OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM"

Transcript

1 DIFFERENIAL EQUAIONS AND CONROL PROCESSES 4, 8 Elecroic Joural, reg. P375 a ISSN 87-7 hp:// hp:// jodiff@mail.ru Oscillaio, Secod order, Half-liear differeial equaios, Dampig. OSCILLAION CRIERIA FOR SECOND ORDER HALF-LINEAR DIFFERENIAL EQUAIONS WIH DAMPING ERM E. M. Elabbasy¹, A. A. S. Zaghrou² ad H. M. Elshebay³ ¹Deparme of Mahemaics, Faculy of Sciece, Masoura Uiversiy, Masoura, 3556, Egyp. emelabbasy@mas.edu.eg.,3 Deparme of Mahemaics, Faculy of Sciece, AI-Azhar Uiversiy, Nasr-ciy, P.O. Box Cairo, Egyp. afaf@yahoo.com. Absrac By usig averagig fucios, several ew oscillaio crieria are esablished for he half-liear damped differeial equaio - - dx dx - dx dx - r() ψ(x) +p() ϕ x x,r() ψ(x) +q() x x=, d d d d ad he more geeral equaio - - d dx dx dx dx r() ψ(x) +p() ϕ g(x),r() ψ(x) +q()g(x)=, d d d d d where p,q,r:[, ) R ad ψ,g: R R are coiuous, r()>, p() ad ψ(x)>, xg(x)> for x, > a fixed real umber. Our resuls geeralize ad exed some kow oscillaio crieria i he lieraure.

2 . INRODUCION Differeial Equaios ad Corol Processes, 4, 8 We are cocered wih he oscillaio of soluios of secod order differeial equaios wih dampig erms of he followig form - - dx dx - dx dx - r() ψ(x) +p() ϕ x x,r() ψ(x) +q() x x=, (.) d d d d ad he more geeral equaio - - d dx dx dx dx r() ψ(x) +p() ϕ g(x),r() ψ(x) +q()g(x)=, d d d d d (.) where r C[[, ),R + ], p C[[, ),[, )], q C[[, ),R], ψ C[R,R + ] ad g C¹[R,R] such ha xg(x)> for x ad g (x)> for x. φ is defied ad coiuous o R R-{} wih uφ(u,v)> for uv ad φ(λu, λv)= λφ(u,v) for <λ< ad (u,v) R R-{}. By oscillaio of equaio (.)[(.)], we mea a fucio x C¹([ x, ),R) for some - x, which has he propery ha dx dx ad saisfies equaio r() ψ (x) C ([ x, ), R) d d (.)[(.)] o [ x, ). A soluio of equaio (.)[(.)] is called oscillaory if i has arbirarily large zeros oherwise, i is called ooscillaory. Fially, equaio (.)[(.)] is called oscillaory if all is soluios are oscillaory. I Secio we provide sufficie codiios for he oscillaio of all soluios of (.). Several paricular cases of (.) have bee discussed i he lieraure. o cie a few examples, he differeial equaio d dx dx d d d - - r() +q() x x=, has bee sudied by [5]-[]. A more geeral equaio ha (.3) - d dx dx - r() ψ (x) +q() x x=, d d d (.3) (.4) has bee cosidered by [] ad []. Our resuls iclude, as special cases, kow oscillaio heorems for (.3), (.4). I paricular, we exed ad improve he resuls obaied i [3], [7], [] ad [4]. I Secio 3 we will esablish oscillaio crieria for equaio (.). Several paricular cases of (.) have bee discussed i he lieraure. o cie a few examples, he differeial equaio - d dx dx r() ψ (x) +q()g(x)=, d d d esablished by [6] ad [9] cosidered a special case of his equaio as (.5) Elecroic Joural. hp:// hp://

