arxiv: v3 [math.pr] 23 Nov 2009

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v3 [math.pr] 23 Nov 2009"

Transcript

1 Opimal Soppig or Dyamic Covex Rik Meaure Erha Bayrakar, Ioai Karaza, Sog Yao arxiv: v3 mah.pr 23 Nov 2009 Abrac We ue marigale ad ochaic aalyi echique o udy a coiuou-ime opimal oppig problem, i which he deciio maker ue a dyamic covex rik meaure o evaluae uure rewar. We alo id a addle poi or a equivale zero-um game o corol ad oppig, bewee a age he opper who chooe he ermiaio ime o he game, ad a age he coroller, or aure who elec he probabiliy meaure. Keywor: Covex rik meaure, coiuou-ime opimal oppig, robue meho, zero um game, addle poi, releced backward ochaic diereial equaio, BMO marigale. 1 Iroducio Le u coider a complee, ilered probabiliy pace Ω, F, P, F = F } 0, ad o i a bouded, adaped proce Y ha aiie cerai regulariy codiio. Give ay oppig ime o he ilraio F, our goal i o id a oppig ime τ S,T ha aiie e iρ, Y = ρ,τ Yτ, P a S,T Here S,T i he e o oppig ime aiyig T, P a.., ad he collecio o ucioal ρ, : L F L F } i a dyamic covex rik meaure i he ee o Delbae e al Our S 0,T, S,T moivaio i o olve he opimal oppig problem o a deciio maker who evaluae uure rewar/rik uig dyamic covex rik meaure raher ha aiical expecaio. Thi queio ca alo be ca a a robu opimal oppig problem, i which he deciio maker ha o ac i he preece o o-called Kighia uceraiy regardig he uderlyig probabiliy meaure. Whe he ilraio F i geeraed by a Browia moio, he dyamic covex rik meaure admi he ollowig repreeaio: There exi a uiable oegaive ucio, covex i i paial argume, uch ha he repreeaio ρ, ξ = e up E ξ, θ F, P a.. hol or all ξ L F. Here i he collecio o probabiliy meaure which are equivale o P o F, equal o P o F, ad aiy a cerai iegrabiliy codiio; wherea θ i he predicable proce whoe ochaic expoeial give he deiy o wih repec o P. I hi eig we eablih a miimax reul, amely V e up e i E Y + S,T F = e i e upe Y + S,T F, 1.2 Deparme o Mahemaic, Uiveriy o Michiga, A Arbor, MI 48109; erha@umich.edu. Thi auhor i uppored i par by he Naioal Sciece Foudaio, uder gra umber DMS INTECH Iveme Maageme, Oe Palmer Square, Suie 441, Priceo, NJ 08542; ik@ehaced.com; ad Deparme o Mahemaic, Columbia Uiveriy, New York, NY 10027; ik@mah.columbia.edu. Reearch uppored i par by he Naioal Sciece Foudaio uder Gra NSF-DMS Deparme o Mahemaic, Uiveriy o Michiga, A Arbor, MI 48109; ogyao@umich.edu.

2 Opimal Soppig or Dyamic Covex Rik Meaure 2 ad coruc a opimal oppig ime τ a he limi o oppig ime ha are opimal uder expecaio crieria ee Theorem 3.1. We how ha he proce 1 } V τ } admi a RCLL modiicaio 0,T V 0, uch ha or ay S 0,T, we have V 0, = 1 } V τ, P a.. We how ha he oppig ime τ V = i, T : V 0, } = Y aai he iimum i 1.1. Fially, we coruc a addle poi o he ochaic game i 1.2. The dicree-ime opimal oppig problem or cohere rik meaure wa udied by Föllmer ad Schied 2004, Secio 6.5 ad Cheridio e al. 2006, Secio 5.2 ad 5.3. Delbae 2006 ad Karaza ad Zamirecu 2006, o he oher had, coidered coiuou-ime opimal oppig problem i which he eeial iimum over he oppig ime i 1.1 i replaced by a eeial upremum. The coroller-ad-opper problem o Lepelier 1985 ad Karaza ad Zamirecu 2008, ad he opimal oppig or o-liear expecaio i Bayrakar ad Yao 2009, are he cloe i piri o our work. However, ice our aumpio o he radom ucio ad he e are dicaed by he repreeaio heorem or dyamic covex rik meaure, he reul i hee paper cao be direcly applied. I paricular, becaue o he iegrabiliy aumpio ha appear i he deiiio o ubecio 1.1, hi e may o be cloed uder paig; ee Remark 3.3. Moreover, he exa reul o coroller-ad-opper game would require ha ad he θ be bouded. We overcome hee echical diiculie by uig approximaio argume which rely o rucaio ad localizaio echique. O he oher had, i idig a addle poi Karaza ad Zamirecu 2008 ued he weak compace o he collecio o probabiliy meaure, i paricular he boudede o θ. We avoid makig hi aumpio by uig echique rom Releced Backward Sochaic Diereial Equaio RBSDE. I paricular, uig a compario heorem ad he ac ha V ca be approximaed by oluio o BSDE wih Lipchiz geeraor, we how ha V olve a quadraic RBSDE RBSDE. The relaiohip bewee he oluio o RBSDE ad he BMO marigale help u coruc a addle poi. We hould poi ou ha he covexiy o i o eeded o derive our reul; c. Remark 3.1. The layou o he paper i imple. I Secio 2 we recall he deiiio o he dyamic covex rik meaure ad a repreeaio heorem. We olve he opimal oppig problem i Secio 3. I Secio 4 we id a addle poi or he ochaic coroller-ad-opper game i 1.2. The proo o our reul are give i Secio Noaio ad Prelimiarie Throughou hi paper we le B be a d-dimeioal Browia Moio deied o he probabiliy pace Ω, F, P, ad coider he augmeed ilraio geeraed by i, i.e., F = F = σ B ; 0, N }, where N i he collecio o all P-ull e i F. 0 We ix a iie ime horizo T > 0, deoe by P rep. P he predicably rep. progreively meaurable σ-ield o Ω 0, T, ad le S 0,T be he e o all F-oppig ime uch ha 0 T, P a.. From ow o, whe wriig, we alway mea wo oppig ime, S 0,T uch ha, P a.. For ay we deie S, = σ S0,T σ, P a..} ad le S, deoe all iie-valued oppig ime i S,. The ollowig pace o ucio will be ued i he equel: Le G be a geeric ub-σ-ield o F. L 0 G deoe he pace o all real-valued, G meaurable radom variable. L G = ξ L 0 G : ξ = e up ξω < }. ω Ω L 0 F 0, T deoe he pace o all real-valued, F-adaped procee. L F 0, T = X L 0 F 0, T : X = e up,ω 0,T Ω X ω < }. C p F 0, T = X L p F 0, T : X ha coiuou pah}, p = 0,. } C 2 F 0, T = X C 0 F 0, T : E X 2 <. up 0,T

3 2. Dyamic Covex Rik Meaure 3 H 2 F 0, T; Rd rep. Ĥ 2 F 0, T; Rd deoe he pace o all R d valued, F adaped predicably rep. progreively meaurable procee X wih E 0 X 2 d <. H F 0, T; Rd deoe he pace o all R d -valued, F-adaped predicably meaurable procee X wih e up X ω <.,ω 0,T Ω K F 0, T deoe he pace o all real-valued, F-adaped coiuou icreaig procee K wih K 0 = 0. Le u coider he e M e o all probabiliy meaure o Ω, F which are equivale o P. For ay M e, i i well-kow ha here i a R d valued predicable proce θ wih 0 θ 2 d <, P a.., uch ha he deiy proce Z o wih repec o P i he ochaic expoeial o θ, amely, Z = E θ B = exp θ db 1 } θ 2, 0 T We deoe Z, = Z /Z = exp θ db 1 } 2 θ 2 or ay. Moreover, or ay S 0,T ad wih he oaio 0, =, ω 0, T Ω : 0 < ω} or he ochaic ierval, we deie P = M e } : = P o F = M e : θ ω = 0, d dp a.e. o 0, }, = P : E } <. 2 Dyamic Covex Rik Meaure Deiiio 2.1. A dyamic covex rik meaure i a amily o ucioal ρ, : L F L F } which aiy he ollowig properie: For ay oppig ime ad ay L F meaurable radom variable ξ, η, we have Moooiciy : ρ, ξ ρ, η, P a.. i ξ η, P a.. Tralaio Ivariace : ρ, ξ + η = ρ, ξ η, P a.. i η L F. Covexiy : ρ, λξ + 1 λη λρ, ξ + 1 λρ, η, P a.. or ay λ 0, 1. Normalizaio : ρ, 0 = 0, P a.. Delbae e al provide a repreeaio reul, Propoiio 2.1 below, or dyamic covex rik meaure } ρ, ha aiy he ollowig properie: A1 Coiuiy rom above : For ay decreaig equece ξ } L F wih ξ = lim ξ L F, i hol P a.. ha lim ρ,ξ = ρ, ξ. A2 Time Coiecy : For ay σ S, we have: ρ,σ ρσ, ξ = ρ, ξ, P a.. A3 Zero-Oe Law : For ay A F, we have: ρ, 1 A ξ = 1 A ρ, ξ, P a.. A4 e i ξ A E P ξ F = 0, where A = ξ L F T : ρ,t ξ 0}. Propoiio 2.1. Le ρ, be a dyamic covex rik meaure aiyig A1-A4. The or ay ad } ξ L F, we have ρ, ξ = e up E ξ, θ F, P a Here : 0, T Ω R d 0, i a uiable meaurable ucio, uch ha 1,, z i predicable or ay z R d ; 2, ω, i proper covex, ad lower emi-coiuou or d dp a.e., ω 0, T Ω ; ad 3, ω, 0 = 0, d dp a.e.

4 Opimal Soppig or Dyamic Covex Rik Meaure 4 We reer o Rockaellar 1997, p. 24 or he oio o proper covex ucio, ad review ome baic properie o he eeial exrema a i Neveu 1975, Propoiio VI-1-1 or Föllmer ad Schied 2004, Theorem A.32. Lemma 2.1. Le ξ i } i I ad η i } i I be wo clae o F-meaurable radom variable wih he ame idex e I. 1 I ξ i = η i, P a.. hol or all i I, he e upξ i = e upη i, P a.. 2 For ay A F, i hol P a.. ha e up i I e up 1A ξ i = 1A e upξ i, P a.. i I i I i I i I 1A ξ i + 1 A cη i = 1A e up i I 3 For ay F-meaurable radom variable ad ay λ > 0, we have e up i I Moreover, 1-3 hold whe we replace e up i I by e i i I. 3 The Opimal Soppig Problem ξ i + 1 A c e upη i. I paricular, i I λξ i + = λe up ξ i +, P a.. i I I hi ecio we udy he opimal oppig problem or dyamic covex rik meaure. More preciely, give S 0,T, we eek a opimal oppig ime τ S,T ha aiie 1.1. We hall aume hroughou ha he reward proce Y L F 0, T i righ-coiuou ad 0 quai-le-coiuou: o wi, or ay icreaig equece } N i S 0,T wih = lim S 0,T, ad ay 0, we have lim E Y F 1 E Y F 1, P a.. I ligh o he repreeaio 2.1, we ca aleraively expre 1.1 a a robu opimal oppig problem, i he ollowig ee: e up e i E Y + S,T, θ F = e i E Y τ + τ, θ F. 3.1 Remark 3.1. We will udy he robu opimal oppig problem 3.1 i a eig more geeral ha alluded o hereoore: From ow o, we oly aume ha : 0, T Ω R d 0, i a P BR d /B0, -meaurable ucio which aiie 3; i.e., he covexiy 2 i o eceary or olvig 3.1. I order o id a oppig ime which i opimal, i.e., aai he eeial upremum i 3.1, we iroduce he lower- ad upper-value, repecively, o he ochaic game uggeed by 3.1, o wi, or every S 0,T : V = e up e i E Y + S,T, θ F, V = e i e upe Y + S,T F. I Theorem 3.1 we hall how ha he quaiie V ad V coicide a ay S 0,T, i.e., a mi-max heorem hol; we hall alo ideiy wo opimal oppig ime i Theorem 3.1 ad 3.2, repecively. Give ay probabiliy meaure 0, le u iroduce or each ixed S 0,T he quaiy R = e upe Y +, θ σ F = e upe Y σ +, θ F Y 3.2 S,T σ S 0,T ad recall rom he claical heory o opimal oppig ee El Karoui 1981 or Karaza ad Shreve 1998, Appedix D he ollowig reul. Propoiio 3.1. Fix a probabiliy meaure 0. 1 The proce R } 0,T admi a RCLL modiicaio R,0 uch ha, or ay S 0,T, we have R,0 = R, P a.. 3.3

5 3. The Opimal Soppig Problem 5 2 For every S 0,T, he oppig ime τ = i, T : R,0 = Y } S,T aiie or ay S,τ : R = E Y τ + = E R + τ F = E R τ +, θ Thereore, τ i a opimal oppig ime or maximizig E Y + k τ F F, P a F over S,T. For ay S 0,T ad k N, we iroduce he collecio o probabiliy meaure = P : } θ ω, ω, θ ω k, d dp a.e. o, T. Remark 3.2. I i clear ha k ; ad rom 3 oe ca deduce ha or ay we have ad k k, k N. Give a or ome S 0,T, we rucae i i he ollowig way: The predicabiliy o proce θ ad Propoiio 2.1 imply ha, θ } i alo a predicable proce. Thereore, or ay give k N, he e 0,T =, ω, T : θ ω, ω, θ ω } k P 3.5 A,k i predicable. The he predicable proce θ,k = 1 A θ give rie o a probabiliy meaure,k k via he,k recipe d,k = E θ,k B dp. Le u deie he oppig ime T σm = i 0, T : } 0 θ 2 > m T, m N. There exi a ull e N uch ha, or ay ω Ω \ N, we have σm ω = T or ome m = mω N. Sice E σm 0 θ 2 d m hol or each m N, we have θ ω <, d dp a.e. o 0, σm. 0, A 0, m N σ m T N = 0, T Ω, i ollow ha θ ω < hol d dp a.e. o 0, T Ω. O he oher had, ice we have E <, which implie 1,T, ω, ω, θ ω < hol d d a.., or equivalely d dp a.e. Thereore, we ee ha lim 1 A = 1,T, d dp a.e. 3.6,k For ay S 0,T, he upper value V ca be approximaed rom above i wo ep, preeed i he ex wo lemma. Lemma 3.1. Le S 0,T. 1 For ay S,T we have e i E Y +, θ F = lim e i E Y +, θ k F, P a I hol P a.. ha V = e i R = lim e i k R. 3.8 Lemma 3.2. Le k N ad S 0,T. 1 For ay S,T here exi a equece,k } N k uch ha e i E Y +, θ k F = lim E Y,k +, θ,k F, P a There exi a equece k } N k uch ha e i R = lim Rk, P a k

6 Opimal Soppig or Dyamic Covex Rik Meaure 6 Le u ix S 0,T. For ay k N, he iimum o he amily τ } k o opimal oppig ime ca be approached by a decreaig equece i hi amily. A a reul, he iimum i alo a oppig ime. Lemma 3.3. Le S 0,T ad k N. There exi a equece k } N k uch ha τ k = e i k τ = lim τk, P a.. i he oaio o Propoiio 3.1, hu τ k S,T. Sice } k i a icreaig equece, τ k N k } i i ur a decreaig equece. Hece k N deie a oppig ime i S,T. The amily o oppig ime τ} S0,T The ex lemma i cocered wih he paig o wo probabiliy meaure. τ = lim τ k 3.11 will play a crucial role i hi ecio. Lemma 3.4. Give S 0,T, le k or ome k N. For ay ad S,T, he predicable proce θ = 1 } θ + 1 >} θ e, 0, T 3.12 iduce a probabiliy meaure by d = E θ B T dp. I belog o k, o doe. Moreover, or ay σ S,T, we have R,0 σ = R σ = R e σ = R e,0 σ, P a Remark 3.3. The probabiliy meaure i Lemma 3.4 i called he paig o ad ; ee e.g. Secio 6.7 o Föllmer ad Schied I geeral, i o cloed uder uch paig. The proo o he ollowig reul ue cheme imilar o he oe i Karaza ad Zamirecu The mai echical diiculy i our cae i meioed i Remark 3.3. Moreover, i order o ue he reul o Karaza ad Zamirecu 2008 direcly, we would have o aume ha ad he θ are all bouded. We overcome hee diiculie by uig approximaio argume ha rely o rucaio ad localizaio echique. Fir, we hall how ha a ay S 0,T we have V = V, P a.. Theorem 3.1. Exiece o Value: For ay S 0,T, we have V = e i E Y τ + τ F = V Y, P a Thereore, he oppig ime τ o 3.11 i opimal or he robu opimal oppig problem 3.1 i.e., aai he eeial iimum here. We hall deoe he commo value i 3.14 by V = V = V. Propoiio 3.2. For ay S 0,T, we have V τ = Y τ, P a.. Noe ha τ may o be he ir ime aer whe he value proce coicide wih he reward proce. Acually, ice he value proce V } 0,T i o ecearily righ-coiuou, he radom ime i, T : V = Y } may o eve be a oppig ime. We addre hi iue i he ex hree reul. Propoiio 3.3. Give S 0,T,, ad S,τ, we have E V +, θ F V, P a

7 4. The Saddle Poi Problem 7 Lemma 3.5. For ay,, σ S 0,T, we have he P a.. equaliie ad 1 =} e i E Y σ + σ F = 1 =} e i E Y σ + σ F =} V = 1 =} V Nex, we how ha or ay give S 0,T, he proce 1 } V τ } admi a RCLL modiicaio 0,T V 0,. A a coequece, he ir ime aer whe he proce V 0, coicide wih he proce Y, i a opimal oppig ime or he robu opimal oppig problem 3.1. Theorem 3.2. Regulariy o he Value: Le u ix a oppig ime S 0,T. 1 The proce 1 } V τ } 0,T admi a RCLL modiicaio V 0, uch ha, or ay S 0,T : V 0, = 1 } V τ, P a Coequely, } τ V = i, T : V 0, = Y 3.19 i a oppig ime which, i ac, aai he eeial iimum i 3.1. We hould poi ou ha, i order o deermie he opimal oppig ime i 1.1, kowledge o he ucio i he repreeaio 2.1 i o eceary. Ideed, le he ρ Sell evelope be he RCLL modiicaio o e up ρ, Y, S 0,T. From our reul above, he ir ime aer ha he ρ-sell evelope ouche he S,T reward proce Y i a opimal oppig ime; hi i coie wih he claical heory o opimal oppig. 4 The Saddle Poi Problem I hi ecio we will coruc a addle poi o he ochaic game i 1.2. A i he previou ecio, we hall aume here ha : 0, T Ω R d 0, i a P BR d /B0, meaurable ucio which aiie 3. For ay give 0 ad S 0,T, le u deoe Y = Y + 0, θ ad V = V + 0, θ. Deiiio 4.1. A pair, σ 0 S 0,T i called a addle poi, i or every 0 ad S 0,T we have E Y E Y σ E Y σ. 4.1 Theorem 4.1. Neceary Codiio or a Saddle Poi: A pair, σ 0 S 0,T i a addle poi, i he ollowig codiio are aiied: i Y σ = R σ, P a..; ii or ay 0, we have V 0 E V σ ; iii or ay S 0,σ, we have V = E V σ F, P a.. To coruc a addle poi, we eed he ollowig wo oio. Deiiio 4.2. We call Z Ĥ2 F 0, T; Rd a BMO hor or Bouded Mea Ocillaio proce i Z BMO = up τ M 0,T E Z 2 1/2 F τ <. Whe Z i a BMO proce, Z B i a BMO marigale; ee e.g. Kazamaki τ

