ω)] H 1 Δ<0, α 1 =0 Δύο φανταστικές ρίζες ± j Δ λ1, = =± jω a y () = C cos( ω ) + C si( ω ) H 1

14 0.5 Η γραμμική διαφορική εξίσωση δεύτερης τάξης 1 σ < 0 e - cos(10) e - -e - σ y () = e cos( ω ) H e cos(10) e -e σ > με απόσβεση (uderdamped) σ = 0 cos(10) ασταθές (overdamped). λ1 ω. λ χωρίς απόσβεση (criically damped). λ λ σ<0 σ>0. λ σ

15 Η γραμμική διαφορική εξίσωση δεύτερης τάξης d y () dy () 1 0 a + a + a y() = 0 d d dy Οι σταθερές C 1 και C υπολογίζονται από τις αρχικές συνθήκες y (0), (0) d π.χ. για πραγματικές ρίζες της χαρακτηριστικής εξίσωσης και x()=0: y () Ce Ce λ 1 λ = + 1 C1+ C = y(0) C dy d 1λ1+ Cλ = (0) Η εύρεση της μερικής λύσης yp () μπορεί να γίνει με διάφορους τρόπους, από τους οποίους ο πιο απλός είναι η μέθοδος των προδιοριστέων συντελεστών (mehod of udeermied coefficies), σύμφωνα με την οποία η μερική λύση προσδιορίζεται ανάλογα με τη μορφή της συνάρτησης εξαναγκασμού/ εισόδου x(): Π.χ. για x()=k, ψάχνουμε επίσης για μερικές λύσεις της μορφής y P ()=C 3

16 Η γραμμική διαφορική εξίσωση δεύτερης τάξης d y () dy () 1 0 a + a + a y () = x () d d Μορφή εισόδου Μορφή μερικής λύσης x()=k y P ()=C 3 x()=βe α x()=βcos(ω) y P ()=C 3 e α y P ()=C 3 cos(ω)+c 4 si(ω) x()=β k k +β k 1 k 1 + +β 0 y P ()=C k+ k +C k+1 k 1 + +C 3 όταν α 0 μη μηδενικό, αλλιώς y ()=(C k +C k 1 P (C k+ k+1 + +C C 3 ) x()=(β k k +β k 1 k 1 + +β 0 )e α x()=(β k k +β k 1 k 1 + +β 0 ) cos(ω) y P ()=(C k+ k +C k+1 k 1 + +C 3 )e α όταν α 0 μη μηδενικό αλλιώς y P()=(C k+ k +C k+1 k 1 + +C 3)e α y P ()=(C k+ k +C k+1 k 1 + +C 3 )cos(ω) όταν α 0 μη μηδενικό αλλιώς y P ()=(C k+ k +C k+1 k 1 + +C 3 ) cos(ω)

17 Παράδειγμα i() Κύκλωμα RC dy() RC + y() = x(), d R= 1 Ω, C = 1 F, x () = cos( () ), y (0) = V V () x (), v () y () dy() Ομογενής εξίσωση: + y () = 0 d Χαρακτηριστικό πολυώνυμο: λ + 1= 0 Γενικά, υπάρχουν δύο τρόποι λύσης: Α τρόπος: Αν μας ενδιαφέρει μόνο η συνολική ήλύ λύση y() Λύση ομογενούς εξίσωσης: y () = Ce Μερική λύση: = P = 1 + H x () cos() y C cos() C si() dyp () = C1si( ) + Ccos( ) d Αντικαθιστώντας: C si( ) + C cos( ) + C cos( ) + C si( ) = cos( ) ( C + C )cos( ) + ( C C )si( ) = cos( ) a C

18 Παράδειγμα i() C + 1 C = 1 C = 1 C = C C1 = y P () = cos( () + si( () Συνολική λύση y () = y H () + y P () = Ce + cos( () + si( () V () x (), v () y () Η συνολική λύση πρέπει να ικανοποιεί τις αρχικές συνθήκες, άρα 1 3 y(0) = C+ = C = y() = e + cos() + si() a C

19 Παράδειγμα i() Β τρόπος: Αν μας ενδιαφέρει η απόκριση μηδενικής εισόδου και μηδενικής κατάστασης Απόκριση μηδενικής εισόδου: V () x (), v () y () Λύση ομογενούς η οποία ικανοποιεί τις αρχικές συνθήκες, άρα: dyzi () + yzi () = 0 yzi () = Ce d yzi (0) = C = Απόκριση μηδενικής κατάστασης: Βρίσκουμε τη μερική ήλύση όπως πριν, δηλ: 1 1 y P () = cos( () + si( () Η απόκριση μηδενικής κατάστασης πρέπει να ικανοποιεί μηδενικές αρχικές συνθήκες. Για να συμβεί αυτό, τη γράφουμε ως γραμμικό συνδυασμό της μερικής λύσης και της ομογενούς: 1 1 yzs () = cos() + si() + De a C

20 1 1 yzs (0) = 0 + D= 0 D= Συνολική λύση y () = yzi () + yzs () = e + cos() + si() e = cos() + si() + e Ίδιο αποτέλεσμα με πριν! Ικανοποιεί τις αρχικές συνθήκες. >> =0:0.01:0; >> y_zi=*exp(-); >> y_zs=0.5*cos()+0.5*si()-0.5*exp(-); >> plo (,y_zi,'b',,y_zs,'r',,y_zi+y_zs,'k'); >> leged ('y_z_i()','y_z_s()','y()');

h(t) δ(t+3) ( ) h(t)*δ(t)

h(t) δ(t+3) ( ) h(t)*δ(t) f()* δ ( ) = f( ) x () = δ ( + 3) = 3 h () = u () u ( ) h()* δ ( + 3) = h ( + 3) = u ( + 3) u ( + 1) 1 h() * -3 δ(+3) ( ) h()*δ() 1-3 -1 MY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #6 Μοντέλα διαφορικών εξισώσεων

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα : Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Συστήματα Διακριτού Χρόνου Εξισώσεις Διαφορών Επίλυση Εξισώσεων Διαφορών με Γραμμικούς Συντελεστές

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 2: Συστήματα διακριτού χρόνου Συστήματα διακριτού χρόνου Σύστημα διακριτού χρόνου: Μετασχηματισμός Τ που μετατρέπει το σήμα εισόδου x[] στο σήμα

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΜΑΣ 3: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 4 ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

Μάθημα: Θεωρία Δικτύων

Μάθημα: Θεωρία Δικτύων Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 5ο Εξάμηνο Μάθημα: Θεωρία Δικτύων Ανάλυση Ευσταθείας Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

Σήματα- συμβολισμοί. x(n)={x(n)}={,x(-1),x(0), x(1),.} x(n)={0,-2,-3, -1, 0, 1, 2, 3, 4,0 }

Σήματα- συμβολισμοί. x(n)={x(n)}={,x(-1),x(0), x(1),.} x(n)={0,-2,-3, -1, 0, 1, 2, 3, 4,0 } ΚΕΦΑΛΑΙΟ 2 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 1 1-1 -4-3 -2-1 1 2 3 4 5-1 1 2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-1),x(), x(1),. x()={,-2,-3,-1,, 1, 2, 3, 4, } x()={x()}={,x(-1),x(), x(1),.} x()={,-2,-3, -1,,

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/60 Πληροφορίας

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/60 Πληροφορίας ΚΕΦΑΛΑΙΟ 2 /6 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 - -4-3 -2-2 3 4 5-2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-),x(), x(),. x()={,-2,-3,-,,, 2, 3, 4, } x()={x()}={,x(-),x(), x(),.} x()={,-2,-3, -,,, 2, 3, 4, } 2/6

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ7-1

ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ7-1 ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 19Κ7-1 ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία). Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση i.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/62 Πληροφορίας

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/62 Πληροφορίας ΚΕΦΑΛΑΙΟ 2 /62 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 - -4-3 -2-2 3 4 5-2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-),x(), x(),. x()={,-2,-3,-,,, 2, 3, 4, } x()={x()}={,x(-),x(), x(),.} x()={,-2,-3, -,,, 2, 3, 4, }

Διαβάστε περισσότερα

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS 1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

a n = 3 n a n+1 = 3 a n, a 0 = 1

a n = 3 n a n+1 = 3 a n, a 0 = 1 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6) Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #2 Σειρές Fourier και ΓΧΑ Συστήματα Απόκριση Συχνοτήτων και Φιλτράρισμα Σειρές Fourier: Σειρές Fourier και ΓΧΑ Συστήματα jk( 2π ) Τ k k x () FS.. ak k= k= jkω0 x

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 13: Ανάλυση ΓΧΑ συστημάτων (Ι) Περιγραφές ΓΧΑ συστημάτων Έχουμε δει τις παρακάτω πλήρεις περιγραφές ΓΧΑ συστημάτων: 1. Κρυστική απόκριση (impulse

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Επίλυση Δ.Ε. με Laplace

Επίλυση Δ.Ε. με Laplace Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

Σύνθεση ή σύζευξη ταλαντώσεων;

Σύνθεση ή σύζευξη ταλαντώσεων; Σύνθεση ή σύζευξη ταλαντώσεων; Σώμα Σ μάζας προσδένεται στο ένα άκρο οριζόντιου ελατηρίου σταθεράς το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο. Πάνω στο πρώτο σώμα στερεώνεται δεύτερο ελατήριο σταθεράς,

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς

Διαβάστε περισσότερα

η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: P, P, , P, P, ( 2) ,

η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: P, P, , P, P, ( 2) , Λύσεις Ασκήσεων ου Κεφαλαίου 45 και επειδή d x x = / = 7.5649 > η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: και ( x ) = ( x x ) = P P, P,.58975,.478 x =.58975 x =.58975 ( x

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Διαφορικές εξισώσεις

Διαφορικές εξισώσεις Διαφορικές εξισώσεις Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικές εξισώσεις τεχνικές 73 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 0 / 0 6 εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z 7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Εισαγωγή στις Διαφορικές Εξισώσεις Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα . Σκοποί

Διαβάστε περισσότερα

Ανάλυση υναµικής ιεργασιών

Ανάλυση υναµικής ιεργασιών Ανάλυση υναµικής ιεργασιών Αντιπροσώπευση µε το Μοντέλο Κατάστασης- Χώρου (State-Space Space Models) υναµική Γραµµικών Συστηµάτων 1ης και 2ης Τάξης Συστήµατα SISO και MIMO Ο Μετασχηµατισµός Laplace για

Διαβάστε περισσότερα

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0 Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()

Διαβάστε περισσότερα

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές) Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 14: Ανάλυση ΓΧΑ συστημάτων (ΙI) Απόκριση συχνοτήτων σε ρητή μορφή Χ (e jω ) Είδαμε ότι (όταν υπάρχει) η απόκριση συχνοτήτων H(e jω ) μπορεί να

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =

Διαβάστε περισσότερα

3. Κεφάλαιο Μετασχηματισμός Fourier

3. Κεφάλαιο Μετασχηματισμός Fourier 3 Κεφάλαιο 3 Ορισμοί Ο μετασχηματισμός Fourir αποτελεί την επέκταση των σειρών Fourir στη γενική κατηγορία των συναρτήσεων (περιοδικών και μη) Όπως και στις σειρές οι συναρτήσεις θα εκφράζονται με τη βοήθεια

Διαβάστε περισσότερα

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων»

x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων» ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΣΤΟΝ ΧΩΡΟ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Μία άλλη περιγραφή συστηµάτων διακριτού χρόνου είναι η περιγραφή µέσω των εξισώσεων του «χώρου των καταστάσεων» (state space represetatios)

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,

Διαβάστε περισσότερα

a (x)y a (x)y a (x)y' a (x)y 0

a (x)y a (x)y a (x)y' a (x)y 0 Γραμμικές Διαφορικές εξισώσεις Ανώτερης Τάξης Έστω ότι έχουμε μια γραμμική διαφορική εξίσωση τάξης n a (x) a (x) a (x)' a (x) f (x) () (n) (n) n n 0 όπου a i(x),i 0,...,n και f(x) είναι συνεχείς συναρτήσεις

Διαβάστε περισσότερα

Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 )

Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα ΠΛΗ 44: Σήματα και Επεξεργασία Εικόνας Ακαδημαϊκό Έτος 007 00 Ημερομηνία Εξέτασης 4.0.00

Διαβάστε περισσότερα

Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : =

Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : = . Δίνεται το ΓΧΑ σύστημα με συνάρτηση μεταφοράς ++2 Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Λύση : Α) +3 +2 ++2 2 + + 2+2 Η κρουστική απόκριση του συστήματος είναι L : 2 + 2 H είναι φραγμένη καθώς.

Διαβάστε περισσότερα

Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα

Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα Τι είναι σήμα; Σεραφείμ Καραμπογιάς Ως σήμα ορίζεται ένα φυσικό μέγεθος το οποίο μεταβάλλεται σε σχέση με το χρόνο ή το χώρο ή με οποιαδήποτε άλλη ανεξάρτητη μεταβλητή ή μεταβλητές. Παραδείγματα: Σήμα

Διαβάστε περισσότερα

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού //04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης Ψηφιακός Έλεγχος Μέθοδος μετατόπισης ιδιοτιμών Έστω γραμμικό χρονικά αμετάβλητο σύστημα διακριτού χρόνου: ( + ) = + x k Ax k Bu k Εφαρμόζουμε γραμμικό

Διαβάστε περισσότερα

Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο

Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Στο σχήμα φαίνεται μια γνώριμη διάταξη δύο παράλληλων αγωγών σε απόσταση, που ορίζουν οριζόντιο επίπεδο, κάθετο σε ομογενές μαγνητικό πεδίο έντασης.

Διαβάστε περισσότερα

a k y[n k] = b l x[n l] (12.1)

a k y[n k] = b l x[n l] (12.1) Κεφάλαιο 12 Ανάλυση Σημάτων και Συστημάτων στο Πεδίο του Διακριτού Χρόνου 12.1 Εισαγωγή Σε αυτό το κεφάλαιο, θα συζητήσουμε για το πως μπορούμε να μελετάμε γραμμικά και χρονικά αμετάβλητα ΓΧΑ) συστήματα

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πρώτης και δεύτερης τάξης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Ο μετασχηματισμός z αντιστοιχεί στην ακολουθία συνάρτηση: Xz ()

Ο μετασχηματισμός z αντιστοιχεί στην ακολουθία συνάρτηση: Xz () Ο Ρ Ι Σ Μ Ο Σ Ο μετασχηματισμός αντιστοιχεί στην ακολουθία συνάρτηση: X x x τη X O Μετασχηματισμός,, της ακολουθίας είναι μιγαδική συνάρτηση, της μιγαδικής μεταβλητής x r j Ω Ο μονόπλευρος μετασχηματισμός

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας.

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας. 1 Εισαγωγή KΕΦΑΛΑΙΟ H εξίσωση θερμότητας Εστω είναι ανοικτό σύνολο του με γνωστή θερμοκρασία στο σύνορό του κάθε χρονική στιγμή και γνωστή αρχική θερμοκρασία σε κάθε σημείο του Τότε οι φυσικοί νόμοι μας

Διαβάστε περισσότερα

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων 1. Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων Είναι ομάδα από δύο ή περισσότερες εξισώσεις των οποίων ζητάμε

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΘΕΜΑ 1 Δίνεται ο πίνακας: 1) Να

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Η Κρουστική Απόκριση

Διαβάστε περισσότερα

Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές.

Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Παραδείγµατα: Σήµα οµιλίας Πίεση P() Σήµα εικόνας y I

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές)

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές) Δ. Δημογιαννόπουλος,

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #3 Ιδιάζοντα σήματα Βασικές κατηγορίες συστημάτων Διασυνδέσεις συστημάτων Ιδιάζοντα σήματα (singular signals) Τα ιδιάζοντα σήματα είναι σήματα τα οποία είναι ιδεατά

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Σειρές Fourier: Προσέγγιση Οι Σειρές Fourier μπορούν να αναπαραστήσουν μια πολύ μεγάλη κλάση περιοδικών

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 3: Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Συστήματα Διακριτού Χρόνου Εισαγωγή στα Συστήματα Διακριτού Χρόνου Ταξινόμηση Συστημάτων ΔΧ

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + + Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! ookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

ΜΑΣ 203: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 2017 ΑΣΚΗΣΕΙΣ

ΜΑΣ 203: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 2017 ΑΣΚΗΣΕΙΣ ΜΑΣ 3: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 17 ΑΣΚΗΣΕΙΣ 1. Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή. Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές. 3 d

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Mάθηµα: "ΘΕΩΡΙΑ ΙΚΤΥΩΝ" ( ο εξάµηνο) Ακαδ. Έτος: - ο Τµήµα (Κ-Μ), ιδάσκων: Κ. Τζαφέστας Λύσεις ης Σειράς Ασκήσεων Άσκηση - (I-

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z 6-Μαρτ-29 ΗΜΥ 429. Μετασχηματισμός . Μετασχηματισμός 6-Μαρτ-29 Μετασχηματισμός Μέθοδος εκπροσώπησης, ανάλυσης και σχεδιασμού συστημάτων και σημάτων διακριτού χρόνου. Ό,τι είναι η μέθοδος Lplce στο συνεχή

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Μετασχηματισμός Z. Κυριακίδης Ιωάννης 2011

Μετασχηματισμός Z. Κυριακίδης Ιωάννης 2011 Μετασχηματισμός Z Κυριακίδης Ιωάννης 20 Τελευταία ενημέρωση: /2/20 Εισαγωγή Ο μετασχηματισμός- είναι ένα πολύ ισχυρό μαθηματικό εργαλείο για τη μελέτη διακριτών σημάτων και συστημάτων. Μπορεί να χρησιμοποιηθεί:

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑ RC ΜΕ ΚΡΟΥΣΤΙΚΗ ΔΙΕΓΕΡΣΗ

ΚΥΚΛΩΜΑ RC ΜΕ ΚΡΟΥΣΤΙΚΗ ΔΙΕΓΕΡΣΗ ΚΥΚΛΩΜΑ ΜΕ ΚΡΟΥΣΤΙΚΗ ΙΕΓΕΡΣΗ Εννοούμε την απόκριση ενός γραμμικού, χρονικά αμετάβλητου κυκλώματος σε μια μοναδιαία κρουστική συνάρτηση δ() εφαρμοζόμενη στον χρόνο = 0 (απόκριση μηδενικής κατάστασης). Η

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΜΑΣ : Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 14 ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 1. Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή. Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές.

Διαβάστε περισσότερα