3 Differeial Equaios ad Corol Processes, 4, 8 - d dx dx r() d d d +q()g(x)=, Our resuls i his secio geeralize ad improve [7], [], [3] ad [8]. (.6). OSCILLAION RESULS FOR (.) I order o discuss our mai resuls, we eed he followig well-kow iequaliy which is due o Hardy e al. [4]. Lemma.. If X ad Y are oegaive, he λ λ λ X +( λ-)y -λxy, λ>, where equaliy hol if ad oly if X=Y. heorem.. Suppose, i addiio o codiios ϕ (,z) z for all z, (.) < ψ(x) γ for all x, (.) ha here exis differeiable fucios k, ρ :[, ) (, ) wih ρ() ad he coiuous fucio H : D {(,s): s } R ad h : D {(,s): >s } R, ad H has a coiuous ad oposiive parial derivaive o D wih respec o he secod variable such ha H(,)= for, H(,s)> for >s, ad - δ - (H(,s)k(s))=h(,s)(H(,s)k(s)) for all (,s) D. δs he equaio (.) is oscillaory if where γρ(s)r(s)r (, s) lim sup {H(,s) ρ(s)k(s)q(s)- }=, (.3) H(, ) / d ρ(s) R(,s)=h(,s)+(H(,s)k(s)) +p(s). ρ(s) Proof. O he corary we assume ha (.) has a ooscillaory soluio x(). We suppose wihou loss of geeraliy ha x()> for all [, ). We defie he fucio ω() as Elecroic Joural. hp:// hp:// 3

4 Differeial Equaios ad Corol Processes, 4, 8 - dx dx r() ψ(x) d d ω()= ρ() for -. x x hus - d dx dx r() ψ(x) dx ()r() (x) () () d d d ρ ψ dω dρ d = ω ()+ ρ () ( ). - d ρ() d x x x his ad equaio (.) imply - dω() dρ() ω() - ω()- ρ()[q()+p() ϕ(, )] ( )[ γρ()r()] ω(). d ρ() d ρ() From (.) we obai - dω() dρ() ω - ()- ρ ()q()-p() ω () ( )[ γρ ()r()] ω (). d ρ() d Muliply he above iequaliy by H(,s)k(s) ad iegrae from o we obai Sice d ρ(s) H(,s)k(s) ρ(s)q(s) H(,s)k(s) ω(s) ρ(s) dω(s) H(,s)k(s) ω(s) -H(,s)k(s)p(s) ω(s)-h(,s)k(s) ( ). /( -) [ γρ(s)r(s)] dω(s) d H(,s)k(s) =H(,)k() ω()+ (H(,s)k(s)) (s) ω he previous iequaliy becomes =H(,)k() ω()- h(,s)(h(,s)k(s)). - ω(s). Elecroic Joural. hp:// hp:// 4

5 Hece we have H(,s)k(s) ρ(s)q(s) H(,)k() ω() Differeial Equaios ad Corol Processes, 4, 8 d ρ(s) + H(,s)k(s) ω(s) + h(,s)(h(,s)k(s)) ω(s) ρ(s) H(,s)k(s) ω(s) + H(,s)k(s)p(s) ω(s) ( ). /( -) [ γρ(s)r(s)] H(,s)k(s) ρ(s)q(s) H(,)k() ω() H(,s)k(s) ω(s) ω /( -) [ γρ(s)r(s)] + R(,s)((H(,s)k(s)) (s) ( ). (.4) Defie / X = [ γρ(s)r(s)] [ R(, s)], Y = γρ ω / /( ) H(,s)k(s)[ (s)r(s)] (s) -. Sice >, he by Lemma., ( )/ ( )H(,s)k(s) γρ(s)r(s) R(,s)(H(,s)k(s)) (s) (s) ω ω R(,s), /( ) [ γρ(s)r(s)] for all >s. Moreover, by (.4) we also have for every, or γρ(s)r(s)r (,s) H(,s)k(s) ρ(s)q(s) H(,)k() ω()+, γρ(s)r(s)r (,s) H(,s)k(s) ρ(s)q(s)- H(,)k() () ω H(, )k() ω(). (.5) We use he above iequaliy for = o obai Elecroic Joural. hp:// hp:// 5

6 Differeial Equaios ad Corol Processes, 4, 8 γρ(s)r(s)r (,s) H(,s)k(s) ρ(s)q(s)- H(, )k( ) ω( ). herefore, γρ(s)r(s)r (,s) H(,s)k(s) ρ(s)q(s)- γρ(s)r(s)r (,s) = H(,s)k(s) ρ(s)q(s)- γρ(s)r(s)r (,s) + H(,s)k(s) ρ(s)q(s)-. H(, ) k(s) ρ(s) q(s) +k( ) ω( ), for all. his gives γρ(s)r(s)r (,s) lim sup H(,s)k(s) ρ(s)q(s)- H(, ) k(s) ρ(s)q(s)+k() ω() <, which coradics he assumpio (.3). his complees he proof. Corollary.. If he codiio (.3) is replaced by he codiios lim sup H(,s)k(s) ρ(s)q(s) =, H(, ) lim sup ρ(s)r(s)r (,s) <, H(, ) he he coclusio of heorem. remais valid. heorem.. Suppose ha (.) ad (.) are saisfied ad le he fucios H, h, ad k be he same as i heorem.. Moreover, assume ha ad H(,s) <if lim if, (.6) s H(, ) Elecroic Joural. hp:// hp:// 6

7 Differeial Equaios ad Corol Processes, 4, 8 lim if ρ(s)r(s)r (,s)<, (.7) H(, ) hold. If here exiss a fucio Ω C([, ),R) such ha /( ) Ω+ ( s ) lim sup =, (.8) ad for every, ( k(s) ρ(s)r(s) ) /( ) γρ(s)r(s)r (,s) lim if { Hs (, ) ρ(s)k(s)q(s)- } (), (.9) H(,) Ω where Ω () = max{ Ω(),}, he equaio (.) is oscillaory. + Proof. O he corary we assume ha (.) has a ooscillaory soluio x(). We suppose wihou loss of geeraliy ha x()> for all [, ). Defiig ω () as i he proof of heorem., we obai (.4) he we ge γρ(s)r(s)r (,s) Hs (, ) ρ(s)k(s)q(s)- k() ω()-j(,) H(,) where γρ(s)r(s)r (,s) ( -)/ (, ) = { ( (, )k(s)) R(,s) (s) H(,) Hs ω ( ) Hs (, )k(s) + ω(s) ( -) }, /( ) J ( γρ( srs ) ( )) for all. hus, by (.9), we have ad Ω() k() ω() for all (.) limsup J(,)< for all. (.) Le o ( -)/ ( ) = R(,s)( (, )k(s)) ω(s), H(, ) F Hs ( ) ( ) () = (,)k(s)( γρ()()) ω(s) -, H(, ) G Hs srs for >. he by (.4) ad (.) we ge ha o Elecroic Joural. hp:// hp:// 7

8 ( -) H(, s)k(s) lim sup G()-F() lim sup { ω(s) /( ) H(, ) ( γρ( s) r( s)) Now, we claim ha ( ) -R(,s) H(,s)k(s) Suppose o he corary ha Differeial Equaios ad Corol Processes, 4, 8 ( -)/ ω (s) } - lim supj(, )<. (.) /( -) ω(s) k(s) <. (.3) /( ) ( ρ( srs ) ( )) /( -) ω(s) k(s) =. (.4) /( ) ( ρ( s) r( s)) By (.6), here is a posiive cosa η saisfyig H(,s) if lim if > η. (.5) s H(, ) O he oher had, by (.4) for ay posiive umber µ here exiss a > such ha so for all From (.5) we have /( -) ω(s) γ µ k(s) for all, ρ srs η /( ) ( ( ) ( )) ( ) s /( -) ( ) γ ω(u) G () = H(,s)d ku ( ) du /( ) H(, ) ( ρ( uru ) ( )) s /( -) ( ) γ δh(,s) ω(u) = d k ( u ) du /( ) H(, ) δs ( ρ( u) r( u)) s ( ) γ δh(,s) ω(u) H(, ) d ( ) δs ku ( ρ ( uru ) ( )) /( -) /( ) ( ) H(,s) µ H (, ) =. (.6) γ µ γ δ ( ) η H(, ) δs ηh(, ) du Elecroic Joural. hp:// hp:// 8

9 Differeial Equaios ad Corol Processes, 4, 8 H (, ) lim if > η>. H(, ) H (, ) So here exiss such ha H(, ) for all, ad sice µ is arbirary cosa, we coclude ha η for all. herefore by (.6) G() η lim G()=. (.7) Nex, cosider a sequece { } =i (, ) wih lim = ad such ha [ ] [ ] lim G( )-F( ) = limsup G()-F(). I view of (.), here exiss a cosa M such ha G( )-F( ) M for all sufficie large. (.8) I follows from (.7) ha his ad (.8) give lim G( )=. (.9) lim F( )=. (.) he, by (.8) ad (.9), F( ) -M - - > G( ) G( ) for large eough. hus, F( ) > G( ) for large eough. his ad (.) imply ha F ( ) lim =. - G ( ) (.) O he oher had, by he Holder's iequaliy, we have Elecroic Joural. hp:// hp:// 9

10 Differeial Equaios ad Corol Processes, 4, 8 ( -)/ ( ) = R(,s)(H(,s)k(s)) ω(s) H(, ) F ω(s) H(,s)k(s) H(, ) ( ρ( srs ) ( )) ( )/ /( -) /( ) γ ρ()() srsr (,s) ( ) H(,) G ( ) ( ) γ H(, ) ( )/ / ( )/ / ρ()() srsr (,s), ad herefore, γ - ( ) F ( ) G ( ) ( ) H(, ) γ ( ) ( ) ηh(, ) for all large. I follows from (.) ha ρ( s) r( s) R (,s) ρ( s) r( s) R (,s) ha is, lim ρ( s) r( s) R (,s)=, (.) H(, ) lim ρ( s) r( s) R (,s)=, H(, ) which coradics (.7). Hece, (.3) hol. he, i follows from (.) ha /( ) /( ) Ω ( s ) ω( s ) + /( ) /( ) k( s) k( s) <, ( k(s) ρ(s)r(s) ) ( ρ(s)r(s) ) which coradics (.8). his complees he proof of heorem.. heorem.3. Suppose ha (.) ad (.) are saisfied ad le he fucios H, h, ρ ad k be he same as i heorem.. Moreover, assume ha Elecroic Joural. hp:// hp://

11 Differeial Equaios ad Corol Processes, 4, 8 lim if Hsρ (, ) (s)k(s)q(s)<, (.3) H(, ) ad (.6) hold. If here exiss a fucio Ω C([, ),R) such ha (.8) ad (.9) hold, he equaio (.) is oscillaory. Proof. Wihou loss of geeraliy, we may assume ha here exiss a soluio x() of equaio (.) such ha x() o [, ) for some sufficiely large. Defie ω() as of heorem.. As i he proofs of heorem. ad., we ca obai (.4), (.5) ad (.). From (.3) i follow ha limsup G()-F() k( ) ω( ) -lim if H (, s) ρ(s)k(s)q(s)<, (.4) H(, ) where F() ad G() are defied as i he proof of heorem.. By (.9) we have Ω( ) limif H (, s) ρ(s)k(s)q(s) H(, ) his ad (.9) imply ha lim if H(, ) ρ(s)r(s)r (, s). lim if ρ(s)r(s)r (, s) <. H(, ) Cosiderig a sequece { } = i (, ) wih lim = ad such ha lim ρ(s)r(s)r (, s) H(, ) = limif ρ(s)r(s)r (, s)<. (.5) H(, ) Now, suppose ha (.4) hol. Wih he same argume as i heorem., we coclude ha (.7) is saisfied. By (.4), here exiss a cosa M such ha (.8) is fulfilled. he, followig he procedure of he proof of heorem., we see ha (.) hol, which coradics (.5). his coradicio proves ha (.5) fails. he remaider of he proof is similar o ha of heorem., so we omi he deails. his complees he proof of heorem.3. heorem.4. Suppose ha (.) ad (.) are saisfied ad le he fucios H, h, ρ ad k be he same as i heorem.. Moreover, suppose ha Elecroic Joural. hp:// hp://

12 Differeial Equaios ad Corol Processes, 4, 8 lim sup ρ(s)r(s)r (, s)<, (.6) H(, ) ad (.6) hold. If here exiss a fucio Ω C([, ),R) such ha (.8) hold for every ad γρ(s)r(s)r (,s) limsup H(, s) ρ(s)k(s)q(s)- (), (.7) H(,) Ω he equaio (.) is oscillaory. he proof of heorem.4 ca be carried ou as he proof of heorem. ad herefore i will be omied. Remark.. If = ad p(), r() ad ψ(x), he heorem.,. exed ad improve heorem i [7]. Remark.. If p(), r() ad ψ(x), he heorem.,.3 ad.4 exed ad improve heorem, 4 ad 3 of Li [3], respecively. Remark.3. If p(), he heorem.-.4 exed ad improve heorem, 4, 6 ad 5 i [], respecively. Example.. Cosider he differeial equaio We oe ha Le he d d - x ( ) dx -5/ ( + e ) + x()=, >. d = ad ψ (x)=+e - x(). ρ(s)=, k(s)=s² ad H(,s)=(-s)². γρ(s)r(s)r (,s) limsup H(,s)k(s) ρ(s)q(s)- H(, ) = limsup s s s. (- ) + = s s Hece, his equaio is oscillaory by heorem.. while, Ayalar ad iryaki [], fails. Example.. Cosider he differeial equaio We o ha d d +cos² +3x² dx +3cos² +x² d dx + + x=, =. d +3x² ψ x 3 = γ, =. +x² < ( ) = Elecroic Joural. hp:// hp://

13 Differeial Equaios ad Corol Processes, 4, 8 If we ake ρ()=, k()=, H(,s)=(-s)², he γρ(s)r(s)r (,s) lim sup H(,s)k(s) ρ(s)q(s)- H(, ) 3 +cos²s s s = lim sup (-s) s s (-) cos²s s s s s lim sup (-s) s s + (-) 4 s s =. Hece, his equaio is oscillaory. Oe such soluio of his equaio is x()=cos. 3. OSCILLAION RESULS FOR (.) heorem 3.. Suppose ha (.) ad g'(x) ( ψ (x) g(x) ) δ - /( -) > for x, (3.) hold, ad le he fucios H, h ad k be he same as i heorem.. Moreover, suppose ha here exis ρ C¹([, ),(, )). he equaio (.) is oscillaory if where β ρ(s)r(s)q (,s) lim sup H(,s)k(s) ρ(s)q(s)- =, H(, ) δ d ρ(s) β - ρ (s) / = ad Q(,s)= h(,s)- p(s) (H(,s)k(s)). Proof. Wihou loss of geeraliy, we may assume ha here exiss a soluio x() of equaio (.) such ha x() o [, ) for some sufficiely large. Defie ω() as hus, - dx dx r() ψ(x) d d ω()= ρ() for. g(x) Elecroic Joural. hp:// hp:// 3

14 his ad equaio (.) imply From (.) ad (3.) we have Differeial Equaios ad Corol Processes, 4, 8 - d dx dx r() ψ(x) dω() dρ() d d d dx = ω ()+ ρ () d ρ() d g(x) d g'(x) ω() ( ψ(x) g(x) ) [ ρ()r()] - /( -) /( -) dω() dρ() ω() ω()- ρ()[q()+p() ϕ(, )] d ρ() d ρ(). g'(x) ω() ( ψ(x) g(x) ) [ ρ()r()] - /( -) /( -). dω() dρ() ω() ω()- ρ()q()-p() ω() δ. /( -) d ρ() d [ ρ()r()] Muliply he above iequaliy by H(,s)k(s) ad iegrae from o we obai d ρ(s) H(,s)k(s) ρ(s)q(s) H(,s)k(s) p(s) ω(s) ρ(s) Sice - dω(s) dω(s) - -H(,s)k(s) -δ H(,s)k(s)[ γρ(s)r(s)] ω(s). dω(s) δ -H(,s)k(s) =H(,)k() ω()+ (H(,s)k(s)) ω(s) δs he previous iequaliy becomes Defie ( -) =H(,)k() ω()- hs (, )(H(,s)k(s)) ω(s). ( -)/ ( -) H(,s)k(s) ρ(s)q(s) H(,)k() ω()+ Q(,s)(H(,s)k(s)) ω(s) βh(,s)k(s) ω(s) ( ). (3.) /( -) [ ρ(s)r(s)] Elecroic Joural. hp:// hp:// 4

15 X Y = β = ( )/ / Differeial Equaios ad Corol Processes, 4, 8 [ ρ(s)r(s)] [ Q(, s)], ( )/ ( [ ] ) ( )/ / β ρ ω /( ) H(,s)k(s) [ (s)r(s)] (s). he use he lemma., we have /( ) ( ) ( )/ βh(,s)k(s) ω(s) β ρ(s)r(s)q (,s) Q(,s)(H(,s)k(s)) ω(s) ( ). /( ) [ ρ(s)r(s)] From (3.) we have ( ) β ρ(s)r(s)q (,s) H(,s)k(s) ρ(s)q(s)- H(,)k() ω(). he remaider of he proof procee as i he proof of heorem.. he proof is complee. Followig he procedure of he proof of heorem. ad.3, we ca also prove he followig heorems. heorem 3.. Suppose ha (.) ad (3.) hold, ad le he fucios H, h ad k be he same as i heorem.. If here exis wo fucios ρ C¹([, ),(, )) ad Ω C([, ),R) such ha lim if ρ(s)r(s)q (,s)<, (3.3) H(, ) ad ha for every, ( ) β ρ(s)r(s)q (,s) lim if { Hs (, ) ρ(s)k(s)q(s)- } (), (3.4) H(,) Ω ad (.8) hold, he every soluio of (.) is oscillaory. heorem 3.3. Suppose ha (.) ad (3.) hold, ad le he fucios H, h ad k be he same as i heorem.. If here exis wo fucios ρ C¹([, ),(, )) ad Ω C([, ),R) such ha (.8), (3.4) ad lim if Hsρ (, ) (s)k(s)q(s)<, (3.5) H(,) hold, he every soluio of (.) is oscillaory. heorem 3.4. Suppose ha (.) ad (3.) are saisfied. Le he fucios H, h ad k be he same as i heorem.. If here exis wo fucios ρ C¹([, ),(, )) ad Ω C([, ),R) such ha Elecroic Joural. hp:// hp:// 5

16 Differeial Equaios ad Corol Processes, 4, 8 lim sup ρ(s)r(s)q (, s)<, (3.6) H(, ) ad for every, β ρ(s)r(s)q (,s) lim sup Hs (, ) ρ(s)k(s)q(s)- (), (3.7) H(,) Ω ad (.8) hold, he every soluio of (.) is oscillaory. Remark 3.. If p() ad =, he heorem 3. ad 3.4 exed ad improve heorem 4 ad 3 of Grace [3]. Remark 3.. If p() ad H(,s)=(-s)ⁿ from heorem 3., we obai heorem of Agarwal ad Grace []. Example 3.. Cosider he differeial equaio We oe ha Le he d d dx d x ( ) + x ()=, >. =, r()= -, q()= - ad g '( x) = 3. ψ ( x ) ρ(s)=, k(s)=s² ad H(,s)=(-s)². β ρ(s)r(s)q (,s) lim sup H(,s)k(s) ρ(s)q(s)- H(, ) 3 3 = lim sup s s s. (- ) + + = 4s s 3 Hece, his equaio is oscillaory by heorem 3.. Example 3.. Cosider he differeial equaio +cos² +3x² dx +3cos² +x² d If we ake ρ()=, k()=, H(,s)=(-s)², he dx + d (+3cos²) 3 + (x+x )=, =. g '( x) = + = δ = ψ ( x ) x,. We o ha Elecroic Joural. hp:// hp:// 6

17 Differeial Equaios ad Corol Processes, 4, 8 β ρ(s)r(s)q (,s) lim sup H(,s)k(s) ρ(s)q(s)- H(, ) (-s) s +cos²s s s = lim sup 4 s (-) + +3cos²s +3cos²s s s s s s s lim sup (-s) 4 s + =. (-) 4 4 s s s Hece, his equaio is oscillaory. Oe such soluio of his equaio is x()=cos. REFERENCES [] Agarwal, R.P., Grace, S.R. O he oscillaio of cerai order differeial equaios, Georgia Mah. J.7 (),- 3. [] Ayalar, B. ad iryaki, A. Oscillaio heorems for oliear secod-order differeial equaios, Compuers ad Mahemaics wih Applicaios 44 (), [3] Grace, S.R. Oscillaio heorems for oliear differeial equaios of secod order, J. Mah. Aal. Appl. 7 (99), -4. [4] Hardy, G.H.; Lilewood, J.E. ad Polya, G. Iequaliies, d ediio, Cambridge Uiversiy Press, Cambridge, (988). [5] Hsu, H.B. ad Yeh, C. C. Oscillaio heorems for secod order half-liear differeial equaios, Appl. Mah. Le. 9 (996), [6] Kusao,. ad Naio, Y. Oscillaio ad ooscillaio crieria for secod order quasiliear differeial equaios, Aca Mah. Hugar. 76(-) (997), [7] Kusao,. ad Yoshida, N. Nooscillaio heorems for a class of quasiliear differeial equaios of secod order, J. Mah. Aal. ad Appl. 89(995), 5-7. [8] Li, H.J. ad Yeh, C. C. A iegral crierio for oscillaio of oliear differeial equaios, Mah. Japoica 4 (995), [9] Li, H.J. ad Yeh, C.C. Nooscillaio crieria for secod order half-liear differeial equaios, Appl. Mah. Le. 8 (995), [] Li, H.J. ad Yeh, C. C. Nooscillaio heorems for secod order quasiliear differeial equaios, Publ. Mah. Debrece 47/3-4(995), [] Li, H.J. ad Yeh, C. C. Oscillaio crieria for oliear differeial equaios, Houso Jour. Mah. (995), 8-8. [] Li, H.J. ad Yeh, C. C. Oscillaio of half-liear secod order differeial equaios, Hiroshima Mah. Jour. 5(995), [3] Li, H.J. Oscillaio crieria for half-liear secod order differeial equaios, Hiroshima Mah. J.5 (995), [4] Li, W.. Zhog, C.K. ad Fa, X.L. Oscillaio crieria for secod-order halfliear ordiary differeial equaios wih dampig, Joural of mahemaics, volume 33, umber 3 fall (3). Elecroic Joural. hp:// hp:// 7

18 Differeial Equaios ad Corol Processes, 4, 8 [5] Lia, W.C., Yeh, C.C. ad Li, H.J. he disace bewee zeros of a oscillaory soluio o a half-liear differeial equaios, Compuers Mah. Applic. 9 (995), [6] Maojlovic, J. V. Oscillaio heorems for oliear differeial equaios of secod order, E. J. Qualiaive heory of Diff.Equ. (), -. [7] Philos, Ch.G. Oscillaio heorems for liear differeial equaios of secod order, Arch. Mah. 53 (989), [8] Wag, J. O secod order quasiliear oscillaio, Fukcial. Ekvac.4 (998), [9] Wog, P. J. Y. ad Agarwal, R. P. Oscillaory behavior of soluios of cerai secod order oliear differeial equaios, J. Mah. Aal. ad Appl. 98 (996), [] Wu, H.W. Wag, Q.R. ad Xu, Y.. Oscillaio ad Asympoics for oliear secod-order differeial equaios, compuers ad Mahemaics wih Applicaios 48 (4), 6-7. Elecroic Joural. hp:// hp:// 8

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear Advaces i Pure Mahemaics 8 8 - hp://wwwscirporg/oural/apm ISSN Olie: 6-384 ISSN Pri: 6-368 The Esimaes of he Upper Bouds of Hausdorff Dimesios for he Global Aracor for a Class of Noliear Coupled Kirchhoff-Type

Διαβάστε περισσότερα

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds Chi. A. Mah. 36B(, 05, 57 66 DOI: 0.007/s40-04-0876- Chiese Aals of Mahemaics, Series B c The Ediorial Office of CAM ad Spriger-Verlag Berli Heidelberg 05 Gradie Esimaes for a Noliear Parabolic Equaio

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

arxiv: v1 [math.ap] 5 Apr 2018

arxiv: v1 [math.ap] 5 Apr 2018 Large-ime Behavior ad Far Field Asympoics of Soluios o he Navier-Sokes Equaios Masakazu Yamamoo 1 arxiv:184.1746v1 [mah.ap] 5 Apr 218 Absrac. Asympoic expasios of global soluios o he icompressible Navier-Sokes

Διαβάστε περισσότερα

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space Adv. Sudies Theor. Phys., Vol. 4, 2010, o. 11, 557-564 Irisic Geomery of he NLS Equaio ad Hea Sysem i 3-Dimesioal Mikowski Space Nevi Gürüz Osmagazi Uiversiy, Mahemaics Deparme 26480 Eskişehir, Turkey

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

8. The Normalized Least-Squares Estimator with Exponential Forgetting

8. The Normalized Least-Squares Estimator with Exponential Forgetting Lecure 5 8. he Normalized Leas-Squares Esimaor wih Expoeial Forgeig his secio is devoed o he mehod of Leas-Squares wih expoeial forgeig ad ormalizaio. Expoeial forgeig of daa is a very useful echique i

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

A Note on Saigo s Fractional Integral Inequalities

A Note on Saigo s Fractional Integral Inequalities Turkish Joural of Aalysis ad Number Theory, 214, Vol 2, No 3, 65-69 Available olie a hp://pubssciepubcom/ja/2/3/2 Sciece ad Educaio Publishig DOI:112691/ja-2-3-2 A Noe o Saigo s Fracioal Iegral Iequaliies

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

α ]0,1[ of Trigonometric Fourier Series and its Conjugate aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains

Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains Alied Maheaics 5 6 79-87 Published Olie Seeber 5 i SciRes h://wwwscirorg/oural/a h://dxdoiorg/436/a5659 Rado Aracors for Sochasic Reacio-Diffusio Equaios wih Disribuio Derivaives o Ubouded Doais Eshag

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3)

Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3) CHAPTER 3 Oscillaios 3-. a) gram cm 4 k dye/cm sec cm ν sec π m π gram π gram π or, ν.6 Hz () or, π τ sec ν τ.63 sec () b) so ha 4 3 ka dye-cm E 4 E 4.5 erg c) The maximum velociy is aaied whe he oal eergy

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Το Λήμμα του Fejér και Εφαρμογές

Το Λήμμα του Fejér και Εφαρμογές Το Λήμμα του Fejér και Εφαρμογές Ανδρέας Καβατζικλής Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών & Φυσικών Επιστημών Τομέας Μαθηματικών Πολυτεχνειούπολη Ζωγράφου 57 8 Αθήνα e-mail: kaviros@ceral.ua.gr

Διαβάστε περισσότερα

EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES

EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES Scieiae Mahemaicae Jaoicae Olie, Vol. 9, 3), 59 78 59 EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES KÔZÔ YABUTA Received Decembe 3, Absac. Le gf), Sf), gλ f)

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4, Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016 4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Time Series Analysis Final Examination

Time Series Analysis Final Examination Dr. Sevap Kesel Time Series Aalysis Fial Examiaio Quesio ( pois): Assume you have a sample of ime series wih observaios yields followig values for sample auocorrelaio Lag (m) ˆ( ρ m) -0. 0.09 0. Par a.

Διαβάστε περισσότερα

UNIFIED FRACTIONAL INTEGRAL FORMULAE FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS

UNIFIED FRACTIONAL INTEGRAL FORMULAE FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS Joural o Sciece ad Ars Year 14 No 227 117-124 2014 OGNAL PAPE UNFED FACTONAL NTEGAL FOMULAE FO THE GENEALZED MTTAG-LEFFLE FUNCTONS DAYA LAL SUTHA 1 SUNL DUTT PUOHT 2 Mauscri received: 07042014; Acceed

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu

Διαβάστε περισσότερα

Multiple positive periodic solutions of nonlinear functional differential system with feedback control

Multiple positive periodic solutions of nonlinear functional differential system with feedback control J. Mah. Anal. Appl. 288 (23) 819 832 www.elsevier.com/locae/jmaa Muliple posiive periodic soluions of nonlinear funcional differenial sysem wih feedback conrol Ping Liu and Yongkun Li Deparmen of Mahemaics,

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Linear singular perturbations of hyperbolic-parabolic type

Linear singular perturbations of hyperbolic-parabolic type BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions

Διαβάστε περισσότερα