8 Opimal Soppig or Dyamic Covex Rik Meaure 8 Deiiio 4.3. BSDE wih Relecio: Le h : 0, T Ω R R d R be a P BR BR d /BR- meaurable ucio. Give S C 0 F 0, T ad ξ L0 F T wih ξ S T, P a.., a riple Γ, Z, K C 0 F 0, T Ĥ 2 F 0, T; Rd K F 0, T i called a oluio o he releced backward ochaic diereial equaio wih ermial codiio ξ, geeraor h, ad obacle S RBSDE ξ, h, S or hor, i P a.., we have he compario ad he o-called la-o codiio S Γ = ξ + h, Γ, Z + K T K Z db, 0, T, 0 1 Γ>S }dk = 0, P a.. I he re o hi ecio we hall aume ha he reward proce Y L F 0, T i coiuou ad ha he ucio : 0, T Ω R d 0, aiie he ollowig addiioal codiio: H1 For every, ω 0, T Ω, he mappig z, ω, z i coiuou. H2 I hol d dp a.e. ha, ω, z ε z Υ ω 2 l, z R d. Here ε > 0 i a real coa, Υ i a R d valued proce wih Υ = e up Υ ω <, ad l ε Υ 2.,ω 0,T Ω H3 For ay, ω, u 0, T Ω R d, he mappig z, ω, z + u, z aai i iimum over R d a ome z = z, ω, u R d, amely,, ω, u = i z R d, ω, z + u, z =, ω, z, ω, u + u, z, ω, u. 4.2 Wihou lo o geeraliy, we ca aume ha he mappig z : 0, T Ω R d R d i P BR d /BR d - meaurable hak o he Meaurable Selecio Theorem ee e.g. Lemma 1 o Beeš 1970 or Lemma o Ellio We urher aume ha here exi a o-egaive BMO proce ψ ad a M > 0 uch ha or d dp a.e., ω 0, T Ω z, ω, u ψ ω + M u, u R d. Example 4.1. Le λ 0 ad le Λ, Υ H F 0, T; Rd wih Λ ω ε > 0, d dp a.e. Deie, ω, z = Λ ω z Υ ω 2+λ Υ ω 2+λ,, ω, z 0, T Ω R d. Clearly, + = 0 i a P BR d /B0, -meaurable ucio ha aiie 3 ad H1. I ur ou ha + aiie H2, ice d dp a.e. we have ha z +, ω, z, ω, z Λ ω Υ ω 2 1 Λ ω Υ ω 2+λ ε z Υ ω 2 Λ 1 + Υ 2+λ, z R d. For ay, ω, u 0, T Ω R d he gradie z, ω, z + u, z = 2 + λλ ω z Υ ω λ z Υ ω + u, z R d, i ull oly a ẑ, ω, u = 2+λΛ ω 1 1+λ u λ 1+λ u+υ ω, where he mappig z, ω, z+ u, z aai i iimum over R d. Whe u r ω = 2+λΛ ω Υ ω 1+λ, ẑ, ω, u A = z R d : z Υ ω Υ ω }. I ollow ha i z R d +, ω, z + u, z +, ω, ẑ, ω, u + u, ẑ, ω, u =, ω, ẑ, ω, u + u, ẑ, ω, u = i z R d, ω, z + u, z i z R d +, ω, z + u, z. 4.3

9 4. The Saddle Poi Problem 9 O he oher had, whe u < r ω or equivalely ẑ, ω, u / A, he gradie z, ω, z + u, z 0 or ay z A, which implie ha he mappig z, ω, z+ u, z ca o aai i iimum over A a a ierior poi o i. Thu The i ollow ha i, ω, z + u, z = i, ω, z + u, z = i u, z. z A z A z A i +, ω, z + u, z = i z R d z Ac u, z i z A, ω, z + u, z = i z A c u, z. The laer iimum i aaied uiquely a ome z, ω, u A c, which ogeher wih 4.3 implie ha z, ω, u = 1 u rω}ẑ, ω, u + 1 u <rω} z, ω, u. Thereore, + aiie H3, ice or d dp a.e., ω 0, T Ω we have z, ω, u ẑ, ω, u + z, ω, u 2 + λε 1 1+λ u 1 1+λ + 3 Υ 2 + λε 1 1+λ u λε 1 1+λ + 3 Υ, u R d. Remark 4.1. The eropic rik meaure wih rik olerace coeicie r > 0, amely ρ,ξ r = r log E e 1 r ξ } F, ξ L F, i a ypical example o a dyamic covex rik meaure aiyig A1-A4. The correpodig i 2.1 i z = r 2 z 2, z R d. Example 4.2. Le b 1, b 2 be wo real-valued procee uch ha b 1 ω 0 b2 ω, d dp a.e. or ome > 0 Le ϕ : 0, T Ω R R be a P BR/BR-meaurable ucio ha aiie he ollowig wo aumpio: i For ay, ω 0, T Ω, ϕ, ω, i a bijecive locally-iegrable ucio or a coiuou urjecive locallyiegrable ucio o R. ii For ome ε 1, ε 2 > 0, i hol d dp a.e. ha 2 ε1 x + b ϕ, ω, x 1 ω 0, i x > 0, 2 ε 2 x + b 2 ω 0, i x < 0. The, ω, z = z ϕ, ω, xdx, z R deie a P BR/B0, -meaurable o-egaive ucio ha 0 aiie 3 ad H1. Le ε = ε 1 ε 2. For d dp a.e., ω 0, T Ω, i z > 0, he, ω, z z o he oher had, i z < 0, he, ω, z = ε1 x + b 1 ω dx = ε 1 z 2 + b 1 ωz εz2 z = ε z 2 2 2ε 4ε ; z = 1 2 ε z 2ε ϕ, ω, xdx ε z + 3 2ε z 2ε2 x + b 2 ω dx = ε 2 z 2 + b 2 ωz εz2 + z ε. Thu i hol d dp a.e. ha, ω, z 1 2 ε z 2 2ε 5 2 4ε, i.e., H2 i aiied. For ay, ω, u 0, T Ω R, ice dz d, ω, z + uz = ϕ, ω, z + u, he mappig z, ω, z + uz aai i iimum over R a each z z R : ϕ, ω, z = x}. Thu ϕ 1, ω, x z, ω, u ϕ 1 +, ω, x, where ϕ 1, ω, x = iz R : ϕ, ω, z = x} ad ϕ 1 +, ω, x = upz R : ϕ, ω, z = x}.

10 Opimal Soppig or Dyamic Covex Rik Meaure 10 I i clear ha ϕ, ω, ϕ 1, ω, x = x ad ϕ, ω, ϕ 1 +, ω, x = x. For d dp a.e., ω 0, T Ω ad u R, i ϕ 1, ω, x > 0, he u = ϕ, ω, ϕ 1, ω, u 2 ε 1 ϕ 1, ω, x + b 1 ω, which implie ha 0 < ϕ 1, ω, x 1 2ε u +. O he oher had, i ϕ 1, ω, x < 0, oe ca deduce ha 1 2ε u + ϕ 1, ω, x < 0 by a imilar argume. Hece ϕ 1, ω, x 2ε 1 u +. Similarly, hi iequaliy alo hol or ϕ+ 1, ω, x, hu or z, ω, u. A a reul, H3 i alo aiied. Oe ca eaily deduce rom H2 ad 3 ha d dp a.e. 1 + ε 4ε u 2 Υ 2 l, ω, u 0, u R d, which how ha ha quadraic growh i u. Thak o Theorem 1 ad 3 o Kobylaki e al. 2002, he RBSDE Y T,, Y admi a oluio Γ, Z, K C F 0, T H2 F 0, T; Rd K F 0, T. I ac, Z i a BMO proce. To ee hi, we e κ = 1+ε 4ε Υ 2 +l. For ay S 0,T, applyig Iô ormula o e 4κe Γ we ge e 4κe Γ + 8κ 2 e 4κe Γ Z 2 = e 4κYT 4κ e 4κe Γ, Z 4κ e 4κe Γ d K + 4κ e 4κe Γ Z db e 4κYT + 4κ 2 e 4κe Γ 1 + Z 2 + 4κ e 4κe Γ Z db. Takig codiioal expecaio i he above expreio, we obai e 4κ e Γ E Z 2 F E e 4κe Γ Z 2 F 1 4κ 2E e 4κYT F + e 4κ e Γ T. which implie ha Z BMO e 4κ e Γ 1 4κ 2 + T 1/2. Sice he mappig z : 0, T Ω R d R d i P BR d /BR d -meaurable ee H3, θ ω = z, ω, Z ω,, ω 0, T Ω 4.4 i a predicable proce. I ollow rom H3 ha or ay 0, T E which implie ha θ i a BMO proce. θ 2 F 2E ψ 2 F + 2M 2 T E Z 2 F, P a.., Fix S 0,T. Sice θ, = 1 >} θ, 0, T i alo a BMO proce, we kow rom Theorem 2.3 o Kazamaki 1994 ha he ochaic expoeial E θ, B i a uiormly iegrable marigale. There- } 0,T ore, d, = E θ, B T dp deie a probabiliy meaure, P. A, Z =, z, Z + Z, z, Z =, θ + Z, θ, d dp a.e. by 4.2 ad 4.4 ad he Giraov Theorem, we ca deduce Γ = Y T + = Y T +, θ, + Z, θ, + K T K, + K T K Z db Z db,, 0, T, 4.5 where B, i a Browia Moio uder,. Leig = 0 ad akig he expecaio E, yield ha E,, E, Γ Y T 2 Γ, hu,. The lemma below how ha Γ i idiiguihable rom R,,0 o he ochaic ierval, T.

11 4. The Saddle Poi Problem 11 Lemma 4.1. Give S 0,T, i hol P a.. ha Γ = R,,0,, T. 4.6 Le k N ad k. I i eay o ee ha he ucio h, ω, z =, ω, θ ω + z, θ ω i Lipchiz coiuou i z: o wi, or d dp a.e., ω 0, T Ω h, ω, z h, ω, z = z z, θ θ z z k z z, z, z R d. Moreover, we have E h, 0 2 = E 2 = E 2 k 2 T. 0 0 Theorem 5.2 o El Karoui e al aure ow ha here exi a uique oluio Γ, Z, K C 2 F 0, T H 2 F 0, T; Rd K F 0, T o he RBSDEY T, h, Y. Fix 0, T. For ay S,T, Giraov Theorem implie Γ = Y T + = Γ + h, Z + K T K, θ + K K Z db Z db, P a.., where B i a Browia Moio uder. By aalogy wih Lemma 4.1, i hol P a.. ha I paricular, we ee ha R,0 i, i ac, a coiuou proce. Γ = R,0, 0, T. 4.7 Nex, we recall a compario heorem o RBSDE; ee Theorem 4.1 o El Karoui e al We reae i i a more geeral orm. Propoiio 4.1. Le Γ, Z, K rep. Γ, Z, K be a oluio o RBSDE ξ, h, S rep. RBSDE ξ, h, S i he ee o Deiiio 4.3. Addiioally, aume ha i eiher h or h i Lipchiz i y, z; ii i hol P a.. ha ξ ξ ad S S or ay 0, T; iii i hol d dp a.e. ha h, ω, y, z h, ω, y, z or ay y, z R R d. The i hol P a.. ha Γ Γ or ay 0, T. Sice i hol d dp a.e. ha, ω, u = i z R d, ω, z + u, z, ω, θ ω + u, θ ω = h, ω, u, u R d. we ee rom Propoiio 4.1 ad 4.7 ha we have P a.. Γ Γ = R,0, 0, T. 4.8 Leig =, akig he eeial iimum o righ-had-ide over k, ad he leig k, we ca deduce rom Lemma 4.1, 3.8, ad 3.3 ha R,,0 = Γ lim e i k R,0 = lim e i k R = V = V R, = R,,0, P a.. which implie ha V = Γ, P a.. Applyig Lemma 4.1 ad 3.3 oce agai yiel ha V = Γ = R,0 = R, P a where =,0 0. I i clear ha d = d,0 = E θ,0 B T dp = E θ B T dp. We are ow ready o ae he mai reul o hi ecio. Theorem 4.2. Exiece o a Saddle Poi: The pair, τ 0 i a addle poi a i 4.1.

12 Opimal Soppig or Dyamic Covex Rik Meaure 12 5 Proo 5.1 Proo o he Reul i Secio 2 ad 3 Proo o Propoiio 2.1: Bio-Nadal 2009, Propoiio 1 how ha ρ, ξ = e up E ξf α,, P a.. 5.1, Here we have e, = P : E α, < }, ad he quaiy α, = e up E η F ρ, η η L F i kow a he miimal pealy o ρ,. The repreeaio 5.1 wa how or << P raher ha P i Bio-Nadal However, our aumpio A4 aure ha 5.1 alo hol. For a proo, ee Föllmer ad Peer 2006, Lemma 3.5 ad Klöppel ad Schweizer 2007, Theorem 3.1. Thak o Delbae e al. 2009, Theorem 5i ad he proo o Propoiio 9v, here exi a oegaive ucio : 0, T Ω R d 0, aiyig 1-3, uch ha or each, we have α, = E F, P a.. Hece we ca rewrie, = P : E } <, ad 5.1 become ρ, ξ = e up E ξ, θ F, P a.. 5.2, Sice,T,, i ollow readily ha e i E Y + F e i E Y +, F, P a O he oher had, or ay give,, he predicable proce θ e = 1 } θ, 0, T iduce a probabiliy meaure P via d = E θ e B T dp. Sice, θ e = 1 }, θ, d dp a.e. rom 3, i ollow E e, θ e = E e = E <, hu. The we ca deduce e i E Y + F E e Y + = E Y +, θ e, θ F = E e Y + F F, P a.. Takig he eeial iimum o he righ-had-ide over, yiel e i E Y + F e i E Y +, θ F, P a..;, hi, ogeher wih 5.3 ad 5.2, prove 2.1. Proo o Lemma 3.1: 1 Sice } k e i E Y +, θ F lim e i k k N i a icreaig equece o e coaied i, i ollow ha E Y +, θ F, P a.. 5.4

13 5.1 Proo o he Reul i Secio 2 ad 3 13 Now le u ix a probabiliy meaure, ad deie he oppig ime δm = i, T : }, θ + θ 2 > m T, m N. I i eay o ee ha lim m δ m = T, P a.. For ay m, k N2, he predicable proce θ m,k = 1 δ m } 1 A,kθ, 0, T iduce a probabiliy meaure m,k k by recall he oaio o 3.5. I ollow rom 3 ha d m,k = E θ m,k B dp 5.5 T, θ m,k = 1 δ m} 1 A,k, θ, d dp a.e. 5.6 The we ca deduce rom Baye Rule ee, e.g., Karaza ad Shreve 1991, Lemma ha e i E Y +, θ k F E m,k Y + m,k F δ m = E Z m,k,t Y + 1 A,k δ m F E Z m,k,t Y + δ m F = E Z m,k,t Z,δ m Y + +E Z,T Y F + E Y + m Z E m,k,t δ m +E Z,δ m δ m Z,δm F F, θ F Z + Y E Z + E Z F,δm,T Y Z,δm,T F F + E Y F Y + m Z E m,k,t Z Z,δm F + Y E Z,δm,T F +E Y + F, P a From he equaio 3.6 ad he Domiaed Covergece Theorem, we oberve δ m lim E Thu we ca id a ubequece o δ m lim 1 A θ db =,k ad coequely, P a..: m,k lim Z,T = lim exp 1A 1 2 δ θ db = lim E m 1 1A θ 2,k,k = 0, P a.. δ m Sice E Z m,k,t F = E Z 1991, Secio 5.10 ha,δ m δ m 1 A,k } A,k we ill deoe i by k N δ θ db m ad lim 1 A,k } A,k uch ha k N δ m θ 2 = θ 2, P a.. θ db 1 } δ m θ 2 2 = exp θ db 1 } θ 2 2 = Z.,δm F = 1, P a.. or ay k N, i ollow rom Scheé Lemma ee e.g. William Z lim E m,k,t Z,δm F = 0, P a.. 5.8

14 Opimal Soppig or Dyamic Covex Rik Meaure 14 Hece, leig k i 5.7, we obai lim e i E Y + k E Y + F F + Y E Z Z,δm,T F, P a I i eay o ee ha lim m δ m = T, P a.. The righ-coiuiy o he proce Z he implie ha lim m Z =,δm Z,T, P a.. Sice E Z F,δm = E Z,TF = 1, P a.. or ay m N, uig Scheé Lemma oce agai we obai Z lim E Z m,δm,tf = 0, P a Thereore, leig m i 5.9 we obai lim e i E Y + k F E Y + Takig he eeial iimum o righ-had-ide over give e i E Y + F e i E lim k which, ogeher wih 5.4, prove By aalogy wih 5.4, we have e i R lim e i k Y +, θ, θ F, P a.. F, P a.. R, P a Takig he eeial upremum i 5.7 over S,T we ge e i R R m,k R + Y + m Z E m,k k,t Z,δm F + Y E Z Z,δm,T F, P a I ligh o 5.8 ad 5.10, leig k ad ubequely leig m i 5.12, we obai lim e i R R, k P a.. Takig he eeial iimum o righ-had-ide over yiel lim which, ogeher wih 5.11, prove 3.8. Proo o Lemma 3.2: 1 We ir how ha he amily i direced dowwar, i.e., or ay 1, 2 k, here exi a 3 k uch ha E 3 Y + 3 F E 1 Y + e i k E Y + } F k 1 F E 2 Y + To ee hi, we le 1, 2 k ad le A F. I i clear ha θ 3 = 1 >} 1 A θ A c θ 2 R e i R, P a.. 2 F P a , 0, T 5.14 orm a predicable proce, hu we ca deie a probabiliy meaure 3 M e via d 3 = E θ 3 B dp. I T ollow rom 3 ha, θ 3 = 1>} 1 A, θ 1 + 1A c, θ 2, d dp a.e., 5.15

15 5.1 Proo o he Reul i Secio 2 ad 3 15 which ogeher wih 5.14 implie ha θ 3 = 0 d dp a.e. o 0, ad θ 3, ω, θ 1 we have ω + 1 A cω θ 2 Z 3, = exp ω, ω, θ 2 1A θ 1 = exp 1 A = 1 A exp = 1 A Z 1, + 1 A cz 2,, The Baye Rule implie ha E 3 Y + Leig A = E 3 Y + = E 3 F 1 A Z 1,T ω, ω, θ 3 ω = 1 A ω θ 1 ω ω k, d dp a.e. o, T. Hece 3 k. For ay S,T, 1A θ A cθ 2 db 1 2 θ 1 db 1 θ A c 2 θ 1 db 1 } θ A c exp 2 Y + = 1 A E 1 Y + E 1 Y + 1 P a.. = E Z 3,T Y A cz 2,T, θ 1 3 F = E 1 Y + F 3 Y + F + 1 A ce 2 Y + F E 2 Y A c θ 2 2 } θ 2 db 1 2 θ 2 db 1 2 } θ 2 2 } θ 2 2 F 2, θ 2 1 F E 2 Y F, P a } F F above, oe obai ha 2 F P a.. provig Appealig o he baic properie o he eeial iimum e.g., Neveu 1975, Propoiio VI-1-1, we ca id a equece },k uch ha 3.9 hol. = e up S,T E 3 N i k 2 Takig eeial uprema over S,T o boh ide o 5.17, we ca deduce rom Lemma 2.1 ha R 3 Y + 3 F = 1 A e up S,T E 1 Y + = 1 A R A cr 2, P a.. 1 F + 1 A c e upe 2 S,T Y + 2 F Takig A = R 1 R 2 } F yiel ha R 3 = R 1 R 2, P a.., hu he amily R } k i direced dowwar. Applyig Propoiio VI-1-1 o Neveu 1975 oce agai, oe ca id a equece k } N i k uch ha 3.10 hol. Proo o Lemma 3.3: Le 1, 2 k. We deie he oppig ime = τ 1 τ 2 S,T ad he eve A = R 1,0 R 2,0 } F. I i clear ha θ 3 = 1 >} 1 A θ A cθ 2, 0, T 5.18 orm a predicable proce, hu we ca deie a probabiliy meaure 3 M e by d 3 /dp = E θ 3 B T. By aalogy wih 5.15, we have, θ 3 = 1>} 1 A, θ 1 + 1A c, θ 2, d dp a.e which ogeher wih 5.18 implie ha θ 3 = 0, d dp a.e. o 0, ad θ 3 ω, ω, θ 3 ω k, d dp a.e. o, T. Hece 3 k k, hak o Remark 3.2. Moreover, by aalogy wih 5.16, we ca deduce ha or ay S,T we have Z 3, = 1 AZ 1, + 1 A cz2,, P a

16 Opimal Soppig or Dyamic Covex Rik Meaure 16 Now ix 0, T. For ay σ S,T, 5.20 how ha Z 3,σ = Z3,σ Z 3, = 1 A Z 1,σ Z 1, + 1 A c ad Baye Rule ogeher wih 5.19 imply he σ E 3 Y σ + 3 F = E = E 1 A Z 1,σ σ = 1 A E 1 Y σ + σ Y σ + Z 3,σ Z 2,σ Z 2, σ Y σ A c Z 2,σ 1 F + 1 A c E 2 Y σ + = 1 A Z 1,σ + 1 A cz 2,σ, 3 F σ Y σ + σ P a.., 2 F 2 F, P a.. Takig eeial uprema over σ S,T o boh ide above, we ca deduce rom Lemma 2.1 a well a 3.3 ha R 3,0 = R 3 = 1 A R A cr 2 = 1 A R 1,0 + 1 A cr 2,0, P a.. Sice R i,0, i = 1, 2, 3 are all RCLL procee, we have R 3,0 = 1 A R 1,0 + 1 A cr 2,0, e N, ad hi implie } } τ 3 = i, T : R 3,0 = Y i, T : R 3,0 = Y = 1 A i, T : R 1,0 = Y } + 1 A c i 0, T ouide a ull, T : R 2,0 = Y }, P a Sice R j,0 τ j = Y τ j, P a.. or j = 1, 2, ad ice = τ τ1 2, i hol P a.. ha Y i equal eiher o R 1,0 or o R 2,0. The he deiiio o he e A how ha R 1,0 = Y hol P a.. o A, ad ha = Y hol P a.. o A c, boh o which urher imply ha R 2,0 1 A i, T : R 1,0 = Y } = 1 A ad 1 A c i, T : R 2,0 = Y } = 1 A c, P a.. We coclude rom 5.21 ha τ 3 = τ 1 τ 2 hol P a.., hece he amily τ } k i } direced dowwar. Thak o Neveu 1975, page 121, we ca id a equece k i k, uch ha τ k = e i k τ = lim τk, P a.. The limi lim τk Proo o Lemma 3.4: I i eay o ee rom 3.12 ad 3 ha ad ha A a reul E N i alo a oppig ime i S,T. θ = θ = 0, d dp a.e. o 0,, 5.22, θ = 1 }, θ = E T + E, θ e E T + E k E + 1>}, θ e, d dp a.e kt <, hu. I k, we ee rom 3.12 ad 5.23 ha θ θ ω, ω, ω, θ ω k d dp a.e. o,, ω, θ ω = θ e ω, ω, θ e ω k d dp a.e. o, T,

17 5.1 Proo o he Reul i Secio 2 ad 3 17 which, ogeher wih 5.22, how ha k. E Now we ix σ S,T. For ay δ S σ,t, Baye Rule how δ δ Y δ + F σ = E Y δ +, θ e F σ = E e Y δ + σ ad 3.3 implie R,0 σ = R σ = e up δ S σ,t E = e up δ S σ,t E e σ Y δ + Y δ + δ σ δ σ δ σ, θ e F σ, P a.., F σ, θ e F σ = R e,0 σ = R e σ, P a.. Proo o Theorem 3.1: Fix. For ay m, k N, we coider he probabiliy meaure m,k k a deied i 5.5. I ligh o Lemma 3.3, or ay l N here exi a equece l } uch ha τ l = lim τl, P a.. Now le k, l, m, N wih k l. Lemma 3.4 implie ha he predicable proce θ m,k,l iduce a probabiliy meaure m,k,l R m,k,l,0 τ l = R l,0 τ l = 1 τl }θ m,k l via d m,k,l + 1 >τl }θ l, 0, T N i l = E θ m,k,l B dp, uch ha or ay 0, T, we have T, P a.. Sice Rm,k,l,0 ad R l,0 are boh RCLL procee, ouide a ull e N we have R m,k,l,0 τ l ad hi, ogeher wih he ac ha τ l τ m,k,l τ m,k,l = i = i, T : R m,k,l,0 } = Y = i τ l, T } : R l,0 = Y = i Similar o 5.6, we have, θ m,k,l = 1 τl } The oe ca deduce rom 5.24 ad 5.25 ha V = e i R R m,k,l = E m,k,l = E + E Y τ l Z m,k,l,τ l Z m,k,τ l τ l + τ l m,k Z,τ l Y τ l Y + lt E Z m,k,l τl +E m,k = R l,0 τ l, 0, T τ l, P a.. implie, θ m,k + 1 >τl } =E m,k,l Y τ m,k,l, θ m,k,l Y τ l τ l +,τ l, θ m,k τ l τ l + τ l, T : R m,k,l,0 } = Y, T } : R l,0 = Y = τ l, P a τ l, θ l, θ l, d dp a.e m,k,l, θ m,k,l F τ + τl F + E m,k, θ l F τl F + E m,k + E, θ m,k,l F m,k F Z m,k,τ l F Z m,k,τ l Y + k τ τ l l τl F F, P a

18 Opimal Soppig or Dyamic Covex Rik Meaure 18 τ l 2 τ l Becaue E θ l db = E θ l 2 l 2 E τ l τl, which goe o zero a, τ l τ l } uig imilar argume o hoe ha lead o 5.8, we ca id a ubequece o l we ill deoe i by N } l m,k,l uch ha lim N Z = Z m,k,τ l,τ l, P a.. Sice E Z m,k,l F = E Z m,k,τ l,τ l F = 1, P a.. or ay N, Scheé Lemma implie Z lim E m,k,l m,k Z,τ l F = 0, P a ,τ l O he oher had, ice Z m,k,τ l Y + k τ τ l l τl Z m,k,τ l Y + kt, P a.., ad ice Y i righ-coiuou, he Domiaed Covergece Theorem give lim E Z m,k,τ l Y + k τ τ l l τl F = E Z m,k,τ l Y τ l F = E m,k Yτl F, P a Thereore, leig i 5.26, we ca deduce rom 5.27 ad 5.28 ha τl V E m,k Y τl + m,k F, P a.. A l, he Bouded Covergece Theorem give V E m,k whece, ju a i 5.7, we deduce V E m,k Y τ + τ Y τ + Y + m Z E m,k +E Y τ + τ τ m,k F, P a.. m,k F,τ Z,τ δm F + Y E Z Z,τ δm,τ F F, P a Z By aalogy wih 5.8 ad 5.10, oe ca how ha or ay m N we have lim E m,k,τ Z,τ δm F = 0, Z P a.. ad ha lim E Z m,τ δm,τ F = 0, P a.. Thereore, leig k ad ubequely leig m i 5.29, we obai τ V E Y τ + F, P a.. Takig he eeial iimum o he righ-had-ide over yiel τ V e i E Y τ +, θ F e up e i E Y +, θ F = V V, P a.. S,T ad he reul ollow.

19 5.1 Proo o he Reul i Secio 2 ad 3 19 Proo o Propoiio 3.2: For each ixed k N, here exi o he regh o Lemma 3.3 a equece k } N i k uch ha τ k = lim k k τk, P a.. For ay N, he predicable proce θ ek k by d = E k B T k τ k k σ k ad τ ek dp = Zk = i, T : R e k,0 We alo kow rom Lemma 3.4 ha or ay 0, T : R e k,0 Sice R e k,0 ad R k = 1 >τk }θ k, 0, T iduce a probabiliy meaure τ k,t dp. Sice σ = τ τ k τ ek, P a.., we have } ek = Y = i σ, T : R,0 } e = Y = τ k σ, P a τ k = Rk,0 τ k, P a..,0 are boh RCLL procee, here exi a ull e N ouide which we have R e k,0 τ k = R k,0 τ k, 0, T. By aalogy wih 5.24 ad 5.6, repecively, we have ad, θ ek τ e k = τ k, P a = 1>τk }, θ k, d dp a.e. The we ca deduce rom 5.30, 5.31 ha V σ = V σ = e i R σ R e k σ τ k = E e k Y + 1 τ k >τk } = E Z ek 1 σ,τ k σ Y τ k σ = E e k + τ Z E k Y τ k, θ k k τ k τ k +E Y +, θ k τ k τ k F σ Y + kt E Z k 1 τ k,τ k F σ + E Ju a i 5.27, i ca how ha lim 1 Covergece Theorem implie lim E Y τ k τ k,τ k τ + σ F σ, θ k + k τ k τk Fσ = E F σ k F σ Y + k τ τ k k F σ 1 >τk }, θ k F σ τk F σ, P a = 0, P a..; o he oher had, he Bouded Y τk F σ, P a.. Leig i 5.32 yiel V σ E Y τk, P a.., ad applyig he Bouded Covergece Theorem we obai V σ lim E Y τk Fσ = E YσFσ = Yσ, P a.. The revere iequaliy i raher obviou. Proo o Propoiio 3.3: Fix k N. I ligh o 3.10, we ca id a equece k } N k uch ha e i R = lim Rk, P a k For ay N, Lemma 3.4 implie ha he predicable proce θ ek a probabiliy meaure k P a.. Sice τ τ ek V R e k = E e k = E R k + k via d = E θ e k B = 1 } θ +1 >}θ k, 0, T iduce = R k, T dp, uch ha or ay 0, T, R e k, P a.., applyig 3.4 yiel R e k +, θ e k F = E e k R k + F, θ F, P a

20 Opimal Soppig or Dyamic Covex Rik Meaure 20 I ollow rom 3.2 ha Y Y R k Y + kt, P a Leig i 5.34, we ca deduce rom he Bouded Covergece Theorem ha V E lim Rk F + E F = E e i R +, θ k F, P a.. Leig i 5.35, oe ee rom 5.33 ha Y e i R Y + kt hol P a.., ad hi k lea o Y e i k R e i R Y + T, 1 P a.. From he Bouded Covergece Theorem ad Lemma 3.1 we obai ow V E e i R F + E F = E V + lim k, θ F, P a.. Proo o Lemma 3.5: Fix k N. For ay k, he predicable proce θ e = 1 > } θ, 0, T iduce a probabiliy meaure by d /dp = E B = T Z,T. Remark 3.2 how ha k k k. By aalogy wih 5.6, we have, θ e = 1 > }, θ, d dp a.e. The oe ca deduce ha σ 1 =} E e Y σ +, θ e σ F = 1 =} E e Y σ + 1 > } F σ = E e 1 =} Y σ + σ F = E E 1 =} Y σ + F F = E which implie 1 =} E Y σ + 1 =} E Y σ + σ σ F F = 1 =} E Y σ + F σ, θ F, P a.., 5.36 σ 1 =} e i E Y σ +, θ k F, P a.. Takig he eeial iimum o he le-had-ide over k, oe ca deduce rom Lemma 2.1 ha σ 1 =} e i E Y σ +, θ σ k F = e i 1 =} E Y σ +, θ k F Leig k, we ee rom Lemma ha σ 1 =} e i E Y σ + F Reverig he role o ad, we obai =} e i E Y σ + k 1 =} e i E σ, θ F, P a.. σ Y σ + F, P a.. O he oher had, akig eeial upremum over σ S 0,T o boh ide o 5.36, we ca deduce rom Lemma 2.1 ha σ 1 =} R e = e up1 =} E e Y σ +, θ e F σ S 0,T = e up σ S 0,T 1 =} E Y σ + σ F = 1 =} R, P a..

21 5.1 Proo o he Reul i Secio 2 ad 3 21 which implie ha 1 =} R 1 =} e i R, P a.. Takig he eeial iimum o he le-had-ide k over k, oe ca deduce rom Lemma 2.1 ha 1 =} e i k R = e i k 1 =} R 1 =} e i R, k P a.. Leig k, we ee rom Lemma ha 1 =} V = 1 =} e i R 1 =} e i R = 1 =} V, P a.. Reverig he role o ad, we obai Proo o Theorem 3.2: Proo o 1. Sep 1: For ay σ, S 0,T, we deie We ee rom 3.7 ha e i E Y σ + Ψ σ = 1 σ } Y σ +1 σ>} e i E σ F = lim Fix k N. I ligh o 3.9, we ca id a equece e i k k σ e i E Y σ +, θ k F = lim E k By aalogy wih 5.35, we have Y E k P a..; leig, we ee rom 5.38 ha Thereore, Y e i E Y σ + k σ Y σ + F. } σ E Y σ + F, P a i N k uch ha σ Y σ +, θ k F, P a σ Y σ +, θ k F Y + kt 5.39 σ σ Y e i E Y σ + k Leig k, we ee rom 5.37 ha which implie ha Y e i E Le S 0,T. I ollow rom 3.16 ha e i E Y σ + 1 Y σ + 1 =} Ψ σ = 1 σ =} Y σ + 1 σ>=} e i σ F Y + kt, σ P a.. F F Y + T, P a F Y + T, P a.. Y Ψ σ Y + T, P a E = 1 σ =} Y σ + 1 σ>=} e i E Y σ + Y σ + σ σ F, θ F = 1 =} Ψ σ, P a

22 Opimal Soppig or Dyamic Covex Rik Meaure 22 Sep 2: Fix σ S 0,T. For ay S 0,T, S,T ad k N, we le i The we ca deduce ha Ψ σ 1 σ } Y σ +1 σ>} E k = E k = 1 σ } Y σ +1 σ>} E = E 1 σ } Y σ +1 σ>} E k O he oher had, i hol P a.. ha σ 1 σ>} E k Y σ +, θ k F σ 1 σ>} Y σ + ad ha 1 <σ } E k = E k k } N k be he equece decribed σ Y σ +, θ k F σ E k Y σ +, θ k F F σ Y σ +, θ k F F, P a = E k, θ k 1 σ>} Y σ + F σ = 1 σ>} E k σ Y σ +, θ k F = E k 1 <σ } Y σ + 1 <σ } Y σ F = 1 <σ } Y σ = 1 <σ } Y σ ;, θ k F σ Y σ +, θ k F σ, θ k F recall he deiiio o he clae P, rom ubecio 1.1. Thereore, 5.43 reduce o σ Ψ σ E 1 σ } Y σ +1 σ>} E k Y σ +, θ k F F, P a.. We obai he rom 5.38, 5.39 ad he Bouded Covergece Theorem, ha σ Ψ σ 1 σ } Y σ +1 σ>} E k Y σ +, θ k = E lim E 1 σ } Y σ +1 σ>} e i E Y σ + k σ, θ k F F F F, P a.. O he oher had, we ca deduce rom 5.37, 5.40 ad he Bouded Covergece Theorem oce agai ha σ Ψ σ lim E 1 σ } Y σ +1 σ>} e i E Y σ +, θ k F k F σ = E 1 σ } Y σ +1 σ>} e i E Y σ + F F = E Ψ σ F, P a.., 5.44 which implie ha Ψ σ } 0,T i a ubmarigale. Thereore Karaza ad Shreve 1991, Propoiio how ha P he limi Ψ σ,+ = lim Ψσ q exi or ay 0, T = where q = 2 2 T, ad ha Ψ σ,+ i a RCLL proce. Sep 3: For ay S 0,T ad N, q ake value i a iie e DT = 0, T k2 } k Z T }. Give a λ DT, i hol or ay m ha q mλ = λ ice DT Dm T. I ollow rom 5.45 ha Ψ σ,+ λ = lim m Ψσ q m λ = Ψ σ λ, P a..

23 5.1 Proo o he Reul i Secio 2 ad 3 23 The oe ca deduce rom 5.42 ha Ψ σ,+ q = λ D T 1 q=λ}ψ σ,+ λ = λ D T 1 q=λ}ψ σ λ = Thu he righ-coiuiy o he proce Ψ σ,+ implie ha λ D T 1 q=λ}ψ σ q = Ψ σ q, P a.. Ψ σ,+ Hece 5.44, 5.41 ad he Bouded Covergece Theorem imply = lim Ψσ,+ q = lim Ψσ q, P a Ψ σ lim E Ψ σ q F = E Ψ σ,+ F = Ψ σ,+, P a I he la equaliy we ued he ac ha Ψ σ,+ Browia ilraio F. = lim Ψσ q F, hak o he righ-coiuiy o he Sep 4: Se, S 0,T ad = τ, = τ q, N. Now, le σ S,T. Sice lim τ>q } = 1 τ>} ad τ > } q = q τ }, τ > q } q = τ q }, N, oe ca deduce rom 5.47, 5.46, ad 5.42 ha 1 τ>} Ψ σ 1 τ>} Ψ σ,+ = 1 τ>} lim Ψσ q = lim 1 τ>}ψ σ q τ = lim 1 τ>}ψ σ q = lim 1 τ>q }Ψ σ q = lim 1 τ>q }Ψ σ τ q = 1 τ>} lim Ψσ, P a For ay N, we ee rom 3.14 ad Lemma 2.1 ha V β = V = e up e i E Y β +, θ F β S,T σ e i E Y σ +, θ F σ = e i E 1 σ }Y +1 σ>} Y σ + F σ = e i 1 σ }Y +1 σ>}e Y σ +, θ F σ = 1 σ }Y +1 σ>}e i E Y σ + F, P a.. Sice τ } = = τ} ad σ > } σ > }, i ollow rom 3.16 ha V 1 σ }Y +1 σ>,τ>}e i E +1 σ>,τ }e i E Y σ + σ Y σ + σ F F = 1 σ }Y +1 σ>,τ>}ψ σ + 1 σ>,τ }Ψ σ, P a..

24 Opimal Soppig or Dyamic Covex Rik Meaure 24 A, he righ-coiuiy o procee Y, 5.48 a well a Lemma 2.1 how ha lim V 1 σ=} Y +1 σ>,τ>} lim Ψσ + 1 σ>,τ } Ψ σ 1 σ=} Y + 1 σ>} Ψ σ = 1 σ=} Y + 1 σ>} e i E 1 σ=} Y + 1 σ>} E = e i = e i E = e i E Y σ + 1 σ=} Y + 1 σ>} Y σ + Y σ + σ, θ σ σ F, P a.. Y σ + F F σ F Takig he eeial upremum o he righ-had-ide over σ S,T, we obai σ lim V e up e i E Y σ +, θ F = V = V, σ S,T P a Le u how he revere iequaliy. Fix ad N. For ay k, m N, he predicable proce iduce a probabiliy meaure m,k δ, m θ m,k = 1 < δ, m k by d m,k } 1 A θ, 0, T,k = E = i, T : θ m,k B T dp, where δ, m > m } T, m N. For ay β S,T, uig argume imilar o hoe ha lead o 5.7, we obai β Y β +, θ m,k F Y + m Z E m,k E m,k e i R k Z + Y E,δm, Z,T F R m,k Y + m E,T Z,δ, m The akig he eeial upremum o boh ide over β S,T yiel ha Z m,k Ju a i 5.8, we ca how ha Z + Y E,δm, lim E Z m,k,t Z,δ, m F i deied by β + E Y β + F, P a..,t Z,δm, F Z,T F + R, P a F = 0, P a.. Thereore, leig k i 5.50, we kow rom Lemma ha Z V = lim e i R Y E Z k,δm,,t F + R, P a Z Nex, by aalogy wih 5.10, we have lim E Z m,δm,,t F = 0, P a.. Leig m i 5.51, we obai V R = R,0, P a.. rom 3.3. The he righ-coiuiy o he proce R,0, a well a 3.3, imply ha lim V lim R,0 = R,0 = R, P a..

25 5.1 Proo o he Reul i Secio 2 ad 3 25 Takig he eeial iimum o R over yiel lim V e i R = V = V, P a.. Thi iequaliy, ogeher wih 5.49, how ha lim V τ q = V τ, P a Sep 5: Now ix S 0,T. I i clear ha P ad ha θ P 0. For ay 0, T, 3.17 implie ha 1 } V τ = 1 } V τ, P a.., ice } τ = τ }. The we ca deduce rom 3.15, 3, ad 3.14 ha or ay 0, 1 } V τ = 1 } V τ 1 } E V τ τ + r, θr P dr F τ τ = 1 } E V τ F τ = E 1 } V τ F τ E 1 } V τ + 1 >} Y F τ = E E 1 } V τ + Y F τ F 1 } Y = E 1 } V τ + Y F 1 } Y, P a.., } which how ha 1 } V τ + Y i a ubmarigale. Hece i ollow rom Karaza ad Shreve 0,T 1991, Propoiio ha P he limi V 0, = lim 1 q }V τ q exi or ay 0, T ad ha V 0, i a RCLL proce. Le S 0,T ake value i a iie e 1 < < m }. For ay λ 1 m} ad N, ice = λ } τ q = τ q λ }, oe ca deduce rom 3.17 ha A, 5.52 how 1 =λ }V τ q = 1 =λ }V τ q λ, P a.. = 1, 1 =λ }V 0, = 1 =λ }V 0, λ = 1 λ } lim = λ }V τ q λ = 1 λ } lim = λ }V τ q = 1 } 1 =λ }V τ, P a.. Summig he above expreio over λ, we obai V 0, righ-coiuiy o he proce V 0, ad 5.52 imply = 1 } V τ, P a.. The or ay S 0,T, he V 0, = lim V 0, q = lim 1 q }V τ q = 1 } V τ, P a.., provig I paricular, V 0, i a RCLL modiicaio o he proce 1 } V τ } 0,T. Proo o Theorem 3.2: Proo o 2. Propoiio 3.2 ad 3.18 imply ha V 0, τ = V τ = Y τ, P a.. Hece we ca deduce rom he righ-coiuiy o procee V 0, ad Y ha τ V i 3.19 i a oppig ime belogig o S,τ ad ha Y τv = V 0, τ V = V τ V, P a..,

26 Opimal Soppig or Dyamic Covex Rik Meaure 26 where he ecod equaliy i due o The i ollow rom 3.15 ha or ay τv V E V τ V + τv F = E Y τv + F, P a.. Takig he eeial iimum o he righ-had-ide over yiel ha τv V e i E Y τv +, θ F e up e i E Y +, θ F = V = V, P a.., S,T rom which he claim ollow. 5.2 Proo o he Reul i Secio 4 Proo o Theorem 4.1: I i eay o ee rom i ha Y σ = V σ = R σ, P a which ogeher wih ii ad iii how ha or ay 0 E Y σ = E V σ = V 0 = V 0 E V σ = E Y σ. Thu he ecod iequaliy i 4.1 hol or, σ. Now we how ha, σ aiie he ir iequaliy i 4.1 i hree ep: Whe S 0,σ, propery iii ad 5.53 imply ha V = E V σ F = E Y E Y + R σ + σ Y Takig he expecaio E o boh ide yiel ha E Y E Y σ. Whe S σ,t, i ollow rom 5.53 ha E Y σ Fσ = E + E σ 0 σ F, P a = E 0 Y σ. For a geeral oppig ime S 0,T, le u deie 1 = σ S 0,σ ad 2 = σ S σ,t. Sice σ } F σ = F 1, oe ca deduce rom 5.54 ha E Y = E E 1 σ }Y >σ }Y Fσ 2 = E 1 σ }Y >σ }E Y Fσ 2 σ E 1 σ }Y >σ } R σ + 0 = E 1 σ }Y >σ }Yσ = E 1 σ }Y >σ }E Y σ F1 E 1 σ }E Y σ F1 + 1 >σ }E Y σ F1 = E Y σ. Proo o Lemma 4.1: Fix 0, T. For ay S,T, we ee rom 4.5 ha Γ = Γ +, + K K Z db,, P a..

27 Reerece 27 Applyig E, F o boh ide, we obai Γ = E, E, Γ + Y +, θ, + K K F, θ, 5.55 F, P a Le σ = i, T : Γ = Y } S,T. The la-o codiio aiied by Γ, Z, K, ad he coiuiy o K, imply ha 0 = 1 e d K Γ>Y } =,σ d K = lim K K = K σ,σ րσ K, P a.. Hece, akig = σ i 5.55, we obai he P a.. propery Γ = E, which, ogeher wih 5.56 ad 3.3, how ha Γ = e up E, Y + S,T, θ, F Y σ + σ = R, = R,,0, P a.., θ, F The he righ-coiuiy o he procee Γ ad R,,0 implie 4.6. Proo o Theorem 4.2 : We hall how ha, τ 0 aiie codiio i-iii o Theorem 4.1: 1 I ollow eaily rom Propoiio 3.1 ha Y τ 0 = R,0 τ 0 = R τ 0, P a.. 2 For ay k N ad k 0, we ca deduce rom 4.9, he righ-coiuiy o procee R,0 ad Γ, a well a 4.8 ha P a.. R,0 = Γ R,0, 0, T. I paricular, we have Y τ 0 R,0 τ 0 = R,0 τ 0 = Y τ 0, P a.. Hece Y τ 0 = R,0, P a.., which implie τ 0 urher ha τ 0 τ 0, P a.. Takig he eeial iimum o righ-had-ide over k 0 ad leig k, we deduce ha, i he oaio o 3.11, we have τ 0 lim e i τ 0 = τ0, P a.. The 3.15 how V 0 E V τ 0 or ay 0. 3 For ay S 0,τ 0, ad ice τ 0 τ hol P a.., oe ca deduce rom 4.9 ad 3.4 ha V = R + = E 0 R τ 0 +, θ = E τ 0 0 R τ 0 +, θ F = E τ 0 k 0 F + 0, θ V τ 0 F, P a.. Reerece E. Bayrakar ad S. Yao. Opimal oppig or oliear expecaio. Techical repor, Uiveriy o Michiga, Available a hp://arxiv.org/ab/ V. E. Beeš. Exiece o opimal raegie baed o peciied iormaio, or a cla o ochaic deciio problem. SIAM J. Corol, 8: , ISSN J. Bio-Nadal. Time coie dyamic rik procee. Sochaic Proce. Appl., 1192: , ISSN

28 Opimal Soppig or Dyamic Covex Rik Meaure 28 P. Cheridio, F. Delbae, ad M. Kupper. Dyamic moeary rik meaure or bouded dicree-ime procee. Elecro. J. Probab., 11:o. 3, elecroic, ISSN F. Delbae. The rucure o m-able e ad i paricular o he e o rik eural meaure. I I memoriam Paul-Adré Meyer: Sémiaire de Probabilié XXXIX, volume 1874 o Lecure Noe i Mah., page Spriger, Berli, F. Delbae, S. Peg, ad E. Roazza-Giai. Repreeaio o he pealy erm o dyamic cocave uiliie. Techical repor, ETH, Available a hp://arxiv.org/ab/ N. El Karoui. Le apec probabilie du corôle ochaique. I Nih Sai Flour Probabiliy Summer School 1979 Sai Flour, 1979, volume 876 o Lecure Noe i Mah., page Spriger, Berli, N. El Karoui, C. Kapoudjia, E. Pardoux, S. Peg, ad M. C. ueez. Releced oluio o backward SDE, ad relaed obacle problem or PDE. A. Probab., 252: , ISSN R. J. Ellio. Sochaic calculu ad applicaio, volume 18 o Applicaio o Mahemaic New York. Spriger- Verlag, New York, ISBN H. Föllmer ad I. Peer. Covex rik meaure ad he dyamic o heir pealy ucio. Sai. Deciio, 241:61 96, ISSN H. Föllmer ad A. Schied. Sochaic iace, volume 27 o de Gruyer Sudie i Mahemaic. Waler de Gruyer & Co., Berli, exeded ediio, ISBN A iroducio i dicree ime. I. Karaza ad S. E. Shreve. Browia moio ad ochaic calculu, volume 113 o Graduae Tex i Mahemaic. Spriger-Verlag, New York, ecod ediio, ISBN I. Karaza ad S. E. Shreve. Meho o mahemaical iace, volume 39 o Applicaio o Mahemaic New York. Spriger-Verlag, New York, ISBN I. Karaza ad I. M. Zamirecu. Marigale approach o ochaic corol wih dicreioary oppig. Appl. Mah. Opim., 532: , ISSN I. Karaza ad I. M. Zamirecu. Marigale approach o ochaic diereial game o corol ad oppig. A. Probab., 364: , ISSN N. Kazamaki. Coiuou expoeial marigale ad BMO, volume 1579 o Lecure Noe i Mahemaic. Spriger-Verlag, Berli, ISBN S. Klöppel ad M. Schweizer. Dyamic idierece valuaio via covex rik meaure. Mah. Fiace, 174: , ISSN M. Kobylaki, J. P. Lepelier, M. C. ueez, ad S. Torre. Releced BSDE wih uperliear quadraic coeicie. Probab. Mah. Sai., 221, Aca Uiv. Wrailav. No. 2409:51 83, ISSN J.-P. Lepelier. O a geeral zero-um ochaic game wih oppig raegy or oe player ad coiuou raegy or he oher. Probab. Mah. Sai., 61:43 50, ISSN J. Neveu. Dicree-parameer marigale. Norh-Hollad Publihig Co., Amerdam, revied ediio, Tralaed rom he Frech by T. P. Speed, Norh-Hollad Mahemaical Library, Vol. 10. R. T. Rockaellar. Covex aalyi. Priceo Ladmark i Mahemaic. Priceo Uiveriy Pre, Priceo, NJ, ISBN Repri o he 1970 origial, Priceo Paperback. D. William. Probabiliy wih marigale. Cambridge Mahemaical Texbook. Cambridge Uiveriy Pre, Cambridge, ISBN X;

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

α ]0,1[ of Trigonometric Fourier Series and its Conjugate aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM DIFFERENIAL EQUAIONS AND CONROL PROCESSES 4, 8 Elecroic Joural, reg. P375 a 7.3.97 ISSN 87-7 hp://www.ewa.ru/joural hp://www.mah.spbu.ru/user/diffjoural e-mail: jodiff@mail.ru Oscillaio, Secod order, Half-liear

Διαβάστε περισσότερα

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION TAIWANESE JOURNAL OF MATHEMATICS Vol 8, No 5, pp 65-66, Ocober 04 DOI: 0650/m804665 Th paper avalable ole a hp://ouralawamahocorw A NOTE ON ENNOLA RELATION Jae Moo Km ad Jado Ryu* Abrac Eola ve a example

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

Η ΥΠΟΓΡΑΦΗ ΕΝΟΣ ΜΟΝΟΤΟΝΟΥ ΣΥΣΤΗΜΑΤΟΣ

Η ΥΠΟΓΡΑΦΗ ΕΝΟΣ ΜΟΝΟΤΟΝΟΥ ΣΥΣΤΗΜΑΤΟΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (00) σελ.373-38 Η ΥΠΟΓΡΑΦΗ ΕΝΟΣ ΜΟΝΟΤΟΝΟΥ ΣΥΣΤΗΜΑΤΟΣ Γιάννης Σ. Τριανταφύλλου, Μάρκος Β. Κούτρας Πανεπιστήμιο Πειραιώς,, Τμήμα

Διαβάστε περισσότερα

8. The Normalized Least-Squares Estimator with Exponential Forgetting

8. The Normalized Least-Squares Estimator with Exponential Forgetting Lecure 5 8. he Normalized Leas-Squares Esimaor wih Expoeial Forgeig his secio is devoed o he mehod of Leas-Squares wih expoeial forgeig ad ormalizaio. Expoeial forgeig of daa is a very useful echique i

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

Xiaoquan (Michael) Zhang

Xiaoquan (Michael) Zhang RESEARCH ARTICLE HO DOES THE INTERNET AFFECT THE FINANCIAL MARKET? AN EQUILIBRIUM MODEL OF INTERNET-FACILITATED FEEDBACK TRADING Xiaoquan (Michael) Zhang School of Buine and Managemen, Hong Kong Unieriy

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC Pulrik A. D. Diribui, Del Fuci The Hbk f Frmul Tble fr Sigl Prceig. E. Aleer D. Pulrik Bc R: CRC Pre LLC, 999 5 Diribui, Del Fuci 5. Te Fuci 5. Diribui 5.3 Oe-Dimeil Del Fuci 5.4 Emple 5.5 Tw-Dimeil Del

Διαβάστε περισσότερα

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2. ECE 3 Mh le Sprig, 997. Fucio d Operor, (. ic( i( π (. ( β,, π (.3 Im, Re (.4 δ(, ; δ( d, < (.5 u( 5., (.6 rec u( + 5. u( 5., > rc( β /, π + rc( β /,

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Υπόδειγµα Προεξόφλησης

Υπόδειγµα Προεξόφλησης Αρτίκης Γ. Παναγιώτης Υπόδειγµα Προεξόφλησης Μερισµάτων Γενικό Υπόδειγµα (Geeral Model) Ταµειακές ροές από αγορά µετοχών: Μερίσµατα κατά την διάρκεια κατοχής των µετοχών Μια αναµενόµενη τιµή στο τέλος

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

arxiv: v1 [math.pr] 13 Jul 2010

arxiv: v1 [math.pr] 13 Jul 2010 L Soluo of Bacward Sochac Dffereal quao wh Jum Sog Yao arv:17.6v1 mah.pr 13 Jul 1 Abrac I h aer, we udy a mul-dmeoal bacward ochac dffereal equao wh jum BSDJ ha ha o-lchz geeraor ad ubouded radom me horzo.

Διαβάστε περισσότερα

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey Epanion and one-range addiion heore for coplee orhonoral e of pinor wave funcion and Slaer pinor orbial of arbirary half-inegral pin in poiion oenu and four-dienional pace I.I. Gueinov Deparen of Phyic

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear Advaces i Pure Mahemaics 8 8 - hp://wwwscirporg/oural/apm ISSN Olie: 6-384 ISSN Pri: 6-368 The Esimaes of he Upper Bouds of Hausdorff Dimesios for he Global Aracor for a Class of Noliear Coupled Kirchhoff-Type

Διαβάστε περισσότερα

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds Chi. A. Mah. 36B(, 05, 57 66 DOI: 0.007/s40-04-0876- Chiese Aals of Mahemaics, Series B c The Ediorial Office of CAM ad Spriger-Verlag Berli Heidelberg 05 Gradie Esimaes for a Noliear Parabolic Equaio

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model Inernaional Journal of Modern Nonlinear Theory and Applicaion, 6, 5, 8-9 Publihed Online March 6 in SciRe hp://wwwcirporg/journal/ijmna hp://dxdoiorg/36/ijmna659 Global Aracor for a la of Nonlinear Generalized

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c &&

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space Adv. Sudies Theor. Phys., Vol. 4, 2010, o. 11, 557-564 Irisic Geomery of he NLS Equaio ad Hea Sysem i 3-Dimesioal Mikowski Space Nevi Gürüz Osmagazi Uiversiy, Mahemaics Deparme 26480 Eskişehir, Turkey

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Maximum Flow

Αλγόριθμοι και πολυπλοκότητα Maximum Flow ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Maximm Flo Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Maximm Flo χ 3/5 4/6 4/7 1/9 3/5 5/11/2008 11:05 PM Maximm Flo 1 Oline and Reading

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems Hindawi Publihing Corporation Boundary Value Problem Volume 27, Article ID 68758, 1 page doi:1.1155/27/68758 Reearch Article Exitence of Poitive Solution for Fourth-Order Three-Point Boundary Value Problem

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

Maximum Principle and the Applications of Mean-Field Backward Doubly Stochastic System

Maximum Principle and the Applications of Mean-Field Backward Doubly Stochastic System Pre and Applied Mahemaic Jornal 5; 4(3: -8 Pblihed online Jne 8 5 (hp://wwwciencepblihinropcom/j/pamj doi: 648/jpamj5437 ISSN: 36-979 (Prin; ISSN: 36-98 (Online Maximm Principle and he Applicaion o Mean-Field

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

ECE145a / 218a Tuned Amplifier Design -basic gain relationships ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

arxiv: v1 [math.ap] 5 Apr 2018

arxiv: v1 [math.ap] 5 Apr 2018 Large-ime Behavior ad Far Field Asympoics of Soluios o he Navier-Sokes Equaios Masakazu Yamamoo 1 arxiv:184.1746v1 [mah.ap] 5 Apr 218 Absrac. Asympoic expasios of global soluios o he icompressible Navier-Sokes

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.

Διαβάστε περισσότερα

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ Συστήματα γεωγραφικών πληροφοριών 1 ος Κύκλος Εκπαίδευσης ο σεμινάριο Ιουνίου 0 Δρομολόγηση Η δρομολόγηση (rouing) είναι η διαδικασία εύρεσης των «καλύτερων» μονοπατιών

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Deterministic Policy Gradient Algorithms: Supplementary Material

Deterministic Policy Gradient Algorithms: Supplementary Material Determinitic Policy Gradient lgorithm: upplementary Material. Regularity Condition Within the text we have referred to regularity condition on the MDP: Regularity condition.1: p(, a), a p(, a), µ θ (),

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

UNIFIED FRACTIONAL INTEGRAL FORMULAE FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS

UNIFIED FRACTIONAL INTEGRAL FORMULAE FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS Joural o Sciece ad Ars Year 14 No 227 117-124 2014 OGNAL PAPE UNFED FACTONAL NTEGAL FOMULAE FO THE GENEALZED MTTAG-LEFFLE FUNCTONS DAYA LAL SUTHA 1 SUNL DUTT PUOHT 2 Mauscri received: 07042014; Acceed

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent Supplemetary Materials: Tradig Computatio for Commuicatio: istributed Stochastic ual Coordiate Ascet Tiabao Yag NEC Labs America, Cupertio, CA 954 tyag@ec-labs.com Proof of Theorem ad Theorem For the proof

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP Georg.otaetter@Corell.eu USPAS Avace Accelerator Phic - ue 6 CESS & EPP CESS & EPP 56 Setupole caue oliear aic which ca be chaotic a utable. l M co i i co l i i co co i i co l l l l ta ta α l ta co i i

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3)

Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3) CHAPTER 3 Oscillaios 3-. a) gram cm 4 k dye/cm sec cm ν sec π m π gram π gram π or, ν.6 Hz () or, π τ sec ν τ.63 sec () b) so ha 4 3 ka dye-cm E 4 E 4.5 erg c) The maximum velociy is aaied whe he oal eergy

Διαβάστε περισσότερα

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Το Λήμμα του Fejér και Εφαρμογές

Το Λήμμα του Fejér και Εφαρμογές Το Λήμμα του Fejér και Εφαρμογές Ανδρέας Καβατζικλής Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών & Φυσικών Επιστημών Τομέας Μαθηματικών Πολυτεχνειούπολη Ζωγράφου 57 8 Αθήνα e-mail: kaviros@ceral.ua.gr

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα