Effect Of Inner Scale Atmospheric Spectrum Models On Scintillation In All Optical Turbulence Regimes
|
|
- Ανδώνης Καλάρης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Uiversit of etra Foria Eetroi Teses a Dissertatios Masters Tesis Ope Aess Effet Of er Sae Atosperi Spetru Moes O Sitiatio A Optia Turbuee egies 7 Keet Maer Uiversit of etra Foria Fi siiar wors at: ttp:stars.ibrar.uf.euet Uiversit of etra Foria ibraries ttp:ibrar.uf.eu Part of te Mateatis oos STAS itatio Maer Keet "Effet Of er Sae Atosperi Spetru Moes O Sitiatio A Optia Turbuee egies" 7. Eetroi Teses a Dissertatios. 8. ttp:stars.ibrar.uf.euet8 Tis Masters Tesis Ope Aess is brougt to ou for free a ope aess b STAS. t as bee aepte for iusio i Eetroi Teses a Dissertatios b a autorize aiistrator of STAS. For ore iforatio pease otat ee.otso@uf.eu.
2 EFFET OF NNE SAE ATMOSPHE SPETUM MODES ON SNTATON N A OPTA TUBUENE EGMES b KENNETH J. MAYE B.S. Miiga Teoogia Uiversit 8 M.A. Foria stitute of Teoog 8 A tesis subitte i partia fufiet of te requireets for te egree of Master of Siee i te Departet of Mateatis i te oege of Siees at te Uiversit of etra Foria Orao Foria Sprig Ter 7
3 7 Keet J. Maer ii
4 ABSTAT Eperieta stuies ave sow tat a bup ours i te atosperi spetru just prior to turbuee e issipatio. wea optia turbuee tis bup affets auate sitiatio. Te purpose of tis tesis was to eterie if a o-bup atosperi power spetru a be use to oe sitiatio for pae waves a speria waves i oerate to strog optia turbuee regies. Sitiatio epressios were eveope fro a effetive vo Kara spetru usig a approa siiar to tat use b Arews et a. 8 i eveopig epressios fro a effetive oifie bup spetru. Te effetive spetru etes te tov approiatio ito a optia turbuee regies usig fiter futios to eiiate i-rage turbuet e size effets to te sitiatio ie. Fiter utoffs were estabise b atig to ow wea a saturate sitiatio resuts. Te resutig ew epressios tra tose erive fro te effetive bup spetru fair ose. etree strog turbuee ifferees are iia. iii
5 AKNOWEDGMENTS Ta ou to Dr. Youg for our patiee a efforts to Dr. Arews for awas beig tere to ep a to Dr. Moaptra for guiig pat. iv
6 TABE OF ONTENTS ST OF FGUES...viii ST OF TABES... i ST OF AONYMS.... NTODUTON.... ATMOSPHE SPETUMS.... Koogorov.... Tatarsii.... Vo Kara.... Moifie Bup.... SNTATON N WEAK FUTUATONS Pae Wave Speria Wave.... SNTATON N SATUATON EGME.... Pae Wave.... Speria Wave.... SNTATON N MODEATE TUBUENE.... Eistig Pae Wave Equatios.... Eistig Speria Wave Equatios.... New Moerate Turbuee Equatios..... Pae Wave arge-sae og-rraiae Variae... 7 v
7 ... Sa-Sae og-rraiae Variae Asptoti oparisos Wea Turbuee Saturate Turbuee A Turbuee egies..... Speria Wave.... OMPASONS opariso Of Te Pae Wave Sitiatio e Moes opariso Of Te Speria Wave Sitiatio e Moes... APPENDX A: WEAK TUBUENE KOMOGOOV SPETUM PANE WAVE... 7 APPENDX B: WEAK TUBUENE VON KAMAN PANE WAVE... APPENDX : WEAK TUBUENE MODFED BUMP PANE WAVE... APPENDX D: WEAK TUBUENE KOMOGOOV SPHEA WAVE... APPENDX E: WEAK TUBUENE VON KAMAN SPHEA WAVE... APPENDX F: WEAK TUBUENE MODFED BUMP SPHEA WAVE... APPENDX G: SATUATED TUBUENE KOMOGOOV PANE WAVE... 8 APPENDX H: SATUATED TUBUENE VON KAMAN PANE WAVE... 8 APPENDX : SATUATED TUBUENE MODFED BUMP PANE WAVE... APPENDX J: SATUATED TUBUENE KOMOGOOV SPHEA WAVE... APPENDX K: SATUATED TUBUENE VON KAMAN SPHEA WAVE... 8 APPENDX : SATUATED TUBUENE MODFED BUMP SPHEA WAVE... APPENDX M: MODEATE TUBUENE KOMOGOOV PANE WAVE... APPENDX N: MODEATE TUBUENE MODFED BUMP PANE WAVE... vi
8 APPENDX O: MODEATE TUBUENE KOMOGOOV SPHEA WAVE... APPENDX P: MODEATE TUBUENE MODFED BUMP SPHEA WAVE... APPENDX : MODEATE TUBUENE VON KAMAN PANE WAVE... 7 APPENDX : MODEATE TUBUENE VON KAMAN SPHEA WAVE... APPENDX S: ASYMPTOT OMPASONS... ST OF EFEENES... vii
9 ST OF FGUES Figure - Spetra oes of refrative-ie futuatios... Figure - Sae spetra oes of refrative-ie futuatios... 7 Figure Effetive Moifie Sitiatio e vs. For Various er Sae Vaues... Figure Pae Wave Sitiatio base o te vo Kara Spetru λ.88µ... 8 Figure Pae Wave Sitiatio base o te vo Kara Spetru λ.µ... 8 Figure Sitiatio e base o varie spetra s 7 λ.88µ... Figure 7 - Sitiatio e base o varie spetra s λ.88µ... Figure 8 - Sitiatio e base o varie spetra s 7 λ.µ... Figure - Sitiatio e base o varie spetra s λ.µ... Figure Speria Wave Sitiatio e base o te vo Kara Spetru... Figure - Sitiatio e base o varie spetra s λ.88µ... Figure - Sitiatio e base o varie spetra s λ.µ... viii
10 ST OF TABES Tabe Eistig Sitiatio Epressios... i
11 ST OF AONYMS a Asptoti opariso ostats eterie fro ow asptoti beavior of te sitiatio ie efrative ie struture paraetera easure of ie of refratio futuatio stregt D p ρ Wave struture futio for a pae wave. f A fator tat esribes basi power aw for ier sae oifiatios F Pase frot raius of urvature of a bea at te reeiver G arge-sae turbuee e fiter G Sa-sae turbuee e fiter β < No-iesioa paraeter β > λ Optia wave uber Propagatio pat egt er iro sae size Outer aro sae e size No-iesioa paraeter ratio of ier sae to Frese zoe No-iesioa paraeter ratio of ier sae to Frese zoe W Bea raius at te reeiver Assoiate wit arge-sae turbuee effets Assoiate wit sa-sae turbuee effets Φ Power spetru oe for refrative ie futuatios Φ Effetive atosperi spetru e No-iesioa utoff frequeies for te fiter futio. Saar spatia wave uber. er sae wave uber paraeter. er sae wave uber paraeter Outer sae wave uber paraeter
12 Λ Θ Θ ρ λ Spatia freque utoff for arge-sae turbuet es Spatia freque utoff for sa-sae turbuet es waveegt Frese ratio of te bea at te reeiver urvature paraeter of a bea at te reeiver Θ Pae wave spatia oeree raius Sitiatio ie: oraize variae of irraiae og irraiae variae arge-sae og-irraiae variae Sa-sae og-irraiae variae p. tov Variae s tov variae for a pae wave wit ier sae tov variae for a speria wave wit ier sae arge sae sitiatio ie Sa sae sitiatio ie i
13 . NTODUTON assia teoretia atosperi turbuee oes begiig i te s assue tat turbuet power is iitia geerate o arge sae e sizes a tat issipative fores ause te turbuet power to be trasferre to saer a saer saes uti te es issipate. Eperieta stuies ave sow tat at ig wave ubers sa sae sizes a bup ours i te atosperi spetru just prior to e issipatio. wea optia turbuee tis bup affets auate sitiatio wi is a easure of irraiae futuatios eperiee b a optia wave propagatig troug a rao eiu su as te Eart s atospere. Most teoretia stuies o bea statistis a resutig atosperi spetra oes iuig Koogorov Tatarsii a vo Kara o ot refet tese observe bups. Arews et a. eveope a oifie bup spetru tat aouts for te bup. Arews et a. 8 aso eveope epressios fro a effetive oifie spetru tat etes vaiit of te tov approiatio ito a optia turbuee regies usig fiter futios to eiiate irage turbuet e size effets to te sitiatio ie. Fiter utoffs were estabise b atig to ow wea a saturate sitiatio resuts. Te itet of tis tesis is to eterie if a siper o-bup atosperi power spetru a be use to aurate auate pae a speria wave sitiatio i oerate to strog optia turbuee regies. Sitiatio epressios for oerate to strog optia turbuee regies were eveope fro a effetive vo Kara spetru usig a approa siiar to tat use b Arews et a. 8. Te resutig ew epressios were opare to tose erive fro te effetive oifie spetru. Te foowig tabe Tabe ists eistig pae a speria wave sitiatio epressios base o Koogorov Moifie bup a vo Kara atosperi power
14 spetrus for bot te wea a saturatio futuatio regies. Tabe aso ists sitiatio epressios base o effetive Koogorov a bup spetrus tat were reet auate for oerate futuatio regies. A effetive vo Kara spetru is eveope i tis tesis as we as orrespoig epressios for te sitiatio ie. Mateatia erivatios of a of tese epressios are sow i te Appei setio. Note referee equatio tat eistig saturate turbuee sitiatio epressios base o te oifie atosperi power spetra were reate wit te assuptio tat D D χ D s D s were D is te wave struture futio D χ is te og-apitue struture futio a D is te pase struture futio. Te sae assuptio was ae i tis tesis to s revise eistig saturate turbuee sitiatio epressios base o te vo Kara atosperi power spetru referee equatios a. Te revisios were eessar for eveopig ew effetive vo Kara base sitiatio epressios a for oparig tese ew epressios to te eistig effetive Moifie spetru erive epressios.
15 Tabe Eistig Sitiatio Epressios Turbuee Spetru Wave Tpe Sitiatio Epressio Wea Koogorov Pae Speria. { } [ ] Vo Kara Pae [ ].8 si ta Speria.8 {. si[ ta ]} Moifie Pae Speria.8 si ta.7 si ta si ta..8. Saturatio Koogorov Pae si ta.7.. si ta si ta..8 Speria. Vo Kara Pae. Speria. Moifie Pae. Speria 7. [ ] [.8.. ] [.. ] ρ Moerate Koogorov Pae ep.... Moifie Pae Speria Speria ep. ep ρ were: p si ta si ta.... si ta. [.. ] s ep s were: Vo Kara Pae Tesis Speria Tesis s.8. si ta si ta si ta 7 7
16 . Koogorov. ATMOSPHE SPETUMS te ear s Koogorov eveope a atosperi turbuee teor tat eerg is itroue ito arge air asses eiter b wi sear or ovetio. Tese air asses uer te ifuee of iertia fores brea up ito a otiuu of saer a saer es fro a iitia outer aro sae e size wi is usua o te orer of oe to oe ure eters to a fia ier iro sae size o te orer of iieters. For sae sizes ess ta reaiig eerg is issipate as eat. Ea e size as a sigt ifferet ie of refratio. arge sae sizes te to refrat fous optia waves wereas sa sae sizes te to iffrat te waves. Te eerg of tese ie of refratio futuatios optia turbuee is esribe b power spetra esit futios. Te Koogorov power spetru for refrative ie futuatios is efie b Φ. << << were is te refrative ie struture paraeter a easure of ie of refratio futuatio stregt a is te saar spatia wave uber.. Tatarsii Te Koogorov spetru is teoretia vai o over te iertia subrage << <<. Oter spetra oes ave bee propose for auatios we ier sae a outer sae effets aot be igore. 7 Tatarsii 7 suggeste a equatio first
17 propose b Noviov for veoit futuatios tat uses a Gaussia futio to ete te Koogorov Spetru ito te issipatio rage > Φ. ep << were. is a ier sae wave uber paraeter. f << or tis equatio reues to te Koogorov spetru.. Vo Kara Te Tatarsii Spetru a be etee ito te rage < usig te vo Kara spetru Φ. ep were is te outer sae wave uber paraeter. f >> or tis equatio reues to te Tatarsii spetru. Note tat i te issipatio rage tere is o psia reaso to oose te vo Kara spetru over te Tatarsii spetru. However to aow for oparisos of sitiatio epressios area eveope fro te vo Kara spetru tis tesis paper wi refer to vo Kara as oppose to Tatarsii wit te assuptio tat.. Moifie Bup Hi perfore aases tat e to a oe tat refets observe bups i eperieta ata. Arews eveope te foowig aati approiatio to te Hi spetru iuig a outer sae paraeter ae te oifie atosperi spetru. Φ ep [ ].8.
18 were. is a ier sae wave uber paraeter. Te foowig two figures opare te tree atosperi spetra oes 8. Figure sows tat a ozero ier sae reues spetru vaues at ig wave ubers > over tat preite b te Koogorov spetru. Note tat at ow wave ubers < siiar spetru vaue reutio is ause b te presee of a fiite outer sae. a Φ Atosperi Spetru Moes ertia Subrage Koogorov vo Kara Moifie Figure - Spetra oes of refrative-ie futuatios Bup Figure sows a bup for te Moifie spetru tat is ot refete i te Koogorov or vo Kara spetra oes.
19 Atosperi Spetru Moes. Φ Koogorov Spetru vo Kara Spetru Moifie Spetru.... Figure - Sae spetra oes of refrative-ie futuatios 7
20 . SNTATON N WEAK FUTUATONS Sitiatio ie is efie as te oraize variae of irraiae 8 < > - < > < > < > < > were represets optia wave irraiae a < > eotes esebe average. Sitiatio is ofte epresse i ters of te tov variae. were is te propagatio pat egt optia wave uber λ wit λ beig waveegt. For pae wave sitiatio i wea futuatio usig te Koogorov spetru. Geera << is assoiate wit wea optia turbuee >> is assoiate wit saturate turbuee a ~ is assoiate wit oerate futuatios. is efie b 8 Uer wea futuatio oitios te o-ais sitiatio opoet for a bea wave Λ Φ Θ 8 ep os were Λ W is te Frese ratio of te bea at te reeiver Θ is a urvature F paraeter of a bea at te reeiver Θ Θ W is te bea raius at te reeiver a F is te pase frot raius of urvature at te reeiver.. Pae Wave For a pae wave Λ Θ Θ Θ equatio reues to 8
21 Φ 8 os 7 Perforig te itegratio i equatio 7 wit Koogorov vo Kara a oifie atosperi spetra epressios give i equatios a resuts i te foowig wea optia turbuee sitiatio ie epressios see appeies A B a. Koogorov 8 vo Kara.8 si ta Moifie.8 [ A]. A si ta.7 si ta.7 si ta were. a. are o-iesioa paraeters ratios of ier sae to Frese zoe. Note tat as sitiatio ie base o te vo Kara a oifie spetra reue to tat base o te Koogorov spetru.. Speria Wave For a speria wave Λ Θ Θ Θ equatio reues to 8 Φ os Perforig te itegratio i equatio wit Koogorov vo Kara a oifie atosperi spetra epressios give i equatios a resuts i te foowig sitiatio ie epressios for speria waves i wea optia turbuee see appeies D E a F. o
22 Koogorov. vo Kara.8. si ta Moifie.8. [ D]. D si ta. si ta. si ta
23 . SNTATON N SATUATON EGME. Pae Wave te saturatio regie te sitiatio ie for a uboue pae wave a be epresse i 8 te for were Φ si ep Ds β β < > β for a pae wave ote β for a speria wave D s is te pase struture futio for a pae wave Assuig D D D D p χ s s were D p is te wave struture futio for a pae wave D χ is te og-apitue struture futio for a pae wave Perforig te itegratio i equatio wit Koogorov vo Kara a oifie atosperi spetra epressios give i equatios a resuts i te foowig saturate optia turbuee sitiatio ie epressios see appeies G H a. Koogorov 8. 8 >>. vo Kara >> 7
24 Moifie 8. >> 8. Speria Wave For β perforig te itegratio i equatio wit Koogorov vo Kara a oifie atosperi spetra epressios resuts i te foowig speria wave saturate optia turbuee sitiatio ie epressios see appeies J K a. Koogorov 8. vo Kara 7 Moifie 8. 7.
25 . SNTATON N MODEATE TUBUENE We ier ier-sae effets are tae ito aout te spetru oe uer wea irraiae futuatios is esribe b 8 eferee equatios a : Koogorov Φ. f f a vo Kara f ep Moifie f ep [.8. ] As optia turbuee stregt ireases o ver arge a ver sa turbuee e sizes otribute sigifiat to overa optia refratio a iffratio. 8 As a resut Arews et a. 8 were abe to ete vaiit of te tov approiatio ito a optia turbuee regies b usig fiter futios to eiiate itereiate sae sizes as optia turbuee stregt ireases. 8 arge sae a sa sae freque utoffs were estabise b atig to ow wea a saturatio resuts. Arews et a. 8 eveope te foowig effetive atosperi spetru Φ wi iues a apitue spatia fiter futio for eiiatig i-rage es e Φ [ G G ]. e << << were G a G are arge-sae a sa-sae turbuee e fiters respetive G f ep
26 G f is a fator tat esribes basi power aw for ier sae oifiatios is te spatia freque utoff for te arge-sae turbuet es is te spatia freque utoff for te sa-sae turbuet es. Eistig Pae Wave Equatios Usig te effetive atosperi spetru oe a estabisig arge sae a sa sae freque utoffs fro te previous iste wea a saturatio resuts Arews et a. 8 eveope te foowig sitiatio ie epressios for pae wave propagatio i a optia turbuee regies see appeies M a N. Effetive Koogorov 8 Effetive Moifie 8.. ep. <.. ρ ep 7. ρ were is te arge-sae og-irraiae variae.... [ B] [ B] p is te tov variae for a pae wave wit ier sae 7 7
27 si ta.8 [ ]. p.7 si ta.7 si ta Figure pots te effetive oifie spetru sitiatio ie agaist for various ier sae vaues. t sows tat as ier sae ireases sitiatio ireases. Pae Wave Sitiatio - Effetive Moifie Spetru SNTATON NDEX Koogorov λ.88µ - - o o o o o Figure Effetive Moifie Sitiatio e Equatio 7 vs. For Various er Sae Vaues. Eistig Speria Wave Equatios Usig te effetive atosperi spetru oe a estabisig arge sae a sa sae freque utoffs fro te previous iste wea a saturatio resuts Arews et a. 8 eveope te foowig sitiatio ie epressios for speria wave propagatio i a optia turbuee regies see appeies O a P.
28 Koogorov 8 ep..8.. [ ] 8 [ ] s Moifie 8 ep.. s were. [ E] 8. E s.8. [ F] F si ta. si ta. si ta. New Moerate Turbuee Equatios Atoug sitiatio ie epressios ave bee eveope base o te Koogorov a oifie spetra tat are vai i a optia turbuee regies fiter futios orrespoig to te vo Kara spetru ave ot et bee eveope. Tis setio uses a siiar approa to tat use b Arews et a. 8 to estabis tese fiters. Te resutig sitiatio ie wi be opare to tat eveope for te oifie spetru to eterie te iportae of usig a bup spetru as turbuee stregt ireases. A ore etaie breaow of te ateatis esribe b tis setio is give i Appeies a.
29 .. Pae Wave... arge-sae og-rraiae Variae Usig te effetive atosperi spetru equatio te arge-sae og-irraiae variae for a pae wave i te presee of a fiite ier sae is 8 z 8. G os z were G f ep ep ep spetru. for te vo Kara B assuig a Taor epasio estiate of os a b substitutig z a equatio reues to Upo itegratio. G.. as were is a o-iesioa utoff freque for te fiter futio.... Sa-Sae og-rraiae Variae Usig te effetive atosperi spetru equatio te sa-sae og-irraiae variae for a pae wave i te presee of a fiite ier sae is 8 7
30 8 z z G os. 8 z G. 8 Substitutig z a equatio reues to G. were G Evauatig te itegra eas to Asptoti oparisos Tis tesis taes te sae approa as use b Arews Piips a Hope to perfor asptoti oparisos of ow sitiatio beavior i wea a saturate regies to eterie freque utoffs for te fiter futios. We assue te foowig futioa for of a [see Appei S]. o ρ o o ρ ρ << >> ρ ρ ρ ρ ρ >> << ρ ρ 7
31 were a are ostats to be eterie.... Wea Turbuee Te og irraiae variae is efie uer te tov approiatio for wea turbuee b 8 8 Φ z os z 8 Substitutig z a te equatio reues to Upo evauatig te itegra [ os ] Φ Uer wea irraiae futuatios 8 << Equatig equatios a a usig equatios a resuts i..7 << Assuig te is a approiate soutio. Substitutig ito equatios a 7 ρ o
32 ρ Tus a are ow estabise usig beavior of te sitiatio ie i te wea turbuee regie.... Saturate Turbuee First perfor a asptoti opariso for sa-sae turbuet e effets. Noraize irraiae 8 a be epresse as were is assoiate wit arge-sae turbuet e affets is assoiate wit sa-sae e effets a are statistia iepeet rao quatities a <><>. Give tese oitios <> <><>. Te seo oet of irraiae taes te for 8 < > < >< > were a are te arge sae a sa sae oraize variaes respetive. Base o equatios a te ipie sitiatio ie is Per equatio 7 te asptoti beavior of te sitiatio ie i te saturatio regie is esribe b. >> wi approaes a asptoti iit of uit. Terefore i saturate turbuee 7 strog futuatios epet te arge-sae sitiatio ters to ie out.
33 8 Te sa sae irraiae is give b 8 ep As a resut i strog futuatios ep We << ρ << te spatia oeree raius of a pae wave ρ a be approiate b ρ.. ρ ea tat i te presee of a fiite ier sae. 7 equatio. saturate turbuee te sa-sae utoff is give b equatio 7. Terefore i ρ saturate turbuee [ ]..7.7 Now eterie a asptoti opariso for arge-sae turbuet e effets. For saturate optia turbuee 8 ep ep Aso 8 ep Terefore
34 ep ep 7 Uer wea futuatio << ep 8 ea fro equatio tat. as. As a resut. For a vo Kara spetru te pae wave spatia oeree raius is. ρ. [ ]. ρ eferee equatio assuig >> ρ ρ o ρ o Sove for b equatig a equatio 7.
35 ...8 Tus a are ow estabise usig beavior of te sitiatio ie i te saturate turbuee regie.... A Turbuee egies Appig ostats a to equatios 7 a resuts i te foowig epressios for preitig arge a sa sae og irraiae beavior i a turbuee regies iuig ier sae effets:.... To app ier-sae effets to te vo Kara erive sitiatio ie et ref. equatio pae wave i wea turbuee p.8 si ta ipose p ea fro equatio tat. 7. Te
36 .7 8. p p Aso assue tat uer strog futuatios ier-sae effets te to iiis su tat.7 ρ. ea tat. equatio. Te uer strog futuatios ρ.7 As a resut for a futuatios.7 p Te sa-sae og-irraiae variae beoes. p 7 p.7. p p. p 7. Terefore referee equatio 7 ep sitiatio ie for use i a optia turbuee regies is p a equatio te resutig. p ep.. 7. p were.8 si ta p
37 .. Speria Wave Usig te effetive atosperi spetru equatio te arge-sae og-irraiae variae for a speria wave i te presee of a fiite ier sae is give b 8 z 8. G os z z 7 Assuig os a substitutig z a resuts i! tegratig equatio 7 resuts i. G 7.. µ 7 te sa-sae og-irraiae variae et z 8. G os z z 8. G z >> 7 Tis is vai uer oerate-to-strog futuatios a eas to te sae approiatio erive b te pae wave soutio equatio. 7. Assue i equatios a 7 tat Uer wea futuatio <<. As a resut
38 ep 7 Terefore i wea turbuee..7 << Assuig te 8 is a approiate soutio For saturate turbuee assuig ρ Perforig oparisos to te strog turbuee regie usig te sae approa as for te pae wave auatios resuts i. s ep 8. s were s.8. si ta
39 . OMPASONS. opariso Of Te Pae Wave Sitiatio e Moes Figures a sitiatio epressios base o te vo Kara spetru for wea a saturate turbuee regies are opare to te ew erive sitiatio ie base o a effetive vo Kara spetru. For assue oitios λ.88µ figure λ.µ figure a te ew pae wave epressios tra previous wea a saturate turbuee urves fair ose proviig a visua iiatio tat auatios a assuptios use to eveop it were orret. wea turbuee < te ew epressios agrees wit te wea turbuee ie to witi % for λ.88µ figure a to witi % for λ.µ figure. Note tat i oerate turbuee as te waveegt ireases te effet of te bup ereases. Aso ote tat i te oerate turbuee regie of approiate < < te ew epressios provies a soot trasitio betwee sitiatio epressios preite b eistig wea a saturate turbuee sitiatio epressios. For > figures a bot agree wit te saturate turbuee ie to witi %. 7
40 Pae Wave Sitiatio - vo Kara a Effetive vo Kara Spetrus λ.88µ - - SNTATON NDEX % % vo Kara Wea Effetive vo Kara vo Kara Saturate Figure Pae Wave Sitiatio base o te vo Kara Spetru wea equatio eiu [effetive spetru] equatio 7 saturate equatio 7 λ.88µ. Pae Wave Sitiatio - vo Kara a Effetive vo Kara Spetrus λ.µ - - SNTATON NDEX..8. %. % vo Kara Wea Effetive vo Kara vo Kara Saturate Figure Pae Wave Sitiatio base o te vo Kara Spetru wea equatio eiu [effetive spetru] equatio 7 saturate equatio 7 λ.µ 8
41 figures a 7 sitiatio epressios are opare base o tree atosperi spetra s effetive Koogorov effetive oifie bup a te ew erive effetive vo Kara. For assue oitios λ.88µ 7 figure a figure te ew effetive vo Kara urves apture te effet of ier sae wi is te irease i sitiatio over a o-zero ier sae epressio su as Koogorov but o ot rea te pea of te bup spetru i te fousig regie. figure te effetive oifie urve peas at. wit a preite sitiatio of.8. Te orrespoig effetive vo Kara erive sitiatio is. or approiate 7% ess. figure 7 te effetive oifie urve peas at. wit a preite sitiatio of.. Te orrespoig effetive vo Kara erive preitio is. or approiate % ess. Note tat i figures a 7 as gets saer sitiatio preite b te ew erive effetive vo Kara spetru approaes tat erive b te effetive vo Kara spetru. etree strog turbuee te ifferee betwee sitiatio erive b te ew effetive vo Kara epressio versus te effetive Koogorov epressio is iia.
42 Pae Wave Sitiatio - Effetive Moifie vo Kara a Koogorov Spetrus SNTATON NDEX. λ.88µ %.... Effetive Koogorov Effetive vo Kara Effetive Moifie Bup Figure Sitiatio e base o varie spetra s equatios 7 a 7 7 λ.88µ SNTATON NDEX Pae Wave Sitiatio - Effetive Moifie vo Kara a Koogorov Spetrus % λ.88µ - - Effetive Koogorov Effetive vo Kara Effetive Moifie Bup Figure 7 - Sitiatio e base o varie spetra s equatios 7 a 7 λ.88µ
43 Figures 8 a sow te effet of a age i waveegt. figure 8 te sae oitios are assue as i figure eept tat te waveegt as bee irease fro λ.88µ to λ.µ. Te resutig ifferee betwee te effetive vo Kara te oifie erive sitiatio at te pea of te urve is reue fro 7% i figure to 8%. Siiar i figure assuig te sae oitios as i figure 7 eept for a irease fro λ.88µ to λ.µ te resutig ifferee betwee te effetive vo Kara te oifie erive sitiatio at te pea of te urve as bee reue fro % i figure 7 to %. Note tat urves i figures 8 a pea at ower sitiatio vaues ta orrespoig figures a 7 a ote tat tese peas our i te oerate turbuet regies. Terefore for te oitios give i oerate turbuee irease waveegt size iiises te bup effet. SNTATON NDEX... Pae Wave Sitiatio - Effetive Moifie vo Kara a Koogorov Spetrus 8 % λ.µ Effetive Koogorov Effetive vo Kara Effetive Moifie Bup Figure 8 - Sitiatio e base o varie spetra s equatios 7 a 7 7 λ.µ
44 . Pae Wave Sitiatio - Effetive Moifie vo Kara a Koogorov Spetrus % λ.µ - - SNTATON NDEX... Effetive Koogorov Effetive vo Kara Effetive Moifie Bup Figure - Sitiatio e base o varie spetra s equatios 7 a 7 λ.µ. opariso Of Te Speria Wave Sitiatio e Moes Figure speria wave sitiatio epressios base o te vo Kara spetru for wea a saturate turbuee regies are opare to te ew erive speria wave sitiatio ie. As wit te ew pae wave epressio te ew speria wave epressio tras previous wea a saturate turbuee urves fair ose proviig a visua iiatio tat auatios a assuptios use to eveop it were orret. wea turbuee < te ew epressio agrees wit te wea sitiatio epressio to witi %. For > te ew epressio agrees wit te saturate sitiatio epressio to witi %. te oerate turbuee regie < < te ew epressio provies a soot trasitio betwee sitiatio epressios preite b eistig wea a saturate turbuee sitiatio epressios.
45 Speria Wave Sitiatio - vo Kara a Effetive vo Kara Spetrus SNTATON NDEX λ.88µ - - % % vo Kara Wea Effetive vo Kara vo Kara Saturate Figure Speria Wave Sitiatio e base o te vo Kara Spetru wea equatio eiu [effetive spetru] equatio 8 saturate equatio figures a sitiatio ifferees are opare betwee speria wave oes base o effetive Koogorov effetive oifie bup a te ew erive effetive vo Kara spetra s. Assue oitios are λ.88µ figure λ.µ figure a. figure te effetive oifie urve peas at. wit a preite sitiatio of.. Te orrespoig effetive vo Kara erive preitio is. or approiate % ess. figure te effetive oifie urve peas at.8 wit a preite sitiatio of.. Te orrespoig effetive vo Kara erive preitio is. or approiate % ess As wit te ew effetive vo Kara pae wave oe te ew epressio aptures a irease i sitiatio wit ier sae but oes ot rea te pea of te bup spetru i te fousig regie. Note tat urves i figures pea at ower sitiatio vaues ta i figures a ote tat tese peas our i te oerate turbuet
46 regies. Terefore i oerate turbuee for te oitios give irease waveegt size iiises te bup effet. etree strog turbuee te ifferee betwee sitiatio erive b te ew effetive vo Kara epressio versus te effetive Koogorov epressio is iia. Speria Wave Sitiatio - Effetive Moifie vo Kara a Koogorov Spetrus λ.88µ - - SNTATON NDEX % Effetive Koogorov Effetive vo Kara Effetive Moifie Bup Figure - Sitiatio e base o varie spetra s equatios 8 a 8 λ.88µ
47 Speria Wave Sitiatio - Effetive Moifie vo Kara a Koogorov Spetrus SNTATON NDEX..... % λ.µ - -. Effetive Koogorov Effetive vo Kara Effetive Moifie Bup Figure - Sitiatio e base o varie spetra s equatios 8 a 8 λ.µ
48 7. ONUSON tis tesis pae a speria wave sitiatio epressios were eveope fro a effetive vo Kara spetru for use i varig futuatio regies. Tis effetive spetru was use to ete te tov approiatio ito a optia turbuee regies b usig fiter futios to eiiate i-rage turbuet e size effets to te sitiatio ie. Fiter utoffs were estabise b atig to ow wea a saturate sitiatio resuts. Atoug stuies iiate tat usig a bup spetru is iportat for eveopig aurate sitiatio epressios i wea turbuee sitiatio epressios base o te effetive vo Kara spetru tra tose base o te effetive oifie bup spetru 8 fair ose. oerate turbuee te ew epressios provie a soot trasitio betwee sitiatio epressios preite b eistig wea a saturate turbuee sitiatio epressios. Aso i oerate turbuee irease waveegt size iiises te bup effet. etree strog turbuee te ifferee betwee te oes is iia.
49 APPENDX A: WEAK TUBUENE KOMOGOOV SPETUM PANE WAVE 7
50 ep Te Vo Kara Spetru φ. reues to te Koogorov Spetru φ. if ier sae goes to zero a outer sae goes to ifiit. Terefore te sitiatio ie erive b te vo Kara spetru see appei B reues to tat erive b te Koogorov spetru if ier sae goes to zero a outer sae goes to ifiit. For a pae wave equatio f p.8 si ta A te..8 si ta.8 si A p Terefore te sitiatio ie for a pae wave i wea turbuee base o te Koogorov spetru is. 8
51 APPENDX B: WEAK TUBUENE VON KAMAN PANE WAVE
52 Uer wea futuatio oitios te o-ais sitiatio ie for a pae wave is efie b equatio 7: For te vo Kara spetru Φ 8 os B. ep 8 ep. os ep. eep os. e. e i ep ep i ep ep i B were ep Φ. equatio os e[ep i] eogizig µ ep µ 8 Γ u µ µ ; µ ; B were µ µ
53 µ 8 8 µ µ resuts i ; ; Γ u ; ; [ i ] p. e Γ u ; ; u ; ; i. e u BAssuig Γ Γ z u a; ; z Γ a Γ a B te Γ Γ u ; ; Γ Γ Γ Γ Γ 7 Γ.8. B Equatio B a be reue to [. i ] p. e. [. ][ i ]. e 8.7 e i 8.7 [ i ] [ i ] e i i
54 e i i i i e B7 i i Upo eetig te ter ot rea i p 8.7 e i i i.7 e B8 i Evauate i i i poar ooriates: [ i ta ] ep[ i ta ] i r ep { } i ep[ ta ] i ep[ i ta ] B Aso i r ep[ i ta ] ep[ i ta ] Te i i i ep [ i ta ] ep B i ep i B A i ep[ i ta i ] i
55 os[ ta ] si[ ta ] si [ ta ] [ ta ] si B were epi os igorig te iagiar ter Equatio B8 a be rewritte as were p.7 si[ ta ].7.8 si ta.8 si[ ta ].8 [ ] si [ ta ].8 si ta B.
56 .8 Terefore te pae wave epressio i wea futuatios usig te vo Kara spetru is.8 si ta
57 APPENDX : WEAK TUBUENE MODFED BUMP PANE WAVE
58 Uer wea futuatio oitios te o-ais sitiatio ie for a pae wave is efie b equatio 7 Φ os 8 For te oifie bup spetru [ ] os ep were [ ] ep..8. Φ equatio Tis equatio a be spit ito itervas. et..8 Β. Deterie a geera soutio for Β te sove for ea iterva separate. ]} os[ { ep. 8 Β Β os ep. 8 Β os ep. i Β ep e ep. i Β ep ep e. i Β ep ep e. i Β ep ep e. i Β ep ep e. i Β ep ep. were
59 [ ] os e ep i eogizig µ ep resuts i were µ 8 Κ Γ µ u µ ; µ ; µ µ µ 8 8 µ [ ] µ [ ] [ ].Β e Γ[ ] u[ ];[ ]; Γ[ ] u[ ];[ ]; i.β Γ[ ] e u[ ];[ ]; u[ ];[ ]; i eogizig te were Γ Γ z u a; ; z Γ a Γ a 7 [ [ ] Γ [ ] Γ Γ [ ] ] Γ u [ ];[ ]; 7 a ] [ ] a [ ] [ ]
60 Equatio a be reue to were [ ].Β Γ[ ] Γ[ ] Γ e Γ Γ[ ] [ ] [ ] Γ[ ] Γ[ ] i Γ Γ[ ] Γ[ ].Β Γ[ [ ] i Γ[ ] ] e Γ[ ] Γ[ ] [ ].Β Γ[ ] Γ[ ] e Γ[ ] [ ] [ ] [ i ] [ ] [ ].Β Γ[ ] Γ[ ] e [ ] Γ[ ] [ ] [ i ].Β Γ[ ] Γ[ ] [ ] e [ i ] Γ[ ] [ ].Β Γ[ ] e [ i ].8.Β Γ[ ] Γ[ ] e Γ[ ] [ ] [ i ].Β Γ[ ] e [ i ].Β Γ[ ] e.β.β. Γ[ ] e [ ] i [ ] i [ i ] [ ] i i i [ ] i [ ] [ ] i Γ[ ] e 8 i i 8
61 .8 Upo eetig ter ot rea i.β Γ[ ] e i i [ i [ ] ].Β Γ[ ] e[ ] i Evauate i i [ ] i poar ooriates: i r ep [ i ta ] ep[ i ta ] Terefore { } ] [ ] [ i ep[ i ta ] [ ] ep[ i[ ] ta ] Aso i r ep[ i ta ] ep[ i ta ] Terefore i i ep [ i ta ] ep i Te i ep i a
62 [ ] [ ] i ep[ i [ ] ta i ] i [ ] os[ [ ] ta ] [ ] si[ [ ] ta ] were epi os igorig te iagiar ter Terefore te geera soutio is.β Γ [ ] [ ] si[ [ ] ta ] Te fia soutio is obtaie fro te above b sovig.8. Β for ea iterva iepeet te aig te togeter. terva Β : terva.β Γ [ ] [ ] si[ [ ] ta ] []. Γ [ ] [ ] si [ ] ta. Γ [ ] si ta [ ta ]..78 si [ ] si ta.8 [ ] si ta.8
63 [ ] si ta.8 si[ ta ].8.8 si[ ta ] terva.8 Β.8 : terva []..8 Γ[ ] [ ] si[ [ ] ta ] [ ]..8 si[ ta ] Γ [ 8..8 [ ]. si ta 8 [ ] si ta.8 [ ] si ta.8 si[ ta ].8 [ ] si ta.8 [ ] si ta.8
64 [ ] si ta.8.7 [ ].7si ta.8. terva -. Β. terva [ ].. Γ[ ] [ ] si[ [ ] ta ] [ ] [ ta ] 8.. Γ si 8.. [ ]. si ta [ ] 8 si ta. 8 [ ] si ta. - [ ] si ta. - [ ] si ta. - [ ] si ta. - [ ].7si ta
65 Now obie te tree itervas were Β.8..8 si[ ta ].8.8.7si [ ta ]. [ ta ]..7si si ta.8 si ta si ta si ta si ta si ta..8 si ta.7.7 si ta si ta. 8 Terefore te pae wave epressio i wea futuatios usig te oifie bup spetru is.8 si ta.7 si ta.7 si ta.
66 APPENDX D: WEAK TUBUENE KOMOGOOV SPHEA WAVE
67 Te Vo Kara Spetru φ. ep Koogorov Spetru φ. reues to te if ier sae goes to zero a outer sae goes to ifiit. Terefore te sitiatio ie erive b te vo Kara spetru see appei E reues to tat erive b te Koogorov spetru if ier sae goes to zero a outer sae goes to ifiit. For a speria wave equatio sp.8. si ta D f.8. si ta.8.si. D sp Terefore te sitiatio ie for a speria wave i wea turbuee base o te Koogorov spetru is.
68 APPENDX E: WEAK TUBUENE VON KAMAN SPHEA WAVE
69 7 Uer wea futuatio oitios te o-ais sitiatio ie for a speria wave is efie b equatio Φ os 8 E For te vo Kara spetru os ep. 8 os ep. i ep e ep. i ep ep e. i ep ep e. i ep ep e. [ ] i ep ep e. E were ep. Φ equatio ] e[ep os i eogizig ; ; ep 8 Γ Κ u µ µ µ µ µ E were µ µ
70 µ 8 8 µ µ resuts i. e Γ u ; ; Γ u ;;[ [ i ] ; ; u ; ; [ i ]. e u EAssuig u a; ; z Γ Γ z Γ a Γ a E Equatio E a be reue to te Γ Γ u ; ; Γ Γ Γ Γ Γ Γ 7 Γ. E were. e[. ]. [ i ] [. ]{ [ i ] }. e { [ i ] } 8.7 e 8.7 e [ i ] e [ i ] 7.7 e [ i ] E7 8
71 ..8 Evauate e [ i ] Wit bioia epasio < e [ i ] e [ i ] e i [ ] E8 were i aitio Γ[ ] Γ p [ p ] a p p a a Γ E As a resut e i Γ Γ were a p otig tat [ ] e i E Γ a a! E
72 e Γ Γ Γ Γ i e! Γ i! Γ Γ Γ Γ e! i Γ Γ! e Γ Γ! i Γ Γ e Γ Γ! i Γ Γ! e Γ Γ! i Γ Γ Γ Γ Γ e! i Γ Γ Γ Γ e i! Γ Γ Γ e i E! Γ Equatio E7 beoes Γ Γ 7.7 e i! Γ 7.7 e i F ; E! were Evauate: F ; osier F ; ; Γ Γ a b F a b; ; E Γ a Γ b a b z a b z F a b; ; z E!! For F;;!! Tus for F ; ; F;; sae as
73 For F ;;!!! Γ! Γ Γ! Γ Γ Γ Γ! Γ Tus for : F ; ; sae as For F ;;! Γ Γ Γ! Γ!! Γ! Γ Γ! Γ Tus for : F ; ;. Note tat o we &. atioae as foows: opare to Terefore we a we F ; E
74 E7 F ;!! i F ; i i! E8 ea fro tat a b z F a b; ; z.! te were i i F ;;! i i i E i F a;; a a Equatio E a be re-writte as a a 7.7 e! i F ; 7.7 e i i
75 e 7.7 i i e.8 i i i E Gettig ri of te iagiar ter e.8 i i E Evauate i i i poar ooriates: [ ] [ ] ta ep ta ep i i r i Terefore ta ep i i ta ep i ta ep i E Aso [ ] [ ] ta ep ta ep i i r i. Terefore [ ] ep ta ep i i i i E
76 ep ep i i i E ta ep i i i i ta si ta si ta si 7. ta si. E were epi os igorig te iagiar ter Tus for a Speria Wave Sitiatio i Wea Turbuee usig vo Kara Spetru equatio E reues to ta si..8 E
77 APPENDX F: WEAK TUBUENE MODFED BUMP SPHEA WAVE
78 Uer wea futuatio oitios te o-ais sitiatio ie for a speria wave is efie b equatio : Φ os 8 F For te oifie spetru [ ] os ep F were [ ] ep..8. Φ equatio Tis equatio a be spit ito itervas. et..8 Β. Deterie a geera soutio for Β te sove for ea iterva separate. sp Β os ep. 8 Β os ep. i Β ep e ep. i Β ep ep e. i Β ep ep e. i ] ep ep e. Β i Β ep ep e. i Β ep ep e. F
79 were os e[ep i] eogizig µ ep 8 Κ Γ µ u µ ; µ ; µ F were µ µ µ 8 8 µ [ ] µ [ ] [ ] resuts i.β e Γ[ ] u[ ];[ ]; Γ[ ] u[ ];[ ]; i sp.β Γ[ ] e u[ ];[ ]; u[ ];[ ]; [ i ] F Appig u a; ; z Γ Γ z Γ a Γ a F te 7
80 [ ] Γ[ ] Γ[ ] u [ ];[ ]; F7 Γ Γ[ ] were a ] [ ] a [ ] [ ] equatio F a be reue to sp.β Γ[ ] Γ[ ] Γ[ ] e Γ Γ[ ] [ ] Γ[ ] Γ[ ] i Γ Γ[ ].Β Γ[ ] e [ ] Γ[ ] Γ[ ] [ i ] [ ] Γ[ ] Γ[ ] [ ] [ ].Β Γ[ ] Γ[ ] e Γ[ ] [ ] [ ] [ ] [ ] { [ i ] } [ ].Β Γ[ ] Γ[ ] e [ ] Γ[ ] [ ] { [ i ] }.Β Γ[ ] Γ[ ] e Γ[ ] [ ] { [ i ] }.Β.8 Γ[ ] Γ[ ] e Γ[ ] [ ] { [ i ] } 8
81 .Β.Β.Β Γ[ ] e Γ[ ] e Γ[ ] e [ ] { [ i ] } [ ] { [ i ] } [ i ] [ ] [.Β Γ[ ] e i ] F8 were..8 Evauate e [ ] [ ] i : Wit bioia epasio < e [ ] [ ] [ [ ] i ] e [ i ] e i [ ] F were i [ ] aitio a a p a p Γ[ ] Γ p Γ[ p ] F
82 As a resut e [ ] i Γ[ ] Γ Γ[ ] F ote tat were a p a a! F Terefore e [ ] [ ] e! [ i ] Equatio F8 beoes Β Γ. [ ] e i Γ[ ] Γ Γ[ ] [ ] Γ[ ] Γ e i! Γ[ ] [ ] Γ[ ] Γ e i! Γ[ ] Γ [ ] Γ[ ] Γ e i Γ! Γ[ ]! [ ] [ ] e Γ Γ i Γ! Γ[ ] [ ] [ ] e Γ Γ i Γ! Γ[ ]! [ ] [ ] e Γ Γ i Γ! Γ[ ] Γ [ ] Γ[ ] Γ e i Γ! Γ[ ] [ ] Γ[ ] Γ e i! Γ[ ] [ ] Γ[ ] Γ e i! Γ[ ] Γ[ ] Γ Γ[ ] F [ ] i F sp! 7
83 Evauate [ ] Γ Γ i :! Γ Note tat Γ Γ a b F a b; ; F Γ a Γ b opare to Γ Γ Γ As a resut: -a-b -a -b or reaso: Γ Γ : fro above a: a a a b: a - b b b orporatig tis ito equatio F [ ]. Β Γ[ ] { e sp i F ;}! [ ].Β Γ[ ] {e i F ; }! Evauate: F ; F osier F ; ; a b z a b z F a b; ; z F7!! For F;;!! Tus for F ; ; F;; sae as 7
84 For F ;;! Γ Γ Γ! Γ!! Γ! Γ Γ! Γ Tus for : F ; ; sae as For F ;;! Γ Γ Γ! Γ!! Γ! Γ Γ! Γ Tus for : F ; ;. Note tat o we &. atioae as foows: opare to Terefore we a we F ; F8 7
85 F F ; [ ] i F ;!! i [ ] i F! eaig fro equatio F tat a b z F a b; ; z! [ ]! i i F [ ] ;; [ ] i [ ] i F were F a;; a a a [ ] a [ ] [ ] [ ] Equatio F a be re-writte as [ ].Β Γ[ ] { e sp i F ;}! [ ]. Γ[ ] e[ B i F ; ]!.B [ ] i Γ[ ] e i 7
86 7 Γ e ] [. ] [ i i B Γ ] e [. ] [ i i i B F Get ri of te iagiar ter: Γ e ] [. ] [ sp i i B F Evauate ] [ i i i poar ooriates: ] ta ep[ ] ta ep[ i i r i Terefore ] [ ] [ ta ep i i ] [ ] [ ta ep i ta ep ] [ i F Aso ] ta ep[ ] ta ep[ i i r i. Terefore [ ] ep ta ep i i i i F
87 7 ep ep i i i F ta ep ] [ ] [ i i i i ta os ] [ ta si ] [ ta si ] [ ta si ] [ ] [ F7 were epi os igorig te iagiar ter. Tus te geera soutio is Γ ta si ] [. ] [ ] [ r sp B F8 Te fia soutio is obtaie fro te above b sovig..8 Β for ea iterva iepeet te aig te togeter: terva Β.8 Γ
88 7 terva Γ ta si ] [. ] [ ] [ B Γ ta si. Γ ta si. Γ ta si... Γ. ta si... Γ. ta si....8 ta si..8 F terva.8 Β : terva Γ ta si ] [. ] [ ] [ B Γ ta 8 si..8 ] [ ] [ Γ ta si Γ ta si.
89 77 Γ ta si. ] ta si [. Γ Γ ta si. Γ. ta si. Γ. ta si. Γ. ta si.. ta si. Γ. ta si. Γ. ta si.
90 78 ]. ta si [. Γ... ta. si ta.si..8 F terva. Β : terva Γ ta si ] [. ] [ ] [ B Γ ta si Γ ta si. 8 8 Γ ta si. Γ. ta si. 8 Γ 8. ta si.
91 7 Γ. ta si. Γ. ta si. Γ. ta si. Γ. ta si. Γ. ta si ta.8 si ta.8si..8 F sp terva terva terva 8. ta si..8 sp. ta.si..8. ta.8si..8
92 8. ta.8si.. ta.si..8 ta si..8 ]. ] ta.8 si[. ] ta. si[. ta si..8 ]. ta.8si ta.si ta si..8 F Tus for a speria wave sitiatio i wea turbuee usig oifie spetru ]. ta.8si ta.si ta si..8 sp
93 APPENDX G: SATUATED TUBUENE KOMOGOOV PANE WAVE 8
94 8 eferee equatio i te saturatio regie te sitiatio ie for a uboue pae wave a be epresse i te for D s Φ ep si G For te Koogorov spetru ier sae ot iue p s D D. As a resut D p ep si G Assue te foowig approiatio for te pae wave struture futio base o te Koogorov spetru. ρ ρ D p << << ρ G were ρ Te. ep si..8 ep si [ ]. ep si. ep si β β ] [ ] [. ep si. ep si 8. ep si G were
95 8.8 β < β > β Assue for << tat si... 7!!! 7 si si β β Te equatio G a be writte as p 8. ep 8. ep 8 8. ep ep.8 G
96 were. equatio.8 Evauate { } ep s were s. 8 Substitutig t t t t { s } t ep{ st} t t t ep{ st}t ep G Terefore Note tat Γ t ep{ st} t G7 s ep Γ { s } G8 Te p G 8 7 8
97 Appig u µ µ u [ F ν µ ; µ βu] G ν β µ Te µ.7 u [ F ν µ ; µ β ] µ p u.7. [ [.7] 7 F ; ] 8.8 G Terefore for a pae wave i saturate turbuee usig te Koogorov spetru.8 >> p 8
98 APPENDX H: SATUATED TUBUENE VON KAMAN PANE WAVE 8
99 87 eferee equatio i te saturatio regie te sitiatio ie for a uboue pae wave a be epresse i te for D s Φ ep si H For te vo Kara spetru ier sae iue assue D D s ρ ρ. As a resut D p ep si H Assue te foowig approiatio for te pae wave struture futios base o te vo Kara spetru.8 ρ D p H were ρ Te Φ.8 ep si Φ. ep si Φ.8. ep si [ ] Φ 7 7. ep si [ ] Φ... ep si [ ] Φ.77 ep si [ ] Φ.77 ep si Φ.77 ep si β β Φ ] [ ] [.77 ep si
100 88 Φ.77 ep si Φ.77 ep si Φ.77 ep si Φ.77 ep si Φ.77 ep si H were... is a o-iesioa ier sae paraeter.8 β < β > β for a pae wave Assue for << tat si... 7!!! 7 si si
101 8 β β Te Φ.77 ep.77 ep 8.77 ep 8.77 ep 8.77 ep ep ep ep..77 ep..77 ep ep.8 7 ep.8 ep.8 H were
102 ep. equatio.8.77 ep Evauate eogizig µ were te µ ep 8 Γ µ ; ; u µ µ µ µ µ µ µ 8 8 Appig tis to equatio H te ep Γ u; ; ep Γ u; ; Γ u; ; ε ε
103 .8 Γ u; ; ε.8 Γ u; ;.77 ε H Evauate ; ;.77 u u a; ; z Γ Γ z Γ a Γ a Terefore u ; ; [ ] Γ Γ { [ ] } Γ Γ Γ Γ Γ { [ ] } Γ Γ Γ Γ Γ Γ.7 Γ H7 As a resut Γ.8 Γ {.7 Γ } ε 7 ε Γ Γ.8 Γ.7 7 Γ Γ Γ ε ε H8
104 Assuig ifiite outer sae te ε.77.8 Γ.77.8 Γ H f >> te H Appig ] ; [ u F u u β µ µ ν µ β µ ν µ H were
105 u µ µ β ν esuts i. [ F ; ]. [ F ; ]]. [.8]. H Terefore for a pae wave i saturate turbuee usig te vo Kara spetru. >>
106 APPENDX : SATUATED TUBUENE MODFED BUMP PANE WAVE
107 eferee equatio i te saturatio regie te sitiatio ie for a uboue pae wave a be epresse i te for D s Φ ep si For te oifie spetru ier sae iue assue D D s ρ ρ. As a resut D p ep si Assue te foowig approiatio for te pae wave struture futios base o te oifie spetru [ ] D ρ ρ ρ ρ ρ ] [.7 ρ.7 ρ were ρ Te.7 ep si Φ.8.7 ep si [ ] Φ.8. ep si [ ] Φ. ep si Φ. ep si
108 [ ] [ ] β β Φ. ep si Φ. ep si Φ. ep si were.8.8. β < β > β for a pae wave Assue for << tat si... 7!!! 7 si si β β
109 7 Te Φ. ep Φ. ep 8 eferee equatio for te oifie spetru [ ] ep..8. Φ Assuig ifiite outer sae [ ] ep..8. Φ 7 Equatio a be writte as [ ] { } 7 ep ep 8 Tis equatio a be spit ito itervas. et..8 Β. Deterie a geera soutio for Β te sove for ea iterva separate. [ ] Β. ep ep. 8 Β. ep ep. 8 Β. ep ep. 8 Β. ep. 7
110 8 Β 7 7. ep.8 were.8 Substitutig t t t t t t t t Β 7 7. ep.8 t t t Β. ep. eogizig { } s t st t ep Γ Te Γ Β B Γ
111 f >>.. a B Γ B Γ eier:..8 Β Sove for ea terva iepeet te a te togeter: i.e. ter ter ter First iterva : B iterva Γ ;] [.88 7 F
112 .8.8. were ] ; [ u F u u β µ µ ν µ β µ ν µ Seo iterva: B 8. iterva B Γ ]. 7. Γ Sie iterva << iterva Tir iterva: B-. 7 iterva B Γ Γ Sie iterva << iterva 7
113 ea tat iterva iterva iterva.. Terefore for a pae wave i saturate turbuee usig te oifie bup spetru:. 8
114 APPENDX J: SATUATED TUBUENE KOMOGOOV SPHEA WAVE
115 eferee equatio i te saturatio regie te sitiatio ie for a uboue pae wave a be epresse i te for D s Φ ep si J For te Koogorov spetru ier sae ot iue p s D D. As a resut D p ep si J For speria wave overt p D to sp D te wave struture futio for a speria wave Assue te foowig approiatios for te pae wave a speria wave struture futios base o te Koogorov spetru [page aser boo]. ρ ρ D p J. ρ ρ D sp J ρ ρ ρ ρ sp p D D J were ρ As a resut D sp. ep si.. ep si.8.. ep si. ep si [ ]. ep si
116 [ ]. ep si. ep si. ep si β β ] [ ] [. ep si ] [ ] [. ep si. ep si ep si { 8 } { 8. ep si 8 8 { 8 8. ep si [ ] 8. ep si.888 ep si J were.8 β < β > β speria wave Now evauate: si Assue for << tat
117 si... 7!!! 7 si si β β Equatio J a be re-writte as.888 ep.888 ep.888 ep ep ep ep ep. 8 [ ].888 ep.8.8 [ ].888 ep.8 [ ].888 ep.8 J7 were
118 φ. equatio.8 Evauate ep{ s } were s.888 Substitutig t t t t { s } t ep{ st} t t t ep{ st}t ep J8 Note tat Γ t ep{ st} t J s were 7 Te As a resut ep Γ { s } [ ] [ ].8 [ ] [ ] J
119 [ ]... J eogizig tat u µ µ u [ F ν µ ; µ βu] ν J β µ were u µ µ β ν µ Te. F [ ; ]...7 J Terefore for a speria wave i saturate turbuee usig te Koogorov spetru. 7 7
120 APPENDX K: SATUATED TUBUENE VON KAMAN SPHEA WAVE 8
121 eferee equatio i te saturatio regie te sitiatio ie for a uboue pae wave a be epresse i te for D s Φ ep si K For te vo Kara spetru ier sae iue assue D D s ρ ρ. As a resut D p ep si K For speria wave overt p D to sp D te wave struture futio for a speria wave Assue te foowig approiatios for te pae wave a speria wave struture futios base o te vo Kara spetru ρ ρ ρ ρ D p K..7. ρ ρ ρ ρ D sp K...8 ρ ρ ρ sp sp p D D D K were ρ As a resut D sp. ep si Φ.. ep si Φ.8.. ep si [ ] Φ. ep si
122 [ ] Φ... ep si [ ] Φ.77 ep si K were..8 β < β > For a speria wave β. Equatio K reues to Φ.77 ep si [ ] [ ] β β Φ [.77 ep si [ ] [ ] Φ [.77 ep si Φ.77 ep si Φ.77 ep si Φ } { } {.77 ep si Φ.77 ep si [ ] Φ.77 ep si Φ.77 ep si
123 [ ] Φ. ep si K7 Assue for << tat si... 7!!! 7 si si β β Equatio K7 a be re-writte as [ ] Φ. ep. ep 8. ep 8. ep 8 K8 te Vo Kara Spetru assue. Te ep. ep. ep. K a
124 7. ep ep. 8 [ ]. ep. [ ] 7. ep..8. ep.8 K were.8 Substitutig t t t t t t t t. ep.8 t t t. ep.8 K Appig { } s t st t ep Γ K were resuts i [ ]..8 Γ [ ]..8 K f 7 >> te..8 K
125 a [ ] K eogizig tat u µ µ u [ F ν µ ; µ βu] ν K β µ Te.8. { F [ ; ]}.8... K7 Terefore for a speria wave i saturate turbuee usig te vo Kara spetru. >>
126 APPENDX : SATUATED TUBUENE MODFED BUMP SPHEA WAVE
127 eferee equatio i te saturatio regie te sitiatio ie for a uboue pae wave a be epresse i te for Φ si ep Ds For te oifie spetru ier sae iue assue D s ρ D ρ. As a resut For speria wave overt ep Dp si D p to D sp te wave struture futio for a speria wave Assue te foowig approiatios for te pae wave a speria wave struture futios base o te vo Kara spetru Dsp ρ. ρ [.ρ..88.ρ.. ρ [.8 ρ [.8. ] ].8.8ρ..88. ρ ] D ρ.7 ρ [.ρ..88.7ρ.7.7 ρ ρ [.8 ].8.ρ..88 ].7 D p ρ Dsp ρ.dsp ρ. were ρ
128 As resut D sp. ep si.. ep si.8.. ep si [ ]. ep si [ ].8. ep si [ ]. ep si [ ] [ ] β β. ep si [ ] [ ]. ep si [ ] [ ]. ep si. ep si. ep si { } } {. ep si. ep si [ ]. ep si. ep si [ ]. ep si were.8
129 7..8. β < β > β For a speria wave Assue for << tat si... 7!!! 7 si si β β Equatio a be approiate as. ep. ep 8 7 eferee equatio for te oifie spetru [ ] ep..8. Φ 8 Assuig ifiite outer sae
130 8 [ ] ep..8. Φ Equatio 7 a be writte as [ ] { } ep ep Tis equatio a be spit ito itervas. et..8 Β. Deterie a geera soutio for Β te sove for ea iterva separate. Β. ep ep. 8 Β. ep ep. 8 Β. ep ep. 8 [ ] Β. ep. [ ] Β. ep.8 Β. ep.8 were.8 Substitutig t t t t Te t t t t Β. ep.8 t t t Β 7. ep. eogizig { } s t st t ep Γ were 7
131 Equatio beoes [ ] Γ Β [ ] Γ Β [ ] B Γ [ ] B Γ f >>.. a [ ] B Γ [ ] B Γ B Γ B Γ B Γ eier:..8 Β
132 Sove for ea iterva iepeet te a te togeter i.e. iterva - iterva First iterva: B iterva 7. Γ iterva 7. 7.Γ { F [ ;]} u µ µ u were [ F ν µ ; µ βu] ν β µ u µ µ β ν µ
133 Seo iterva: B 8. Ter B Γ Γ Sie iterva << iterva Sie iterva << iterva assue iterva Tir iterva: B-. 7 iterva B Γ Γ Sie iterva << iterva 7 ea tat iterva iterva iterva 7.. Terefore for a speria wave i saturate turbuee usig te oifie bup spetru: 7. 8
134 APPENDX M: MODEATE TUBUENE KOMOGOOV PANE WAVE
135 arge-sae og-rraiae Variae Usig te effetive atosperi spetru referee equatios a te arge-sae ogirraiae variae for a pae wave i te presee of a fiite ier sae is 8 z z G os. 8 M et z os z its Taor epasio estiate. Te approiatio is vai for te arge-sae og-irraiae variae beause fiter futio G eiiates ig spatia freque otributios i oerate-to-strog futuatios. osequet z z G. 8 z z G. M Substitutig z z G. G. G. ep.
136 ep ep ep ep. ep ep.7 ep M were G f ep ep. eogizig e s s Γ M were s - 7 esuts i
137 Γ M Sa-Sae og-rraiae Variae Usig te effetive atosperi spetru referee equatios a te sa-sae ogirraiae variae for a pae wave i te presee of a fiite ier sae is 8 z 8. G os z M oerate to strog irraiae futuatios >> et Substitutig 8. G z M7 z z G G
138 [ ]. [ ].7 M8 were G. Asptoti oparisos For ostats a assue te foowig futioa for of a [see Appei S]. ρ o ρ o ρ o ρ ρ << >> M
139 7 ρ ρ ρ >> << ρ ρ M Wea Turbuee Te og irraiae variae is efie uer te tov approiatio for wea turbuee b 8 z z Φ os 8 M were. Φ zero ier sae Substitutig z z z z Te [ ] Φ os 8 [ ] Φ os 8 [ ] os. 8
140 [ os ] [ os ] [ os ] [ os ] [ os ]. M were. Usig te reatiosip si u [ os u ] eogizig te previous equatio reues to. si M u si u Γ uos a u u a M were u - a eas to 8
141 . Γ os.γ os.γ M Uer wea irraiae futuatios 8 << M Equatig equatios M a M a usig equatios M8 a M resuts i..7 << M7 Assuig te is a approiate soutio. Puggig tis ito equatios M a M ρ o M8 M ρ Tus a are ow estabise usig beavior of te sitiatio ie i te wea turbuee regie. Saturate Turbuee
142 First perfor a asptoti opariso for sa-sae turbuet e effets. Noraize irraiae 8 a be epresse as were is assoiate wit arge-sae turbuet e affets is assoiate wit sa-sae e effets a are statistia iepeet rao quatities a <><>. Give tese oitios <> <><>. Te seo oet of irraiae taes te for 8 < > < >< > M were a are te arge sae a sa sae oraize variaes of a respetive. Base o equatios a Mte ipie sitiatio ie is M Per equatio te asptoti beavior of te sitiatio ie i te saturatio regie is. esribe b 8 wi approaes a asptoti iit of oe. Terefore i saturate turbuee M strog futuatios epet te arge-sae sitiatio ters to ie out. M Te sa sae irraiae is give b 8 ep As a resut i strog futuatios M ep M M
143 Te pae wave spatia oeree raius ρ we is ostat a << << ρ a be approiate b ρ. ρ. M7 ρ Puggig tis ito te tov Variae.... ρ M8 saturate turbuee equatig equatio M to equatio M8 resuts i.7.7 ρ [. ].7.7. were equatio M ρ.7 M ρ. equatio M8 Now eterie a asptoti opariso for arge-sae turbuet e effets. For saturate optia turbuee 8 ep M ep
144 Aso 8 ep Terefore Uer wea futuatio << ea fro Equatio M tat Te M ep ep M ep M... ρ. o M were
145 ρ o equatio M. ρ equatio M8 opare tis to te eistig sitiatio epressio equatio for a pae wave i saturate turbuee M Tus a are ow estabise usig beavior of te sitiatio ie i te saturate turbuee regie. A Turbuee egies Appig ostats a resuts i te foowig epressios for preitig sitiatio beavior i a turbuee regies iuig ier sae effets:.. ρ o. ρ o. ρ o.7.
146 .7. << >> M a. 7 [ ] { }... << >> M7 ea fro equatio M tat ep Terefore for a pae wave i oerate turbuee usig a effetive Koogorov spetru.7. ep.. < M8
147 APPENDX N: MODEATE TUBUENE MODFED BUMP PANE WAVE
148 arge-sae og-rraiae Variae Usig te effetive atosperi spetru referee equatios a te arge-sae ogirraiae variae for a pae wave i te presee of a fiite ier sae is 8 z z G os. 8 N et z os z its Taor epasio estiate. Te approiatio is vai for te arge-sae og-irraiae variae beause fiter futio G eiiates ig spatia freque otributios i oerate-to-strog futuatios. osequet z z G. 8 z z G. N Substitutig z z te G. G. G.
149 7..8 ep...8 ep...8 ep ep ep...8 ep...8 ep.7 ep.7.8 ep. ep ep.7 ep.8 7 ep. N were ep f G [ ] ep..8 ep..8 ep.
150 8 eogizig Γ s s e N were s resuts i Γ Γ Γ..8.7 Γ Γ Γ..8.7 Γ Γ Γ
151 µ N were 7..7 µ Sa-Sae og-rraiae Variae Usig te effetive atosperi spetru referee equatios a te sa-sae ogirraiae variae for a pae wave i te presee of a fiite ier sae is 8 z z G os. 8 N oerate to strog irraiae futuatios >> et z G. 8 N7 Substitutig z z G. 8 G...
152 [ ]. [ ].7 N8 were G. Asptoti oparisos For ostats a assue te foowig futioa for of a [see Appei S]. ρ o ρ o ρ o ρ ρ << >> N
153 ρ ρ ρ >> << ρ ρ N Wea Turbuee Te og irraiae variae is efie uer te tov approiatio for wea turbuee b 8 z z Φ os 8 N were. Φ zero ier sae Substitutig z z z z Te [ ] Φ os 8 [ ] Φ os 8 [ ] os. 8
154 [ os ] 7 [ os ] [ os ] [ os ] [ os ]. N were. Usig te reatiosip si u [ os u ] eogizig te previous equatio reues to. si N u si u Γ uos a u u a N were u - a eas to
155 . Γ os.γ os.γ N Assue i equatio N tat N Uer wea irraiae futuatios 8 << N7 Equatig equatios N a N7 a usig equatios N8 a N resuts i..7 << N8 Assuig te. is a approiate soutio. Puggig tis ito equatios N a N ρ o..8 N
156 . N ρ Tus a are ow estabise usig beavior of te sitiatio ie i te wea turbuee regie. Saturate Turbuee First perfor a asptoti opariso for sa-sae turbuet e effets. Noraize irraiae 8 a be epresse as were is assoiate wit arge-sae turbuet e affets is assoiate wit sa-sae e effets a are statistia iepeet rao quatities a <><>. Give tese oitios <> <><>. Te seo oet of irraiae taes te for 8 < > < >< > N were a are te arge sae a sa sae oraize variaes of a respetive. Base o equatios a Nte ipie sitiatio ie is N Per equatio 8 te asptoti beavior of te sitiatio ie i te saturatio regie is. esribe b >> wi approaes a asptoti iit of oe. Terefore i saturate turbuee N strog futuatios epet te arge-sae sitiatio ters to ie out. N
Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials
Itertiol Jourl of Siee Reserh (IJSR ISSN (Olie: 39-764 Ie Coperius Vlue (3: 6.4 Ipt Ftor (3: 4.438 Quruple Siulteous Fourier series Equtios Ivolvig Het Poloils Guj Shukl, K.C. Tripthi. Dr. Aekr Istitute
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Digital Signal Processing: A Computer-Based Approach
SOLUTIOS AUAL to accopay Digital Sigal Processig: A Coputer-Based Approac Tird Editio Sait K itra Prepared by Cowdary Adsuilli, Jo Berger, arco Carli, Hsi-Ha Ho, Raeev Gadi, Ci Kaye Ko, Luca Luccese, ad
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
11. Spectral Lines II. Curve of Growth
. Spetra Lines Curve of Growth Line formation Eington-Mine Curve of Growth Curve of Growth is a theoretia pot of ine equivaent with against ine optia epth, usuay potte as ogw og. The W reation is seen
Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
EN40: Dynamics and Vibrations
EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio
Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics
apter - Heat Engines, Entropy, and te Seond Law o ermodynamis.1 (a).0 J e 0.069 4 or 6.94% 60 J (b) 60 J.0 J J. e eat to melt 1.0 g o Hg is 4 ml 1 10 kg 1.18 10 J kg 177 J e energy absorbed to reeze 1.00
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Inertial Navigation Mechanization and Error Equations
Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
CHAPTER 1. Second Order Partial Differential Equation and Finite Difference Methods Introduction
CHAPTER Secod Order Partia Differetia Equatio ad Fiite Differece Metods.. Itroductio A partia differetia equatio describes a reatio betwee a ukow fuctio ad its partia derivatives. Partia differetia equatios
Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP
Georg.otaetter@Corell.eu USPAS Avace Accelerator Phic - ue 6 CESS & EPP CESS & EPP 56 Setupole caue oliear aic which ca be chaotic a utable. l M co i i co l i i co co i i co l l l l ta ta α l ta co i i
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field
It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work
ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS
ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li
Airfoil Characteristics
Thin Airfoi Theory Airfoi harateristis y m Lift oeffient: Moment oefiient: enter of ressure: Aerodynami enter: ρ / Thin Airfoi Theory Setu Symbos: y u (< v sinv' t hord u osu' Assumtions:. Airfoi is thin
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region
Chapter 3 Exercise Solutios EX3. TN, 3, S 4.5 S 4.5 > S ( sat TN 3 Trasistor biased i the saturatio regio TN 0.8 3 0. / K K K ma (a, S 4.5 Saturatio regio: 0. 0. ma (b 3, S Nosaturatio regio: ( 0. ( 3
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Consider a single-degree-of-freedom system in a free-fall due to gravity. &&x
SIMPLE DROP SHOCK Revisio D By Tom Irvie Email: tomirvie@aol.com November 10, 004 DERIVATION Cosier a sigle-egree-of-freeom system i a free-fall ue to gravity. &&x g m k Where m is the mass, k is the sprig
Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45
Tired Waiting in Queues? Then get in line now to learn more about Queuing!
Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Lecture 22: Coherent States
Leture : Coheret States Phy851 Fall 9 Summary memorize Properties of the QM SHO: A 1 A + 1 + 1 ψ (x) ψ (x) H P + m 1 X λ A + i P λ h H hω( +1/ ) [ π!λ] 1/ H x /λ 1 mω λ h ( A A ) P i ( A A ) X + H x λ
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Right Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject
ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ
ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1
VOLTERR ERE EXO O LER OE RTE EQUTO The i ler diode eutio re: [ ][ ] V The exio of eutio i: [ ] ddig eutio d V V The iut urret i ooed of the u of,. ooet, Î, tie vryig ooet. We thu let 6 The Volterr exio
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Formulas of Agrawal s Fiber-Optic Communication Systems. Section 2-1 (Geometrical Optics Description) NA n 2 ; n n. NA( )=n1 a
Formula o grawal Fier-Oti Commuiatio Sytem Chater (troutio 8 max m M E h h M m 4 6.66. J e.6 9 m log mw S, Chater (Otial Fier SFMMF: i i ir Z Setio - (Geometrial Oti eritio i Z S log i h max E ii o ; GFMMF:
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Lecture 5: Numerical Integration
Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
(2), ,. 1).
178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Certain Sequences Involving Product of k-bessel Function
It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
PART ONE. Solutions to Exercises
PART ONE Soutions to Exercises Chapter Review of Probabiity Soutions to Exercises. (a) Probabiity distribution function for Outcome = 0 = = (number of heads) probabiity 0.5 0.50 0.5 Cumuative probabiity
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ ΚΑΙ ΔΙΑΙΤΟΛΟΓΙΑΣ Πτυχιακή Εργασία Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους Εκπόνηση:
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
DERIVATION OF MILES EQUATION Revision D
By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and