CHAPTER 1. Second Order Partial Differential Equation and Finite Difference Methods Introduction

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CHAPTER 1. Second Order Partial Differential Equation and Finite Difference Methods Introduction"

Transcript

1 CHAPTER Secod Order Partia Differetia Equatio ad Fiite Differece Metods.. Itroductio A partia differetia equatio describes a reatio betwee a ukow fuctio ad its partia derivatives. Partia differetia equatios appear frequety i a areas of pysics ad egieerig. Moreover, i recet years we ave see a draatic icrease i te use of PDEs i areas suc as bioogy, ceistry, coputer scieces ad i ecooics. I fact, i eac area were tere is a iteractio betwee a uber of idepedet variabes, we attept to defie fuctios i tese variabes ad to ode a variety of processes by costructig equatios for tese fuctios. We te vaue of te ukow fuctio(s) at a certai poit depeds oy o wat appes i te viciity of tis poit, we sa, i geera, obtai a PDE. Te geera for of a PDE for a fuctio u(,y,z,,w) is F(,y,z,...,w,u, u,u y,u z,,u w,...,u y,...) = 0, (.) were,y,z,,w are te idepedet variabes, u is te ukow fuctio, ad u deotes te partia derivative u/. Te equatio is, i geera, suppeeted by additioa coditios suc as iitia coditios or boudary coditios. Te aaysis of PDEs as ay facets. Te cassica approac tat doiated te ieteet cetury was to deveop etods for fidig epicit soutios. Because of te iese iportace of PDEs i te differet braces of pysics, every ateatica deveopet tat eabed a soutio of a ew cass of PDEs was accopaied by sigificat progress i pysics. Tus, te etod of caracteristics iveted by Haito ed to aor advaces i optics ad i aaytica ecaics. Te Fourier etod eabed te soutio of eat trasfer ad wave propagatio, ad Gree s etod was istrueta i te deveopet of te teory of eectroagetis. Te ost draatic progress i PDEs as bee acieved i te ast 50 years wit te itroductio of uerica etods tat aow te use of coputers to sove PDEs of virtuay every kid, i geera geoetries ad uder arbitrary etera coditios. P a g e

2 Te fudaeta teoretica questio is weter te probe cosistig of te equatio ad its associated side coditios is we posed. Te Frec ateaticia Jacques Hadaard (865 96) coied te otio of we-posedess. Accordig to is defiitio, a probe is caed we-posed if it satisfies a of te foowig criteria. Eistece: Te probe as a soutio.. Uiqueess: Tere is o ore ta oe soutio.. Stabiity: A sa cage i te equatio or i te side coditios gives rise to a sa cage i te soutio. Equatios wit variabe coefficiets, equatios i copicated doais, ad oiear equatios caot, i geera, be soved aayticay. We sa terefore ave a etirey differet approac to sovig PDEs. Te etod is based o repacig te cotiuous variabes by discrete variabes. Tus te cotiuu probe represeted by te PDE is trasfored ito a discrete probe i fiitey ay variabes. Naturay we pay a price for tis sipificatio: we ca oy obtai a approiatio to te eact aswer, ad eve tis approiatio is oy obtaied at te discrete vaues take by te variabes. Te discipie of uerica soutio of PDEs is rater very recet. Te first aaysis (ad, i fact, aso te first foruatio) of a discrete approac to a PDE was preseted i 99 by te Gera-Aerica ateaticias Ricard Courat (888 97), Kurt Otto Friedrics (90 98), ad Has Lewy ( ) for te specia case of te wave equatio. Icidetay, tey were ot iterested i te uerica soutio of te PDE (teir work preceded te era of eectroic coputers by aost two decades), but rater tey foruated te discrete probe as a eas for a teoretica aaysis of te wave equatio. Te Secod Word War witessed te itroductio of te first coputers tat were buit to sove probes i cotiuu ecaics. Foowig te war ad te rapid progress i te coputatioa power of coputers, it was argued by ay scietists tat soo peope woud be abe to sove uericay ay PDE. Tus, vo Neua evisioed te abiity to obtai og-ter weater predictio by odeig te ydrodyaica beaviour of te atospere. Tese epectatios tured out to be too optiistic for severa reasos: () May oiear PDEs suffer fro ieret istabiities; a sa error i estiatig te equatio s coefficiets, te iitia coditios, or te boudary coditios ay ead to a arge deviatio of te soutio. Suc difficuties are currety ivestigated uder te tite caos teory. () Discretizig a PDE turs out to be a otrivia task. It was discovered tat equatios of differet types soud be aded uericay differety. Tis probe ed to te creatio a ew brac i ateatics: uerica aaysis. P a g e

3 () Eac ew geeratio of coputers brigs a icrease i coputatioa power ad as bee accopaied by a icreased dead for accuracy. At te sae tie scietists deveop ore ad ore sopisticated pysica odes. Tese factors resut i a ever edig race for iproved uerica etods. A uerica soutio provides oy a approiatio to te eact soutio. Te ai idea of a uerica etod is to repace te PDE, foruated for oe ukow rea vaued fuctio, by a discrete equatio i fiitey ay ukows. Te discrete probe is caed a uerica scee. Tus a PDE is repaced by a agebraic equatio. We te origia PDE is iear, we obtai, i geera, a syste of iear agebraic equatios. We sa deostrate beow tat te accuracy of te soutio depeds o te uber of discrete variabes, or, aterativey, o te uber of agebraic equatios. Terefore, seekig a accurate approiatio requires us to sove arge agebraic systes. Tere are severa teciques for covertig a PDE ito a discrete probe. Te ost popuar uerica etods are te fiite differece etod (FDM) ad te fiite eeets etod (FEM). Bot etods ca be used for ost probes, icudig equatios wit costat or o-costat coefficiets, equatios i geera doais, ad eve oiear equatios. Tere is a o-goig debate o weter oe of te etods is superior to te oter. Our view is tat te FDM is siper to describe ad to progra (at east for sipe equatios). Te FEM, o te oter ad, is soeow deeper fro te ateatica poit of view, ad is ore feibe we sovig equatios i cope geoetries... Cassificatio of secod order partia differetia equatios Te study of partia differetia equatios is quite versatie. Terefore it akes sese to first caracterize te accordig to certai properties tat wi provide us wit guideies for ivestigatig te furter. We cosider te geera secod order partia differetia equatio of te for u u u u u A B C F, y, u,, 0. (..) = y y y Equatio (..) is said to be (a) Quasi-iear if te coefficiets A, B ad C are fuctios of, y, u, u ad u y. (b) Midy Quasi-iear if te coefficiets A, B ad C are fuctios of, y ad u. A iear partia differetia equatio ay be writte as Au Bu y Cu yy Du Eu y Fu G = 0 (..) P a g e

4 were A, B, C, D, E, F ad G are fuctios of ad y ad do ot vais siutaeousy. We assue tat te fuctio u ad te coefficiets are twice cotiuousy differetiabe i soe doai R. Te cassificatio of secod order partia differetia equatios is suggested by te cassificatio of quadratic equatio of coic sectios i te aaytic geoetry. Te equatio A By Cy D Ey F = 0 (..) is yperboic, paraboic, or eiptic accordig as B 4AC is positive, zero, or egative. Te cassificatio of secod order equatios is based upo te possibiity of reducig te equatio (..) by coordiate trasforatio to caoica or stadard for at a poit. I te case of two idepedet variabes, a trasforatio ca aways be foud to reduce te give equatio to te caoica for i te give doai. However, i te case of severa idepedet variabes, it is ot, i geera, possibe to fid suc a trasforatio. To trasfor te equatio (..) ito a caoica for, we itroduce a cage of idepedet variabes. Let te ew variabes be ξ = ξ(, y), η = η(, y) (..4) Assuig tat ξ ad η are twice cotiuousy differetiabe ad tat te Jacobia J ξ = η ξ η y y is ozero i te regio uder cosideratio, te ad y ca be uiquey deteried fro te syste (..4). Usig te cai rue, we ave u = u ξ u η ξ η u = u ξ u η y ξ y η y u = u ξ u ξ η u η u ξ u η ξξ ξη ηη ξ η u = u ξ ξ u ( ξ η ξ η ) u η η u ξ u η y ξξ y ξη y y ηη y ξ y η y u = u ξ u ξ η u η u ξ u η yy ξξ y ξη y y ηη y ξ y η yy Substitutig tese vaues ito te equatio (..) yieds 4 P a g e

5 A u B u C u D u E u F u = G * * * * * * * ξξ ξη ηη ξ η (..5) were A = Aξ Bξ ξ Cξ * y y * B = Aξ η B( ξ η y ξ yη ) Cξ yη y C = Aη Bη η Cη * y y * D = Aξ Bξ y Cξ yy Dξ Eξ y * E = Aη Bη y Cη yy Dη Eη y (..6a) (..6b) (..6c) (..6d) (..6e) * F * G = F (..6f) = G (..6g) Oe ca obtai te foowig reatiosip betwee A, B, C ad * * * A, B, C : * * * B 4 A C = J ( B 4 AC). It is apparet tat, uder tis cage of variabes, te sig of wit respect to B * 4A * C *. B 4AC reais ivariat Te cassificatio of equatio (..) depeds o te coefficiets A, B ad C. We sa, terefore rewrite te equatio (..) as Au Bu Cu = H (, y, u, u, u ) y yy y (..7) ad te equatio (..5) as * * * A u B u C u = H * ( ξ, η, u, u, u ) ξξ ξη ηη ξ η (..8) To reduce equatio (..7) to caoica for first assue tat oe of A, B ad C, is * * zero. Let ξ ad η be ew variabes suc tat te variabes A ad C i te equatio (..5) vais. Fro equatios (..6a), (..6c), we ave A = Aξ Bξ ξ Cξ = 0 (..9a) * y y C = Aη Bη η Cη = 0 (..9b) * y y Tese equatios are of sae type, terefore we ca write te i te for 5 P a g e

6 Aζ Bζ ζ Cζ = 0 y y or, ζ ζ A B C ζ = 0 y ζ y (..0) were ζ stads for eiter te fuctio of ξ or η. Aog te curve ζ = 0= costat, we ave dζ = ζ d ζ dy = 0 dy ζ Tus, =. d ζ Terefore, te equatio (..0) ca be writte as y y dy dy A B C = 0. d d (..) Te roots of tis equatio are dy B B 4AC = (..a) d A ad dy B B 4AC =. (..b) d A Tese equatios are te ordiary differetia equatios for te faiy of curves i te ypae aog wic ξ =costat ad η = costat ad are kow as te caracteristic equatios. Te itegras of tese equatios are caed caracteristic curves. Sice te equatios are first order ordiary differetia equatios, te soutios ay be writte as Hece, te trasforatio φ (, y) = c, φ (, y) = c, ξ = φ (, y), η = φ (, y) c = costat, c = costat. wi trasfor te equatio (..7) to a caoica for. 6 P a g e

7 Now, we cassify te equatio (..) as a) Hyperboic: If B 4AC > 0, te equatio (..) is caed a yperboic type partia differetia equatio. I suc case, te equatios (..a) ad (..b) yied two rea ad distict faiies of caracteristics. So, te equatio (..8) reduces to u = ξη H (..) * H were H =. Tis for is caed te first caoica for of te yperboic * B equatio. If te ew idepedet variabes α = ξ η, β = ξ η are itroduced, te equatio (..8) is trasfored ito u u = H (,, u, u, u ) α β. αα ββ α β Tis for is caed te secod caoica for of te yperboic equatio. Hyperboic partia differetia equatios usuay arise we waves or vibratios occur i a pysica syste, ad ateatica odeig of suc a syste ivariaby ivoves te soutio of a yperboic equatio. Soe ost coo eapes of secod order yperboic equatios wic are used for uerica iustratio i te tesis are:. Wave Equatio i poar co-ordiates.. Teegrap Equatio.. Va der Po Equatio. 4. Dissipative Equatio etc. b) Paraboic: If B 4AC = 0, te equatio (..) is caed a paraboic type partia differetia equatio. I tis case equatios (..a) ad (..b) coicide. Tus tere eists oe rea faiy of caracteristics, ad we obtai oy a sige itegra ξ = costat (or η = costat). Te, equatio (..8) reduces to uξξ = H( ξ, η, u, uξ, uη ) or uηη = H4( ξ, η, u, uξ, uη ) (..4) Tis is caed te caoica for of te paraboic equatio. Paraboic equatios describe eat fow ad diffusio processes. 7 P a g e

8 c) Eiptic: If B 4AC < 0, te equatio (..) is caed a eiptic type partia differetia equatio. Cosequety, te quadratic equatio (..) as o rea soutios, but it as two cope cougate soutios. Sice ξ ad η are cope, we itroduce ew variabes α = ( ξ η ), β = ( ξ η ), i so tat ξ = α iβ, η = α iβ. Usig trasforatio, equatio (..8) becoes u u = H (,, u, u, u ) 5 α β. αα ββ α β Tis is caed te caoica for of te eiptic equatio. Eiptic partia differetia equatios are usuay associated wit steady- state or equiibriu probes i wic tere is ore ta oe idepedet variabe. Eigevaue Based Cassificatio of Partia Differetia Equatios If tere are idepedet variabes,,...,, a geera iear partia differetia equatio of secod order as te for u u Lu = a b cu = 0 i i i, = i i= i (..5) Te coefficiet atri of igest order derivatives is A = [ a ]. Te caracteristic equatio of A wi ave roots ad eigevaues. Caracterizatio of te iear partia differetia equatio (..5) is based o foowig: If ay eigevaue is zero, te partia differetia equatio (..5) is paraboic. If a eigevaues are o-zero ad oe eigevaue as opposite sig, te partia differetia equatio (..5) is yperboic. If a eigevaues are ozero avig sae sig, te partia differetia equatio (..5) is eiptic. i 8 P a g e

9 Te sipest eapes of tree types are: (i) Wave Equatio u u = t (..6) B 4AC = 4 > 0. Hece, te equatio (..6) is yperboic. (ii) Heat Fow Equatio u u = t (..7) Here, B 4AC = 0. Hece, te equatio (..7) is paraboic. (iii) Lapace equatio u u y u = = 0 (..8) Here, B 4AC = -4 < 0. Hece, te equatio (..8) is eiptic. (iv) u u = 0 y (..9) Here, B 4AC = 4. Hece, te equatio (..9) is eiptic for > 0, paraboic for = 0, yperboic for < 0 (v) u uyy = uz (..0) Here, 0 0 A = Te caracteristic roots of A are,, 0. Hece te equatio (..0) is paraboic. (vi) u u u = 0 (..) yy zz Here 0 0 A = Te caracteristic roots of A are,,. Hece te equatio (..) is eiptic. 9 P a g e

10 (vii) u uyy uzz = utt (..) Here, A = Te caracteristic roots of A are,,, -. Hece, te equatio (..) is yperboic. Type of Coditios Iitia Vaue Probe: A iitia vaue probe is oe i wic te depedet variabe ad possiby its derivatives are specified iitiay (i.e. at tie t = 0) or at te sae vaue of idepedet variabe i te equatio. Iitia vaue probes are geeray tiedepedet probes. Iitia Vaue Probes ca furter be cassified as Pure Iitia Vaue Probes or Iitia Boudary Vaue Probes. Pure Iitia Vaue Probe (Caucy Probe): i) u u = < <, t 0 t aog wit te iitia coditio u(,0) = f ( ), < <. ii) u u = < <, t 0 t aog wit te iitia coditios u(,0) = f ( ) u (,0) = g( ), t < < a) Iitia Boudary Vaue Probe : i) u u = t 0, t 0 0 P a g e

11 aog wit te iitia coditio u(,0) = f ( ) 0 < ad te boudary coditio u(0, t) = α ( t), u (0, t ) = α ( t ), t 0. ii) u u = t 0, t 0 aog wit te iitia coditio u(,0) = f ( ) 0 ad te boudary coditios u(0, t) = α ( t), u(, t) = α ( t), t 0. Boudary Vaue Probes: A boudary vaue probe is oe i wic te depedet variabe ad possiby its derivatives are specified at te etree of te idepedet variabe. For steady state equiibriu probes, te auiiary coditios cosist of boudary coditios o te etire boudary of te cosed soutio doai. Tere are tree types of boudary coditio: i. Diricet boudary coditio: Diricet boudary coditio is a type of boudary coditio, aed after Joa Peter Gustav Leeue Diricet ( ). We iposed o a ordiary or a partia differetia equatio, it specifies te vaues a soutio eeds to take o te boudary of te doai. For eape if a iro rod ad oe ed ed at absoute zero te te vaue of te probe woud be kow at tat poit i space. Te questio of fidig soutios to suc equatios is kow as te Diricet probe. It is aso caed first type boudary coditio. ii. Neua boudary coditio: Te Neua boudary coditio is a type of boudary coditio, aed after Car Neua. We iposed o a ordiary or a partia differetia equatio, it specifies te vaues tat te derivative of a soutio is to take o te boudary of te doai. For eape if oe iro rod ad eater at oe ed te eergy woud be added at a costat rate P a g e

12 but te actua teperature woud ot be kow. It is aso caed secod type boudary coditio. iii. Mied boudary coditio: Te iear cobiatio of Diricet ad Neua boudary coditios specified o te boudary is kow as ied boudary coditio. Mied boudary coditios are aso kow as Caucy boudary coditios. A Caucy boudary coditio iposed o a ordiary or a partia differetia equatio specifies bot te vaues a soutio of a differetia equatio is to take o te boudary of te doai ad te ora derivative at te boudary. It is aso caed Robi s boudary coditio... Matri agebra We preset ere soe of te basic resuts of Matri teory, wic ep i te study of te uerica soutio of partia differetia equatios by fiite differece etod. Te fiite differece etod yieds a syste of iear ad/or o-iear siutaeous agebraic equatios tat ca be deoted by a atri syste. Te iterative etods for sovig suc syste of equatios deped o certai properties of atrices. Let A = [ ] be a atri of order ( ) te A is said to be: a i Rea Matri if te eeets a of A are a rea ubers. i Cou atri if A as oy oe cou i.e. ( ) i size. We te uquaified ter Vector is used, it eas te cou atri. Row atri if A as oy oe row i.e. ( ) i size. Nu atri if every eeet of A is zero. Siguar if det( A ) = 0 ad No-Siguar if det( A) 0 i.e. if tere eists a uique atri B suc tat AB = I = BA, were B = A is te iverse of A ad I is te Idetity Matri. Diagoa if its oy o-zero eeets ie o te diagoa. Sparse if ay of its eeets are zero. Syetric if A T = A, i.e. if ai = a for a i ad i. P a g e

13 Skew-Syetric if A = A T i.e. if ai = a for a i ad i. Tri-diagoa if a i = 0 for i >. Upper triaguar if a i = 0 for i >. Lower triaguar if a i = 0 for i <. Diagoay doiat if = i a a for a i. ii Strog diagoay doiat if i > = i a a for a i. ii Weak diagoay doiat if = i i a a i =,,..., ii ad for at east oe i i a ii > = i a i Bock diagoa if A = D 0 0 D D P a g e

14 were eac D ( =,,, ) is a square atri of order k wit k k k =. Two atrices A ad B are caed coutative if AB = BA. Tey te possess te sae set of eigevectors (discussed ater i tis capter). Two square atrices A ad B of te sae order are said to be siiar atrices if a o-siguar atri S ca be deteried suc tat B = S AS. Siiar atrices ave sae rak ad sae eige vaues. Ortogoa if A = A T i.e. A A = I = AA Nora if AA H H Uitary if AA = A A = I. H T T. H = A A, were A H deotes te cougate traspose of A. Heritia if A H = A H, ad Skew-Heritia if A = A. No-egative atri (Positive) if A O( > O ), were O is te u atri i.e. if a 0( > 0) for a i ad. i H Positive Defiite, if > 0 H v Av 0 for ay vector v 0. H v Av, were v = ( v) T, ad Positive Sei-defiite if If A is o-siguar ad positive defiite, te B = A H A is Heritia ad positive defiite. If A is syetric ad positive defiite, te its eige vaues are a positive. Perutatio Matri if A cosists of eacty oe o-zero eeet, aey, uity, i eac row ad eac cou. Eape: is a perutatio atri. Reducibe if tere eists a perutatio atri P suc tat T F G PAP = O H 4 P a g e

15 were O is te u atri ad F, G ad H are square sub-atrices (Youg [86] ad Varga [8]). A atri is said to be irreducibe atri if it is ot reducibe. Irreduciby diagoay doiat atri if A is irreducibe atri ad weaky diagoay doiat. Teore: If A is irreduciby diagoay doiat atri, te det( A) 0 ad oe of te diagoa eeets of A vaises. Teore: If A is a Heritia, stricty diagoay doiat atri wit positive rea diagoa etries, te A is Positive defiite. Rak of a atri: A atri A is said to be of rak r if it as at east oe o-zero ior of order r, ad every ior of order iger ta r is zero. Trace of a atri: Te Trace of a square atri is te su of te eeets o its ai diagoa. Bad widt of a atri: For a atri A = [ a i ], if a i = 0 for i > w, te w is caed te bad widt of te atri A. Suc a atri is caed a Baded Matri of bad widt w. Tridiagoa atrices are baded atrices of bad widt. Eige vaues ad Eige vectors Defiitio: A eige vaue (or Caracteristic root) of a atri A is a rea or cope uber λ wic for soe ozero vector v satisfies te equatio ( A λ I) v = 0. (..) Ay ozero vector v satisfyig te above equatio (..) is caed a eige vector of te atri A correspodig to eige vaue λ. I order for (..) to ave a otrivia soutio for vector v te det( A λi ) ust be zero. Hece, ay eige vaue λ ust satisfy det( A λ I) = 0. (..) Equatio (..) wic is caed te caracteristic equatio of A, is a poyoia of degree i λ wic ca be writte as a0 aλ a λ ( ) λ = 0. Sice te coefficiet of λ is ot zero, te above equatio as aways roots (cope or rea) wic are te eige vaues of te atri A, aey λ, λ,, λ (ot ecessariy a distict), eac of te possessig a uique correspodig eige vector. 5 P a g e

16 Defiitio: If A is a atri te te spectra radius of A is defied as ρ ( A ) = a λ, were S A is te set of a eige vaues of A (i.e. te spectru of A). We ote te foowig facts about eige vaues ad eige vectors: Eige vectors correspodig to distict eige vaues of A are ieary idepedet. Eige vaues of a triaguar atri A are te diagoa etries. If λ 0 is a eige vaue of a osiguar atri A ad v is te correspodig eige vector i.e. Av = λv te A v = v, wic eas λ is a eige vaue of A. A ad A λ ave sae eige vectors. T Sice det( A λi) = det( A λi), A ad A T ave sae caracteristic poyoia ad ece sae eige vaues. A syetric atri of order as rea eige vaues ad utuay ortogoa eige vectors. Eige vaues of syetric ad Heritia atrices are rea. Eige vaues of skewsyetric ad skew-heritia atrices are purey iagiary. For every square atri A, te su of its eige vaues equas its trace. For every square atri A, te product of its eige vaues equas its deteriat i.e. det( A) = N λi i = were λ, λ,..., λ N are eige vaues of A. Every square atri satisfies its caracteristic equatio. Tis is referred to as Cayey Haito Teore. λ S A Teore: Te eige vaues of a tridiagoa atri a b c a b O c a b A = O c a b c a NXN 6 P a g e

17 sπ are λs = a bc cos, s = () N ; were a, b ad c ay be rea or cope. Tis cass of atrices arises cooy i te study of stabiity of te fiite differece processes, ad a kowedge of its eige vaues eads iediatey ito usefu stabiity coditios. Teore: (Youg [86]) A atri A is irreducibe if ad oy if = or give ay two distict itegers i ad wit i,, te a 0. Usefu teores o bouds for eige vaues: Gercgori s First Teore: Te eige vaue of te square atri A wic as argest oduus, caot eceed te argest su of te odui of te eeets aog ay row or ay cou. Teore (Gercgori s Circe Teore or Brauer s Teore): Let Ps be te su of te oduii of te eeets aog s t row ecudig te diagoa eeet a ss. Te eac eige vaue of A ies iside or o te boudary of ateast oe of te circes λ a = P. Teore: If p of te circes of Gercgori s circe teore for a coected doai tat is isoated fro te oter circes, te tere are precisey p eige vaues of te atri A witi tis coected doai. I particuar, a isoated Gercgori s circe cotais eacty oe eige vaue. Teore: (Perro ad Frobeius Teore) (Varga[8]) Let A O atri, te i) A as a positive rea eige vaue equa to its spectra radius. ii) To ρ ( A), tere correspods a eige vector v > 0. iii) ρ ( A) icreases we ay etry of A icreases. iv) ρ ( A) is a sipe eige vaue of A. i ss be a irreducibe Perro ad Frobeius Teore ca aso be eteded for reducibe atrices as foows: Teore: Let A O be a atri, te i) A as a o-egative rea eige vaue equa to its spectra radius. Moreover, tis eige vaue is positive uess A is reducibe ad te ora for of A is stricty upper triaguar. s 7 P a g e

18 ii) ρ ( A) does ot decrease we ay etry of A is icreased. Teore: If A = [ a ] is a Heritia stricty diagoay doiat or irreducibe i diagoay doiat atri wit positive rea diagoa etries, te A is positive defiite. Vector ad Matri ors A or serves as a easure of te size or agitude of a give atri. Vector or: Te o-egative quatity v is a easure of size or egt of a vector v satisfyig te foowig aios: a) v > 0 for v 0 ad v = 0 v = 0. b) cv = c v for ay arbitrary cope uber c. c) v w v w for vectors v ad w (triage iequaity). Soe iportat vector ors are: i. Absoute Nor ( or): v =... = v v v v ii. Eucidea Nor ( or): i= i v ( ) / =... = v v v v i i= / iii. Maiu Nor ( or): 8 P a g e v = Ma v i were v, v,..., v are copoets of vector v. i Matri or: Te or of a atri A is a rea o-egative uber wic satisfy te foowig properties: a) A = 0 if ad oy if A = O. b) ca = c A for ay cope uber c. c) A B A B for ay atrices A ad B.

19 d) AB A B for ay atrices A ad B. Soe iportat atri ors are defied as foows: i. Te Eucidea or (Frobeius or): Eucidea Nor of a atri A = [ a ] is give by i A / = ai. i, ii. Te Spectra or (Hibert or or L or): H A = [ ρ ( A A)] / were H ρ( A A) a = λi i= H. te eige vaues of A A is te spectra radius of A H A, ad λ, λ,..., λ are If te atri A is Heritia, te H ρ( A A) = ρ( A ) = ρ( A) so tat A = ρ( A). iii. Te L or: A = a ai i (aiu absoute cou su). i A = a a (aiu absoute row su). i iv. Maiu Nor ( L or): A = a a. i, i Sice atrices ad vectors appear togeter ofte, a reatio betwee teir ors is required to be itroduced. A atri or A is said to be copatibe wit a vector or v, if Av A v for a v 0. Te atri or copatibe wit te vector or ca be costructed as 9 P a g e

20 A = sup A v 0 v wic is equivaet to A = sup v = Av. Teore: (Evas [47]) If A is a atri of order, te A ρ( A). () Defiitio: A sequece of atrices A, ( ) i A A = 0. () () A, A,... is said to coverge to a atri A if Defiitio: Let A be a rea or cope atri. Te A is coverget (to zero) if te sequece of atrices A, A, A,... coverges to te u atri O ad is diverget oterwise. Teore: If A is a atri, te A is coverget if ad oy if ρ ( A) <, were ρ ( A) is te spectra radius of A..4. Iterative etods for iear ad o-iear systes i. Liear Syste Te appicatio of fiite differece etod o differetia equatio to obtai te uerica soutio yieds a syste of siutaeous equatios wic ca be represeted i atri otatio as A = b (.4.) were A is a ( ) o-siguar coefficiet atri, (i case of fiite differece etod, is te uber of iterior es poits), b is a cou vector correspodig to boudary coditios, is a soutio vector. We te iear syste is sa eoug to be ecooicay stored i te eory of a coputer, it is geeray ost efficiet to use a direct etod to obtai te soutio. Large sparse systes, o te oter ad, wic are frequety associated wit te uerica soutio of partia differetia equatios, ca geeray be soved ore efficiety use a iterative etod, provided tat fu advatage is take of te sparseess of te coefficiet atri. Wie Direct etods produce te eact soutio after a fiite uber of steps, iterative etods yied te eact soutio as a iit of sequece of approiate soutios. Startig wit a iitia approiatio to te actua soutio ad te obtaiig better ad better 0 P a g e

21 approiatios fro a coputatioa cyce repeated tie ad agai, for acievig a desired accuracy. Tus, i iterative etod, te aout of coputatio depeds o te degree of accuracy required. For arge syste of equatios, iterative etods produce soutios faster ta te direct etods as te prograig ad data adig is uc siper for iterative etods ta for te direct etods. Iterative etods ca be eteded to sove te syste of o-iear equatios. However, te oy disadvatage of Iterative etods is te probe of seectig a good iitia vector to start te iterative process, wereas o iitia vector is required wit Direct etods. Iterative etods ca furter be cassified ito two casses: Siutaeous cass ad Successive cass. Siutaeous cass: I te siutaeous iterative etods, a te eeets of te approiate soutio are odified at te sae tie i.e. (k)t iterate is a fuctio of kt ad earier iterates oy. Hece, te order i wic te soutios are cacuated is ot sigificat. For eape, Jacobi Iteratio Metod is a siutaeous etod. Successive cass: I te successive iteratio etods, te approiate soutio vaues are odified usig te atest avaiabe vaues of te iterates oe after te oter i.e. as soo as we get a ew vaue, we discard te od vaue ad use te ew vaue so tat soe of te eeets of te (k)t iterate are fuctios of (k)t ad earier iterates. I tis case, te orderig of te es poits is terefore, very iportat. For eape Gauss Sieda Iterative Metod is a successive etod. A iterative tecique to sove a iear syste of te for (.4.) starts wit a iitia ( 0) ( 0) () () approiatio to te soutio ad geerates a sequece of vectors,,, wic coverge to. Suc iterative etods covert te give syste A = b ito a equivaet syste of te for = Bc were B is a square atri of order ad c is a vector wit copoets. Te coice of ( 0) is argey arbitrary ad te sequece of iterates is geerated fro (k) (k) = B c. (.4.) A sufficiet coditio for te covergece of (.4.) is B <. (.4.) Te iteratio procedure is cotiued uti soe criterio for stoppig is satisfied; two suc criteria are ad ( ) k k < ε for soe k (.4.4) P a g e

22 ( k ) ( k ) < ε ( k ) (.4.5) were ε > 0 is soe toerace. Te usua or used is te L or for vectors = a ; r =,,...,. r r Te absoute error criterio (.4.4) is suitabe for use we te variabes ( i i =,..., ) are a of te sae order of agitude, wie te reative error criterio (.4.5) is suitabe for use we te i ave widey differig orders of agitude. Let te atri A be o-siguar wit te decopositio A = D L U were D is te ai diagoa eeets of A, L ad U are stricty ower ad upper ( ) triaguar atrices respectivey as sow beow: a a D =, a a L ad = a a a a 0 U 0 a a a 0 0 a a = a Te, (.5.) ay be writte as (D L U) = b. We ow defie te foowig basic iear statioary iterative etods: a) Te Jacobi (J) Iterative Metod Te Jacobi Iteratio etod is derived as (k ) (k) D = L U b or (k ) (k) = D L U D b P a g e

23 or (k ) (k) = H c were H D ( L U ) k = 0,,,... =, caed te Jacobi Iteratio Matri, ad c = D b. Tis is aso caed te etod of siutaeous dispaceet. b) Te Gauss-Seide (GS) Iterative Metod Gauss-Sieda Iteratio etod is derived as: (k ) (k) D L = U b (k ) (k) or = ( ) ( ) D L U D L b or (k ) (k) = H c were H ( D L) = U is caed te Gauss-Sieda Iteratio atri, ad c = D L b. Sice, aii 0, det( L D) = aa... a 0 L D is o-siguar. Te Gauss-Sieda etod as coputatioa advatage over te Jacobi etod tat it does ot require te siutaeous storage of vaues k ad k i te course of te coputatio. Tus, Gauss-Sieda etod is aso caed etod of successive dispaceets. It is obvious tat te Gauss-Sieda etod coverges faster ta te Jacobi-Iteratio etod. c) Te Jacobi Over-Reaatio (JOR) Iterative Metod It is a geeraisatio of te Jacobi etod, give by i.e. ( ) ( ω ) D = ω L U b D (k ) (k) (k) (k ) D (k) is weigted su of ( L U ) b ad (k) D. Tis yieds (k ) (k) = H c were ω ( ω) H = D L U I, c ω = D b. Te atri H is caed JOR-Iteratio Matri. Te quatity paraeter. Tis etod is cosistet provided ω 0. ω is caed te reaatio We ω =, te JOR etod reduced to Jacobi-Iteratio etod. If ω >, it is caed over-reaatio etod. If ω <, it is caed uder-reaatio etod. P a g e

24 d) Te Successive Over-Reaatio(SOR) Iterative Metod Te successive over-reaatio iterative etod is te geeraizatio of te Gauss-Sieda etod, give by Tis yieds ( ω ) (k ) (k ) (k) (k) D = ω L U b D. ( ) ω ω ω ω D L (k ) = U D (k) b or (k ) (k) = H c were = ( ω ) ω ( ω) H D L U D ad c = ω D ω L b. Te quatity ω is caed te reaatio factor. If ω =, te SOR etod reduces to te Gauss-Sieda Iteratio etod. If If < ω < 0 < ω <, we ave over-reaatio etod., we ave uder-reaatio etod. Tis odificatio of te Gauss-Sieda iteratio etod wi aow us to coose ω, so tat te soutio coverges faster, ad a optiu covergece rate ca be acieved, if te optia ω is cose. Covergece aaysis of iterative etods Teore: Te iteratio etod of te for (k ) (k) = H c k = 0,,,... coverges to te eact soutio for ay iitia vector if H <. Teore: A ecessary ad sufficiet coditio for a iterative etod (k ) (k) = H c k = 0,,,... to coverge for a arbitrary iitia approiatio te spectra radius of H. (0) is tat ( H ) ρ <, were ( H ) ρ is Defiitio: Te rate of covergece of a iterative etod (k ) (k) H c =, k = 0,,,... 4 P a g e

25 is give by ν og ρ ( H ) = 0. Defiitio: For ay coverget iterative etod (k ) (k) = H c k = 0,,,... te average rate of covergece R H after iteratios is defied by og R H H = were H is te spectra or of H. If R ( H ) R ( H ) =, te H is reativey faster for iteratios ta H. Teore: Let A be a syetric atri wit positive diagoa eeets. Te te SOR etod coverges, if ad oy if, A is positive defiite ad 0 < ω <. Note: i. Te optia ω, deoted as ω, for aiu rate of covergece is give by ω opt =. µ opt ii. Rate of covergece of te Gauss-Sieda Iteratio etod is twice te rate of covergece of Jacobi Iteratio etod. Teore: If A is a stricty diagoay doiat atri, te bot te Jacobi Iteratio scee ad Gauss-Sieda Iteratio scee coverge for ay startig vector. Teore: If A is syetric ad positive defiite, te its Gauss-Sieda iteratio atri as spectra radius ess ta uity i.e. i tis case te Gauss-Sieda iterative etod aways coverges. Teore: If te Jacobi etod coverges, te te Jacobi Reaatio etod coverges for 0 < ω. Teore: Let A be a irreducibe atri wit weak diagoa doiace, te a) Te Jacobi etod coverges ad te Jacobi reaatio etod coverges for 0 < ω. b) Te Gauss-Sieda etod coverges ad te SOR etod coverges for 0 < ω. 5 P a g e

26 ii. No-Liear Syste Te deteriatio of soutio of o-iear equatio is of iterest ot oy to ateaticias but aso to scietists ad egieers. No-iear equatios wic caot be soved agebricay are soved usig uerica teciques. Te ost coo procedure for sovig o-iear equatios is to foruate te as a iterative sequece of iear equatios to wic we ca sti appy soutio etods for iear probes. a) Newto-Rapso Metod Cosider te o-iear equatio f ( ) = 0. Let k be a approiatio to te root of tis equatio. Let be a icreet i suc tat is a eact root. Te, k f ( ) = 0 k (.4.6) Epadig i Tayor series about te poit k, we get f ( k ) f ( k ) ( ) f ( ξ ) = 0, k < ξ < (.4.7)! Negectig te secod powers of, we obtai f ( ) f ( ) = 0, f ( k ) wic gives =. f ( ) Hece, we obtai te iteratio etod k k k f ( k ) = k k = k, k = f ( ) 0,,,... k (.4.8) Defiitio: A sequece of iterates { } is said to coverge to te root ξ if i ξ = 0 or i k = ξ. k k Defiitio: A iterative etod is said to be of order p or as te rate of covergece p, if p is te argest positive rea uber for wic tere eists a fiite costat C 0 suc tat ε C ε p k were ε k = k ξ is te error i te k t iterate. Te costat C is caed te asyptotic error costat ad usuay depeds o te derivatives of f ( ) at = ξ. 6 P a g e k k k

27 To estabis te covergece of te Newto-Rapso etod, fro (.4.7) we ca write ad usig (.4.8), we get Puttig ε = So, we ave k k f ( ) were C =. f ( ), we get f ( ξ) k = ( k ). f ( ) f ( ξ) = ε k. f ( ) as Tis sows tat eac error is rougy proportioa to te sequece of te previous error. Tis eas tat te uber of correct decia paces rougy doubes wit eac approiatio ad ece Newto-Rapso etod as a quadratic rate of covergece. Teore: Assue tat f ( ) 0 ad f ( ) does ot cage sig i te iterva [ a, b] f ( a) suc tat f ( a). f ( b ) < 0. Te if ( b a) ad, te te Newtof ( a ) < f ( b) ( b a) f ( b ) < Rapso etod coverges for a arbitrary iitia poit i te iterva [ a, b]. b) Geeraised Newto-Rapso etod Let = α be a root of f ( ) = 0, wit utipicity, te it is aso a root of f ( ) = 0 wit utipicity, of f ( ) = 0 wit utipicity ad so o. Hece, if te iitia approiatio is sufficiety cose to te root, te epressios 0 wi ave te sae vaues. 0 f ( k ) f ( ξ ) ( k ) = ( k ) f ( ) f ( ) k ε ε k Cε k k k For = α to be a root of f ( ) = 0 wit utipicity, te iteratio foruae is give by k f ( 0) f ( 0) f ( 0) 0, 0 ( ), 0 ( ),... f ( ) f ( ) f ( ) 0 k 0 k 0 7 P a g e

28 wic is caed te geeraised Newto-Rapso foruae. It reduces to te Newto- Rapso foruae for =. c) Te No-Liear Over Reaatio Metod (NLOR) Let us cosider a syste of N o-iear equatios wit cotiuous first derivative ters ad itroduce a reaatio factor ω. Te NLOR etod is give by f p were f pq =. u Tis etod is a successive iteratio etod. Wit ω =, it is caed te geeraized Newto-Rapso etod. I additio, if f is iear te tis etod reduces to te SOR etod. Te covergece criteria for te NLOR etod is te sae as tat for te SOR etod wit te coefficiet atri A repaced by te Jacobia atri of te equatio f ( u, u,..., u ) = 0, give by J ( f ( f p u k ) k pq ) = = D k Lk U k, ) q were, D k : is te diagoa atri of Jacobia atri, p, q = ( N L : is te ower tridiagoa atri of Jacobia atri, k q u u u f ( k ) = k k f ( ) f ( u, u,..., u ) = 0, p = () N p ( k ) ( k ) ( k ) ( k ) ( k ) N = u ( k ) ( k ) ( k ) f u u un N ω f ( u, u,..., u ) (,,..., ) ω f ( u, u,..., u ) (,,..., ) ( k ) ( k ) ( k ) ( k ) ( k ) N = u ( k ) ( k ) ( k ) f u u un ω f ( u, u,..., u ) (,,..., ) ( k ) ( k ) ( k ) ( k ) ( k ) N N N = un ( k ) ( k ) ( k ) f NN u u un k p N p 8 P a g e

29 U : is te upper triaguar atri of Jacobia atri. k For covergece, te Jacobia atri at eac stage of te iteratio ust ave te sae properties as i te SOR etod..5. Fiite differece etod Te fiite differece teciques are based upo te approiatios tat perit repacig differetia equatios by fiite differece equatios. Tese fiite differece approiatios are agebraic i for, ad te soutios are reated to grid poits. Tus a fiite differece etod basicay ivoves tree steps:. Dividig te soutio ito grids of odes.. Approiatig te give differetia equatio by fiite differece equivaece tat reates te soutios to grid poits.. Sovig te differece equatios subect to te prescribed boudary coditios ad/or iitia coditios. f() P B A Figure.5. Estiates for te derivative of f() at P by usig forward, backward ad cetra differeces. Give a fuctio f() sow i figure.5., we ca approiate its derivative, sope or taget at a poit P by te sope of te arcs PB, PA, or AB, for obtaiig te forwarddifferece, backward-differece, ad cetra- differece foruas respectivey. 9 P a g e

30 Were forward-differece forua is give by f '( ) 0 f ( ) f ( ) 0 0, backward-differece forua is give by f '( ) 0 f ( ) f ( ) 0 0, ad cetra-differece forua is give by f f ( ) f ( ) 0 0 '( 0 ). Te approac used for obtaiig above fiite differece equatios is Tayor series 4 f ( 0 ) = f ( 0 ) f '( 0 ) f ''( 0 ) f '''( 0 ) O( ) (.5.) 6 =, (.5.) 6 4 ad f ( 0 ) f ( 0 ) f '( 0 ) f ''( 0 ) f '''( 0 ) O( ) 4 were O ( ) is te error obtaied by trucatig te series. Fro (.5.) ad (.5.), we obtai f ( ) f ( ) = f '( ) O f ( 0 ) f ( 0 ) f '( 0 ) = O( ) (.5.) wic is te cetra-differece forua. Note tat O( ) is te oca trucatio error. Te forward-differece ad backward-differece foruas coud be obtaied by rearragig (.5.) ad (.5.) respectivey, ad we ave ad f ( ) f ( ) = for forward differece (.5.4) 0 0 f '( 0 ) O f ( ) f ( ) = for backward differece. (.5.5) 0 0 f '( 0) O 0 P a g e

31 We ca fid tat te trucatio errors of tese two foruas are of order O ( ). Upo addig (.5.) ad (.5.), we get f ( 0 ) f ( 0 ) = f ( 0 ) f ''( 0 ) O 4 f ( 0 ) f ( 0 ) f ( 0 ) f ''( 0 ) = O ( ). (.5.6) Higer order fiite differece approiatios ca be obtaied by takig ore ters i Tayor series epasio. Net, cosider a fuctio U(,t) defied i te regio {(, t ) : 0, t 0} Ω < < >. t-directio (,t ) k k Figure.4. N (N) -directio To appy te differece etod to fid te soutio of te fuctio U(, t), we divide te soutio regio i -t pae ito equa rectages or eses of sides ad k. So tat =, =0()N ad t = k, 0 < < J, N ad J beig positive itegers ad (N)=. We repace te regio Ω by a set of grid poits (, t ) as sow i te figure.5.. Let te vaues of U (, t ) at te grid poit (, t ), be deoted by U. Te Tayor series epasios of fuctio U (, t ) about te poit (, t ) are give by P a g e

32 4 U± = U( ±, t ) = U ± U U ± U O ( ), 6 (.5.7) k k 4 U = U(, t ± k) = U ± kut U tt ± U ttt O ( k ). 6 (.5.8) Usig te Tayor series epasios (.5.7) ad (.5.8), we write approiate epressios U U U U U U =, (.5.9) U U U U = O( k ). (.5.0) k k O t Siiary, fro (.5.7) ad (.5.8) te approiatios for U U O ( ) U ad U tt are U U U U U U =, (.5.) U U U U U U =. (.5.) k k O tt ( k ) A tese differece foruas are etreey usefu i fidig uerica soutios of te first or secod order partia differetia equatios. Suppose U represets te eact soutio of a partia differetia equatio L(U) = 0 wit te idepedet variabes ad t, ad u be te eact soutio of te correspodig fiite differece equatio F ( u ) = 0 at te grid poit (, t ). Defiitio: Te differece U u discretizatio) error. is caed te cuuative trucatio (or Tis error ca geeray be iiized by reducig te es sizes ad k. However, tis error depeds ot oy o ad k, but aso o te uber of ters i te trucated series wic is used to approiate eac partia derivative. Aoter kid of error is itroduced we a partia differetia equatio is approiated by a fiite differece equatio. Defiitio: If te eact fiite differece soutio u is repaced by eact soutio U of partia differetia equatio at te grid poit (, t ), te te vaue F ( U ) is caed te oca trucatio error (LTE) at grid poit (, t ). P a g e

33 Let us ow iustrate tis cocept by cosiderig a sipe eape of a yperboic partia differetia equatio u tt = u (.5.) Te eact soutio U of partia differetia equatio (.5.) satisfies U U U U U U O k = k O( ) or U U U U U U = LTE k Negectig te trucatio ters, we ay rewrite above equatio as ( ) ( λ ) U = λ U U U U (.5.4) k were λ = is te es ratio paraeter. It is obvious tat te differece scee (.5.4) represets te differetia equatio (.5.) correct to order k ad i t ad variabes, respectivey. We say tat te k. Tus differece scee as order of accuracy or te trucatio error of order as 0, k 0 te oca trucatio error teds to 0 ad te differece ad differetia equatios becoe equivaet. Defiitio: Te fiite differece scee ad te partia differetia equatio are said to be cosistet if oca trucatio error teds to zero as ad k ted to zero. I geera fiite differece equatios caot be soved eacty because te uerica coputatio is carried out oy up to fiite uber of decia paces. Cosequety aoter kid of error is itroduced i te fiite differece soutio durig te actua process of coputatio. Tis kid of error is caed roud-off error, ad aso depeds upo te type of coputer used. I practice te actua coputatioa soutio is u, but * ot u, so tat te differece u u is te roud-off error at te grid poit (, t ). Te roud-off error depeds aiy o te actua coputatioa process ad te fiite differece itsef. I cotrast to discretizatio, te error roud-off caot be ade sa by aowig ad k to ted to zero. Tus te tota error ivoved i te fiite differece aaysis at grid poit (, t ) is ( ) * * U u = U u u u = discritizatio error roud-off error * P a g e

34 Decreasig te trucatio error by usig a fier es ay resut i icreasig te roudoff error due to te icreased uber of aritetic operatios. A poit is reaced were iiu tota error occurs for ay particuar agorit usig ay give word egt. Tis is iustrated i figure.5.. Figure.4. Error as a fuctio of te es size. Defiitio: Te fiite differece scee is said to be stabe if te roud off errors are sufficiety sa for a as, tat is te growt of roud-off error is cotroed. I oter words, if te errors decay ad evetuay dap out, te uerica scee is said to be stabe. If, o te cotrary, te errors grow wit tie te uerica soutio diverges fro te true, correct aswer ad tus te uerica scee is said to be ustabe. A eutray stabe scee is oe i wic errors reai costat as te coputatios are carried forward. By covergece, we ea tat te eact soutio of partia differece equatio approiates te eact soutio of partia differetia equatio as ad k bot approac to zero. I oter words, as te step-size srik, te fiite differece scee soutio ust iprove, utiatey covergig to te correspodig soutio of te origia partia differece equatio at every poit of te doai. 4 P a g e

35 La (954) proved a rearkabe teore wic estabises te reatiosip betwee cosistecy, stabiity ad covergece for te fiite differece agorit. Teore: (La s Equivaece Teore) Give a we posed iear iitia vaue probe ad a fiite differece approiatio to it tat satisfies te cosistecy criterio, stabiity is te ecessary ad sufficiet coditio for covergece. Aaytic treatet of stabiity Tere are two stadard ways of ivestigatig te boudedess of te soutio of te fiite differece equatios. I oe, we use a fiite Fourier series ad i oter, we epress te equatio i atri for ad eaie te eige vaues of a associated atri. i) Vo Neua stabiity Metod Stabiity, i geera, ca be difficut to ivestigate, especiay we equatio uder cosideratio is o-iear. Te stabiity of uerica scees ca be ivestigated by perforig vo Neua stabiity aaysis. For tie-depedet probes, stabiity guaratees tat te uerica etod produces a bouded soutio weever te soutio of te eact differetia equatio is bouded. Vo Neua stabiity etod is based upo a fiite Fourier series. It epresses te iitia errors o te ie t = 0 i ters of a fiite Fourier series ad te eaies te propagatio of errors as t. Cosider a costat coefficiet partia differetia equatio i oe space diesio ad a cosistet differece approiatio to it. For differece equatios wit costat coefficiets, te error ay be epaded i fiite epasio i fiite Fourier series. Te error ca be writte as N 0 i = A e β = 0 ε, = 0() N (.5.5) were β = π /( b a), were b a is te egt of te iterva o wic te fuctio is defied. A are te Fourier coefficiets wic are deteried fro te N equatios (.5.5). We ow seek a soutio of te fiite differece equatios for error i te for iβ e we t = 0. We assue tat = were ξ is a arbitrary rea or cope uber. N iβ ε Aξ e (.5.6) = 0 Sice, for iear oogeeous equatio, te su of idepedet soutios is aso a soutio, it is eoug if we cosider a sige ter 5 P a g e

36 iβ ε = ξ (.5.7) A e were β is a rea uber, ad A is a arbitrary costat. Te error is bouded as icreases ( t ), provided tat ξ. (.5.8) Tis coditio is foud to be ecessary ad sufficiet for te stabiity of te fiite differece agorit. Te uber ξ is caed te apificatio factor of te scee. ii) Te atri etod Te atri etod of aaysis is appicabe to iitia boudary vaue probes, but it ca oy be used for yperboic equatios we te differece scee as bee epressed i two-tie eve for. Suppose tat te differece scee is i te geera for DU = BU CU b (.5.9) were b is a vector wic depeds o te boudary coditios ad D, B, C are square atrices of order N, were N is te uber of es poits at eac tie eve. I te case of a differetia equatio wit costat coefficiets, te atrices D, B, C are costat; i te case of a variabe coefficiet probe, te atrices D, B, C are evauated at ties (),, (-) respectivey. I costat coefficiet probes te atrices D ad C are usuay equa ad o-siguar. Writig (.5.9) i te for 6 P a g e = U D BU D CU D b it foows tat a perturbatio Z 0 of te iitia coditios wi satisfy Tis ay be writte wic is of te for =. (.5.0) Z D BZ D CZ (.5.) Z D B D C Z = (.5.) Z I O Z E = WE were E =[ Z, Z ] T ; W is caed te apificatio atri. It foows tat E W. E (.5.) (.5.4) were. deotes a suitabe or. Equatio (.5.) is a two-tie eve equatio ad te Vo Neua ecessary coditio for te stabiity of a differece scee suc as (.5.9), usig a costat tie step ad ettig, is

37 W. (.5.5) Te success of te atri etod for te secod order yperboic equatios tus depeds o beig abe to obtai a suitabe estiate for W. We ave see above tat i discussig te stabiity of a differece scee, we wis to kow weter te roots of te poyoia equatio of degree viz. p ( ξ ) = v ξ v ξ... v ξ v = 0 (.5.6) 0 (were v i ay be costats or fuctios of soe paraeters) satisfy te coditio ξ. It is difficut to fid a te roots of (.5.6) ad te test te coditio ξ. I suc cases, te iterva of stabiity or te vaues of te paraeters for wic stabiity ca be acieved, ca be deteried by usig te trasforatio z ξ = z wic aps te iterior of te uit circe ξ = oto te eft af of te pae z 0, te uit circe ξ = oto te iagiary ais ad te poit ξ = oto z = 0 as sow i figure.5.4. Te trasfored caracteristic equatio is k k a0z a z... a k = 0. (.5.7) We ca ow appy te Rout-Hurwitz Criterio wic gives te ecessary ad sufficiet coditios for te roots of te caracteristic equatio (.5.7) to ave egative rea parts, ad ece ξ <. 7 P a g e Figure.5.4

38 Teore (Rout Hurwitz Criterio): Let k k p z = a0z az... a k ad D a a a a a a a a 0 a a a 5 k 0 4 k k = 0 a0 a ak were a 0 for a. Te, te rea parts of te roots of p( z ) = 0 are egative if ad oy if te eadig pricipa iors of D are positive. We ave for k =, a0 > 0, a > 0 for k a0 a a =, > 0, > 0, > 0 for k a0 a a a aa aa 0 =, > 0, > 0, > 0, > 0, > 0 as te ecessary ad sufficiet coditios for rea parts of te roots of (.5.7) to be egative. Tese coditios give te stabiity iterva for te differece etod. Defiitio: A epicit fiite differece scee is ay scee tat ca be writte i te for U ' = a fiite su of ' U wit '. A fiite differece scee wic is ot epicit is kow as ipicit. Ipicit etods require a etra coputatio, ad tey ca be uc arder to ipeet. Te ai advatage of ipicit fiite differece etods is tat tere are o restrictios o te tie step. Sovig Tridiagoa Systes To use ay ipicit scees, we ust kow ow to sove tridiagoa systes of iear equatios. Tridiagoa systes are particuary easy (ad fast) to sove usig Gaussia eiiatio. It is coveiet to sove suc systes usig te foowig otatio: 8 P a g e

39 d u = b d u = b d u = b 4 d = b were di, u i ad i are, respectivey, te diagoa, upper, ad ower atri etries i row i. A coefficiets ca ow be stored i tree oe-diesioa arrays, D, U, ad L, istead of a fu two-diesioa array A. Te soutio agorit (reductio to upper triaguar for by Gaussia eiiatio foowed by back-sovig) ca ow be suarizedas foows: (i) For k =,,, (k = pivot row) k a) = ( = utipier eeded to aiiate ter beow), d b) dk dk uk k = (ew diagoa etry i et row), c) bk bk bk = (ew rs i et row). (ii) b d = (start of back-sove). (iii) For k =,,, (back-sove oop) k b = u d k k k. k Tridiagoa systes arise i a variety of appicatios of fiite differece etod for sovig partia differetia equatios..6. Suary of te tsesis: Motivatio: Hig-order accurate fiite differece scees are iportat i scietific coputatio because tey offer a eas to obtai accurate soutios wit ess work ta ay be required for etods of ower accuracy. A copact differece scee is oe tat utiizes te patc of ces iediatey surroudig te ode at wic a uerica approiatio is beig ade ad does ot eted furter. Hyperboic probes, coo i ecaics ad egieerig appicatios ca be soved to secod order usig sipe (or cetra) fiite differece scees tat are osty copact. Fourt order fiite differece scees ave becoe quite popuar as agaist te oter ower order accurate scees 9 P a g e

40 wic require ig es refieet ad ece are coputatioay iefficiet. O te oter ad, te iger order accuracy of te fourt order copact etods cobied wit te copactess of te differece steci yieds igy accurate uerica soutios o reativey coarser grids wit greater coputatioa efficiecy. Te ig order copact etod wic we cosider ere is differet i tat te goverig differetia equatio is used to approiate te ower order derivative ters wit te ibeddig tecique. Te scee is difficut to deveop due to te eed of etesive agebraic aipuatio, especiay for o-iear probes. However, oce ig order etod deveoped, it ca be icorporated easiy i appicatio. Rea word uerica data is usuay difficut to aayse. Ay fuctio wic woud effectivey correate te data woud be difficut to obtai ad igy uwiedy. To tis ed, te idea of te cubic spie was deveoped. Usig tis process, a series of uique cubic poyoias are fitted betwee eac of te data poits, wit te stipuatio tat te curve obtaied be cotiuous ad appear soot. A cubic spie approiatio is preseted wic is suited for ay fuid-ecaics probes. Tis procedure provides a ig degree of accuracy ad eads to a accurate treatet to te iitia ad te boudary coditios. Te preset study is otivated by te above aaysis ad is appied o o iear yperboic probes. A uber of approaces to derive suitabe digita coputer agorits ave bee deveoped. Fiite Differece Metods are oe eas of obtaiig approiate soutios to ordiary or partia differetia equatios. Oter etods icude fiite eeets, fiite voues, spectra etods, various spie approiatios etc. Fiite differece etods are attractive because of te reative ease of ipeetatio ad feibiity. Te fiite differece etod is otabe for te great variety of scees tat ca be used to approiate a give differetia equatio. Furterore, fiite differecig eds itsef quite easiy to Tayor series aaysis of te trucatio error, ad tis fact is epoited i te ig-order copact etod to costruct rigorous ig-order accurate approiatios. Te tesis cosists of si capters foowed by te scope for te furter researc ad te ist of refereces usefu for te deveopet ad appicatio of te etods discussed i tis tesis. A brief descriptio of te cotet of eac capter is as foows. Capter : Secod Order Partia Differetia Equatio ad Fiite Differece Metods Te uerica soutio of oe space diesioa secod order o-iear yperboic 40 P a g e

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Digital Signal Processing: A Computer-Based Approach

Digital Signal Processing: A Computer-Based Approach SOLUTIOS AUAL to accopay Digital Sigal Processig: A Coputer-Based Approac Tird Editio Sait K itra Prepared by Cowdary Adsuilli, Jo Berger, arco Carli, Hsi-Ha Ho, Raeev Gadi, Ci Kaye Ko, Luca Luccese, ad

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

JIANSHENG GENG AND YINGFEI YI

JIANSHENG GENG AND YINGFEI YI A KAM THEOREM FOR HAMILTONIAN NETWORKS WITH LONG RANGED COUPLINGS JIANSHENG GENG AND YINGFEI YI Abstract. We cosider Hamitoia etworks of og raged ad weaky couped osciators with variabe frequecies. By derivig

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Proof of Lemmas Lemma 1 Consider ξ nt = r

Proof of Lemmas Lemma 1 Consider ξ nt = r Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

The partial derivatives of their Kullback-Leibler divergence are given by

The partial derivatives of their Kullback-Leibler divergence are given by 1 Gradiet of Kullbac-Leibler divergece Let λ ad λ be two sets of atural paraeters of a expoetial faily, that is, qβ; λ = hβ exp λ tβ aλ. 1 The partial derivatives of their Kullbac-Leibler divergece are

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

Lecture 3: Asymptotic Normality of M-estimators

Lecture 3: Asymptotic Normality of M-estimators Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators Higer Order Properties of Bootstrap ad Jackkife Bias Corrected Maximum Likeliood Estimators Jiyog Ha Brow Uiversity Guido Kuersteier MIT Marc 5, 2002 Witey Newey MIT Abstract Pfazagl ad Wefelmeyer (978)

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Non Parametric

Αναγνώριση Προτύπων. Non Parametric Γιώργος Γιαννακάκης No Parametric ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Probability Desity Fuctio If the radom variable is deoted by X, its probability desity fuctio f has the property that No Parametric

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 06 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα,

Διαβάστε περισσότερα

Three Classical Tests; Wald, LM(Score), and LR tests

Three Classical Tests; Wald, LM(Score), and LR tests Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Ocean and atmospheric tides standards (used for EIGEN gravity field modeling) Richard Biancale (CNES/GRGS)

Ocean and atmospheric tides standards (used for EIGEN gravity field modeling) Richard Biancale (CNES/GRGS) Ocea ad atospheric tides stadards (used for EIGEN gravity fied odeig Richard Biacae (CNES/GRGS IERS Workshop o Covetios: 0- Septeber 007 Ocea tides odeig The height of ocea tides is expressed by a su over

Διαβάστε περισσότερα

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE ECE 6382 Fall 2017 David R. Jackso Notes 21 Bessel Fuctio Examples Notes are from D. R. Wilto, Dept. of ECE Note: j is used i this set of otes istead of i. 1 Impedace of Wire A roud wire made of coductig

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

Effect Of Inner Scale Atmospheric Spectrum Models On Scintillation In All Optical Turbulence Regimes

Effect Of Inner Scale Atmospheric Spectrum Models On Scintillation In All Optical Turbulence Regimes Uiversit of etra Foria Eetroi Teses a Dissertatios Masters Tesis Ope Aess Effet Of er Sae Atosperi Spetru Moes O Sitiatio A Optia Turbuee egies 7 Keet Maer Uiversit of etra Foria Fi siiar wors at: ttp:stars.ibrar.uf.euet

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα, Αλγόριθμοι και Πολυπλοκότητα

Διαβάστε περισσότερα

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΕΡΓΑΣΤΗΡΙΟΥ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔ. ΕΤΟΣ 8-9 ΔΙΔΑΣΚΩΝ : Χ. Βοζίκης ΟΝΟΜΑΤΕΠΩΝΥΜΟ Αριθμός

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

arxiv: v1 [math.sp] 29 Jun 2016

arxiv: v1 [math.sp] 29 Jun 2016 INVERSE NODAL PROBLEMS FOR DIRAC-TYPE INTEGRO-DIFFERENTIAL OPERATORS arxiv:606.08985v [math.sp] 29 Ju 206 BAKI KESKIN AND A. SINAN OZKAN Abstract. The iverse odal problem for Dirac differetial operator

Διαβάστε περισσότερα

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ.

ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ. Ακουστική AcP4 ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ. ΣΥΓΚΡΙΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΜΕ ΜΕΘΟ Ο ΠΕΠΕΡΑΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane. upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation

Διαβάστε περισσότερα

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo

Διαβάστε περισσότερα

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

E-Companion: Stakeholder Perspectives on E-waste Take-Back Legislation

E-Companion: Stakeholder Perspectives on E-waste Take-Back Legislation E-Compaio: Stakeholder Perspectives o E-waste Take-Back Legislatio Atalay Atasu atalayatasu@mgtgatechedu College of Maagemet, Georgia Istitute of Techology 800, West Peachtree Street, Atlata, GA Özur Özdemir,

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

arxiv: v3 [math.pr] 24 Nov 2017

arxiv: v3 [math.pr] 24 Nov 2017 Time-depedet weak rate of covergece for fuctios of geeralized bouded variatio Atti Luoto arxiv:169.5768v3 [mat.p] 4 Nov 17 Abstract Let W deote te Browia motio. For ay expoetially bouded Borel fuctio g

Διαβάστε περισσότερα

Adaptive Covariance Estimation with model selection

Adaptive Covariance Estimation with model selection Adaptive Covariace Estimatio with model selectio Rolado Biscay, Hélèe Lescorel ad Jea-Michel Loubes arxiv:03007v [mathst Mar 0 Abstract We provide i this paper a fully adaptive pealized procedure to select

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα