Digital Signal Processing: A Computer-Based Approach

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Digital Signal Processing: A Computer-Based Approach"

Transcript

1 SOLUTIOS AUAL to accopay Digital Sigal Processig: A Coputer-Based Approac Tird Editio Sait K itra Prepared by Cowdary Adsuilli, Jo Berger, arco Carli, Hsi-Ha Ho, Raeev Gadi, Ci Kaye Ko, Luca Luccese, ad ylee Queiroz de Farias ot for sale

2 Capter (a) 8, 996, 8, 868, 79, (b) 8,, µ Hece,, <, µ Tus,, < µ µ, (a) Cosider te sequece defied by If <, te is ot icluded i te su ad ece, for < O te oter ad, for i te su, ad as a result, for Terefore,,, µ, <,, is icluded (b) Sice,, µ it follows tat,, µ Hece,, <,, <,, µ µ,, Recall µ µ Hece, ( µ µ ) ( µ µ ) ( µ µ ) ( µ µ ) µ µ µ 6µ µ (a) c { }, d y { 7 (b) 8 6 }, (c) e w { }, (d) u y { 8 7 }, v w { s y w { r y { 8 7 (e) }, (f) }, (g) } 6 (a), y 6 8 7, w 7 8, (b) Recall µ µ Hece, ( µ µ ) ( µ µ ) ( µ µ ) ( µ µ ) ( µ µ ) ( µ µ ) ot for sale

3 µ 9µ µ µ µ µ µ µ, 7 (a) z - z - y Fro te above figure it follows tat y (b) z z z β β w β w w z β y Fro te above figure we get w ( β β ) ad y w βw βw aig use of te first equatio i te secod we arrive at y ( β β ) β ( β β ) β ( β β ) ( ( β β ) ( β ββ β ) ( β β β β ) β β ) (c) Figure P(c) is a cascade of a first-order sectio ad a secod-order sectio Te iput-output relatio reais ucaged if te orderig of te two sectios is itercaged as sow below 6 w u y 8 z w z w z y ot for sale

4 Te secod-order sectio ca be redraw as sow below witout cagig its iputoutput relatio 6 w u y 8 z w z z y z w z Te secod-order sectio ca be see to be cascade of two sectios Itercagig teir orderig we fially arrive at te structure sow below: z 6 s 8 z u u y z y z z u Aalyzig te above structure we arrive at s 6, u s 8u u, y u y Fro u y y Substitutig tis i te secod equatio we get after soe algebra y s y 8y 8y aig use of te first equatio i tis equatio we fially arrive at te desired iput-output relatio y y 8y y 6 (d) Figure P9(d) is a parallel coectio of a first-order sectio ad a secod-order sectio Te secod-order sectio ca be redraw as a cascade of two sectios as idicated below: w 8 z w z y z w z ot for sale

5 Itercagig te order of te two sectios we arrive at a equivalet structure sow below: q z y z 8 z y z y Aalyzig te above structure we get q, y q 8y y Substitutig te first equatio i te secod we ave y 8y y (-) Aalyzig te first-order sectio of Figure P(d) give below u 6 z u y we get u u, y 6u Solvig te above two equatios we ave y y 6 (-) Te output y of te structure of Figure P9(d) is give by y y y (-) Fro Eq (-) we get 8y y 8 ad y y Addig te last two equatios to Eq (-) we arrive at y y 8y y 6 8 (-) Siilarly, fro Eq (-) we get y y y 8 Addig tis equatio to Eq (-) we arrive at y y 8y y 8 8 (-) Addig Eqs (-) ad (-), ad aig use of Eq (-) we fially arrive at te iputoutput relatio of Figure P(d) as: y y 8y y 9 6 ot for sale

6 8 (a) }, 7 { * Terefore } 7 { * ( ) }, { *, cs ( ) } { *, ca (b) Hece, ad tus, Terefore, / e / * e / * e ( ), / *, e cs ad ( ) *, ca (c) Hece, ad tus, Terefore, / e / * e / * e ( ), *, cs ad ( ) / *, ca e 9 (a) } { Hece, } { Terefore, } { ) ( ev } { ad } 6 6 { ) ( od } { (b) } { y Hece, } { y Terefore, } { ) ( y y y ev ad } { ) ( y y y od (c) } { w Hece, } { w Terefore ) ( w w w ev ot for sale 6

7 { } ad w od ( w w ) { } (a) µ Hece, µ Terefore, /,,, ev ( µ µ ),, ad /,, /,,, od ( µ µ ),, /, (b) µ Hece, µ Terefore,,,, ev ( µ µ ),, ad,,, od ( µ µ ),,,,, (c) µ Hece, µ Terefore,, ev, od ( µ ( ) µ ) ( µ ( ) µ ) ad (d) Hece,, ev ( ) ( ), od ( ) ( ) Terefore, ad ( ) ev Tus, ( ) a eve sequece Liewise, od ( ) ev od ( ) Hece, ev is Tus, Hece, od is a odd sequece od ev ot for sale 7

8 (a) g ev ev Tus, g ev ev ev ev g Hece, g is a eve sequece (b) u ev od Tus, u ev od ev od u Hece, u is a odd sequece (c) ( ) v Tus, v ( )( ) od od od od v Hece, v is a eve sequece od od od od (a) Sice is causal,, < Also,, > ow, ( ) Hece, ev ( ) ad ev ev, > Cobiig te two equatios we get Liewise, ( ) od ev, ev,, Hece, ( ) od, > Cobiig te two equatios we get od ad, ev, > <,, >, (b) Sice y is causal, y, < Also, y, > Let y y y, were y re ad y i are real causal sequeces re y i ow, ( y ) y ca ca y i Hece, y ( y y ) ad yca y, > Sice y re is ot ow, y caot be fully recovered fro y ca Liewise, ( y y ) y cs cs y re Hece, y ( y y ) ad ycs y, > Sice y i is ot ow, y caot be fully recovered fro y cs Sice is causal,, < Fro te solutio of Proble we ave ev, >, cos( ωo), >, ev,,, cos( ωo) µ, <,, <, (a) { } { A } were A ad are cople ubers wit < Sice for <, ca becoe arbitrarily large, { } is ot a bouded sequece ot for sale 8

9 (b) y A µ A,, < Here,, bouded sequece < Hece, were A ad are cople ubers wit, y A for all values of Hece, { y } is a (c) { } C β µ were C ad β are cople ubers wit β > Sice for >, β ca becoe arbitrarily large, { } is ot a bouded sequece (d) { g } cos( ω ) Sice g for all values of, { g } is a bouded o sequece (e),, v Sice < for > ad, all values of Tus { v } is a bouded sequece ( ) 6 µ ot absolutely suable v < for for, ( ) ow Hece { } is 7 (a) µ ow < Hece, { } is absolutely suable <, sice (b) µ ow <, sice ( ) < Hece, { } is absolutely suable (c) µ ow ( K K ) ( K) ( K) ot for sale 9

10 ) 7( 6 K K 7 ) ( ) ( ) ( ) ( < Hece, is absolutely suable } { 8 (a) a µ ow < a Hece, is absolutely suable } { a (b) ) )( ( b µ ow ) )( ( b < K Hece, is absolutely suable } { b 9 (a) A sequece is absolutely suable if < By Scwartz iequality we ave < Hece, a absolutely suable sequece is square suable ad as tus fiite eergy ow cosider te sequece µ Te covergece of a ifiite series ca be sow via te itegral test Let ), ( f a were a cotiuous, positive ad decreasig fuctio is for all Te te series ad te itegral bot coverge or bot diverge For a ) ( d f ) (, f a But ) (l d Hece, does ot coverge As a result, µ is ot absolutely suable ot for sale

11 (b) To sow tat { } is square-suable, we observe tat ere a, ad tus, f ( ) ow, d words, µ is square-suable See Proble 9, Part (a) solutio Hece, coverges, or i oter cosω c cosω µ ow, c Sice, cosω, c Terefore is square-suable 6 6 Usig te itegral test (See Proble 9, Part (a) solutio) we ow sow tat ot absolutely suable ow, cosω c cosωc d cosω cosω cosit is te cosie itegral fuctio Sice c diverges Hece, is ot absolutely suable K K K K K li K ev K K ev K K K P li li ( ) ( ) od P P li ( )( ) ev od K K K K K P ev od K K li K K K as P P P ev od ow for te give sequece, c d od ev cos it( ω c diverges, od K K K K 6 6 P li od od li li K K K K K K K 6 6 K li 6 K K Hece, P P ev P od ) were is cosωc also K ot for sale

12 si( / ), ow E si ( / ) S ( cos( / ) ) cos( / ) si( / ) C Hece E Let C cos( / ) ad / e Te C S e Tis iplies / e (a) A A µ Te E a a A (b) b µ Te E b b 9 (a) ( ) Te average power K P li li (K ), ad eergy K K E K K K (b) µ Te average power K K K P li li li, ad eergy K K K E K K K K (c) P µ li K K Te average power K li K K ad eergy E K K li K K( K )(K ), 6 (d) ω Ae Te average power P li K K K K ot for sale

13 , ) ( li li li A K A K A K e A K K K K K K K K ω ad eergy ω A e A E (e) cos φ A ote is a periodic sequece Te average power cos cos φ φ A A P Let φ cos C ad cos φ S Te / / φ φ φ e e e e e e S C Hece Terefore C A A P Sice is a periodic sequece, it as ifiite eergy 6 I eac of te followig parts, deotes te fudaetal period ad r is a positive iteger (a) Here ad ) / cos( ~ r ust satisfy te relatio r Aog all positive solutios for ad r, te sallest values are ad r Hece te average power is give by 8 cos ~ P (b) Here ad ) / cos( ~ r ust satisfy te relatio r Aog all positive solutios for ad r, te sallest values are ad r Hece te average power is give by cos ~ 9 P (c) Here ad 7) / cos( ~ r ust satisfy te relatio 7 r Aog all positive solutios for ad r, te sallest values are ad r Hece te average power is give by cos ~ 7 P ot for sale

14 (d) ~ cos( / ) Here ad r ust satisfy te relatio r Aog all positive solutios for ad r, te sallest values are 6 ad r Hece te average power is give by ~ cos P 8 6 (e) ~ cos( / ) cos( / ) We first deterie te fudaetal period r of cos( / ) of cos( / ) Here ad r ust satisfy te relatio r positive solutios for ad, te sallest values are deterie te fudaetal period relatio r Aog all positive solutios for Aog all ad r We et Here ad r ust satisfy te ad r, te sallest values are ad r Te fudaetal period of ~ is te give by LC (, ) LC(,) Hece te average power is give by ~ cos cos P 6cos 9cos cos cos 8 (f) ~ 6 cos( / ) cos( / ) We first deterie te fudaetal period of cos( / ) Here ad r ust satisfy te relatio r Aog all positive solutios for ad r, te sallest values are 6 ad r We et deterie te fudaetal period of cos( / ) Here ad r ust satisfy te relatio r Aog all positive solutios for ad r, te sallest values are ad r Te fudaetal period of ~ 6 is te give by LC (, ) LC(6,) Hece te average power is give by 9 ~ 6 cos cos 6 P 9 6cos 9 cos 9 cos cos 8 7 ow, fro Eq (8) we ave ~ y Terefore ot for sale

15 ~ y Substitutig r we get ~ y r ~ y r Hece ~ y is a periodic sequece wit a period 8 (a) ow ~ Te portio of ~ p i te rage is p give by { } { } { } { 7 }, Hece, oe period of ~ p is give by { 7 }, ow ~ y y Te portio of ~ y p i te rage is give by p y y y { 6} { 8 7} { } { 8 }, Hece, oe period of ~ y p is give by { 8 }, ow w ~ w Te portio of w ~ p i te rage is give by p w w w { } { } { } { 7 }, Hece, oe period of w ~ p is give by { 7 }, (b) 7 ow ~ p 7 Te portio of ~ p i te rage 6 is give by 7 7 { } { } { } { }, 6 Hece, oe period of ~ p is give by { }, 6 ow ~ y y 7 Te portio of ~ y p i te rage 6 is give by p 7 7 { 6} { 8 7 } { } { 8 7 6}, 6 Hece, oe period of ~ is give by { 8 7 6}, 6 ow w ~ w 7 Te portio of w ~ p i te rage 6 is give by p w 7 w w 7 { { } { } } y p ot for sale

16 { }, 6 Hece, oe period of ~ is give by { }, 6 9 ~ Acos( ωo φ ) (a) { } Hece A, ωo /, φ / (b) { } Hece A, ω o /, φ / (c) { } Hece A, ω o /, φ / (d) { } Hece A, ω /, φ o Te fudaetal period of a periodic sequece wit a agular frequecy satisfies Eq (7a) wit te sallest value of ad r (a) Here Eq (7a) reduces to r wic is satisfied wit ω o, r (b) ω o 8, r Here Eq (7a) reduces to w p ω o 8 r wic is satisfied wit / (c) We first deterie te fudaetal period of Re{ e } cos() I tis case, Eq (7a) reduces to r wic is satisfied wit, r / We et deterie te fudaetal period of I{ e si() I tis case, Eq (7a) reduces to r wic is satisfied wit, r Hece te fudaetal period of ~ is give by c LC (, ) LC(,) (d) We first deterie te fudaetal period of cos() I tis case, Eq (7a) reduces to r wic is satisfied wit, r We et deterie te fudaetal period of si( ) I tis case, Eq (7a) reduces to r wic is satisfied wit, r Hece te fudaetal period of ~ is give by LC (, ) LC(,) (e) We first deterie te fudaetal period of cos( 7) I tis case, Eq (7a) reduces to r wic is satisfied wit, r We et deterie te fudaetal period of cos(6 ) I tis case, Eq (7a) reduces to 6 r wic is satisfied wit, r We fially deterie te fudaetal period of si( ) I tis case, Eq (7a) reduces to r wic is satisfied wit, r Hece te fudaetal period of ~ is give by LC,, ) LC(,,) ( Te fudaetal period of a periodic sequece wit a agular frequecy ω o satisfies Eq (7a) wit te sallest value of ad r ot for sale 6

17 (a) ω o 6, r Here Eq (7a) reduces to 6 r wic is satisfied wit (b) ω o 8, r 7 (c) ω o, r 9 (d) ω o, r (e) ω o 6, r Here Eq (7a) reduces to Here Eq (7a) reduces to Here Eq (7a) reduces to Here Eq (7a) reduces to 8 r wic is satisfied wit r wic is satisfied wit r wic is satisfied wit 6 r wic is satisfied wit ω o 8 Here Eq (7a) reduces to 8 r wic is satisfied wit, r For a sequece ~ si( ω) wit a fudaetal period of, Eq (7a) reduces to ω r For eaple, for r we ave ω / 6 Aoter sequece wit te sae fudaetal period is obtaied by settig r wic leads to ω 6 / Te correspodig periodic sequeces are terefore si(6 ) ad si( ) Te tree paraeters A, Ωo, ad φ of te cotiuous-tie sigal a (t) ca be deteried fro For eaple a ( T ) Acos( ΩoT φ) by settig distict values of Acos φ, Acos( Ωo T φ) Acos( ΩoT )cosφ Asi( ΩoT )si φ β,, Acos( Ωo T φ) Acos( ΩoT )cosφ Asi( ΩoT )si φ γ Substitutig te first equatio ito te last two equatios ad te addig te we get β γ cos( Ω o T ) wic ca be solved to deterie Ω o et, fro te secod equatio we ave Asi φ β Acos( Ω T )cosφ β cos( Ω T ) Dividig tis o β cos( ΩoT) equatio by te last equatio o te previous page we arrive at ta φ si( ΩoT wic ca be solved to deterie φ Fially, te paraeter is deteried fro te first equatio of te last page o ot for sale 7

18 ow cosider te case Ω T Ωo I tis case Acos( φ) β ad T Acos( ( ) φ) Acos( φ) β Sice all saple values are equal, te tree paraeters caot be deteried uiquely Fially cosider te case Ω T < Ωo I tis case Acos( Ωo T φ) T Acos( ωo φ) iplyig ω o Ω o T > As eplaied i Sectio, a digital siusoidal sequece wit a agular frequecy ω o greater ta assues te idetity of a siusoidal sequece wit a agular frequecy i te rage ω < Hece, Ω caot be uiquely deteried fro Acos( Ωo T φ) o cos( Ω T ) If is periodic wit a period, te o cos Ω T ΩT cos( Ω ( ) ) T Tis iplies ΩoT r wit r ay ozero positive iteger Hece te saplig rate ust satisfy te relatio T r / Ωo If Ω o, ie, T / 8, te we ust ave r Te 8 sallest value of ad r satisfyig tis relatio are ad r Te fudaetal period is tus (a) For a iput i, i,, te output is yi b i b i b i ayi a yi, i, Te, for a iput A B, te output is y b ( A B ) b ( A B ) b ( A B ) a( Ay By ) a( Ay By ) A( b b b ay a y ) B( b b b a a ) By Ay Hece, te syste of Eq (8) is liear (b) For a iput i, i,, te output is / L,, ± L, ± L, L y i i, oterwise For a iput A B, te output for, ± L, ± L, K is y / L A / L B / L Ay By For all oter values of, y A B Hece te syste of Eq () is liear (c) For a iput i, i,, te output is yi i /, i, Te, for a iput A B, te output is y A / B / Ay By Hece te syste of Eq () is liear ot for sale 8

19 (d) For a iput i, i,, te output is y i i, i, Te, for a iput A B, te output is y ( A B ) A B Ay By Hece te syste of Eq (6) is liear (e) Te first ter o te RHS of Eq (6) is te output of a factor-of- up-sapler Te secod ter o te RHS of Eq (6) is siply te output of a uit delay followed by a factor-of- up-sapler, wereas, te tird ter is te output of a uit advace operator followed by a factor-of- up-sapler We ave sow i Part (b) tat te up-sapler is a liear syste oreover, te uit delay ad te uit advace operator are liear systes A cascade of two liear systes is liear ad te liear cobiatio of liear systes is also liear Hece, te factor-of- iterpolator of Eq (6) is a liear syste (f) Followig te arguets give i Part (e), we ca siilarly sow tat te factor-of- iterpolator of Eq (66) is a liear syste 6 (a) y For a iput i, i,, te output is yi i, i, Te, for a iput A B, te output is y A B Ay By Hece te syste is liear For a iput, te output is te ipulse respose As for <, ad te syste is causal Let for all values of Te ( ) y ad y as Sice a bouded iput results i a ubouded output, te syste is ot BIBO stable Fially, let y ad y be te outputs for iputs ad, respectively If te y However, y o ( o ) o (b) o o Sice y y, te syste is ot tie-ivariat o y ( ) For a iput i, i,, te output is y ( ), i, Te, for a iput A B, te output is A ( ) B( ) Hece te syste is oliear i i ( A B ) y For a iput, te output is te ipulse respose ( ) As for <, ad te syste is causal ot for sale 9

20 For a bouded iput B <, te agitude of te output saples are y ( ) B < As te output is also a bouded sequece, te syste is BIBO stable Fially, let y ad y be te outputs for iputs ad, respectively If o te y ( ) ( o ) y o Hece, te syste is tie-ivariat (c) y β l wit β a ozero costat For a iput, i,, te output is te output is l y β i i l y β l, i, Te, for a iput A B, l Ay By Hece te syste is oliear ( A l B l ) β A l B l For a iput, te output is te ipulse respose β l As l i l l for <, te syste is ocausal For a bouded iput B <, te agitude of te output saples are y β B < As te output is also a bouded sequece, te syste is BIBO stable Fially, let y ad y be te outputs for iputs ad, respectively If te y β l y Hece, te syste is o tie-ivariat l o o (d) y l( ) For a iput i, i,, te output is yi l( i ), i, Te, for a iput A B, te output is y l( A B ) Ay By Hece te syste is oliear For a iput, te output is te ipulse respose l( ) For <, l() Hece, te syste is ocausal For a bouded iput B <, te agitude of te output saples are ( B) < y l As te output is also a bouded sequece, te syste is BIBO stable Fially, let y ad y be te outputs for iputs ad, respectively If ot for sale

21 o te y l( o ) y o Hece, te syste is tie-ivariat (e) y, wit a ozero costat For a iput, i,, te output is yi i, i, Te, for a iput A B, te output is y A B Ay By Hece te syste is liear For a iput, te output is te ipulse respose For <, Hece, te syste is causal For a bouded iput B <, te agitude of te output saples are y B < As te output is also a bouded sequece, te syste is BIBO stable Fially, let y ad y be te outputs for iputs ad, respectively If o te y ( o ) y o Hece, te syste is tie-ivariat (f) y For a iput i, i,, te output is y, i, i i i A B Te, for a iput A B, te output is y Ay By Hece te syste is liear For a iput, te output is te ipulse respose For <, Hece, te syste is causal For a bouded iput B <, te agitude of te output saples are y B < As te output is also a bouded sequece, te syste is BIBO stable Fially, let y ad y be te outputs for iputs ad, respectively If o te y o y o Hece, te syste is tieivariat 7 Let y ad y be te outputs of a edia filter of legt K for iputs ad, respectively If o, te y ed{ K, K,,,, K, K} ed{ K, K,,,, K, o o o o o y o Hece, te syste is tie-ivariat 8 y For a iput i, i,, te output is yi i i i, i, Te, for a iput A B, te output is y A B A B A B Ay By Hece te syste is liear If o, te y o o o y o Hece, te syste is tie-ivariat K} ot for sale

22 Te ipulse respose of te syste is ow Sice for all values of <, te syste is ocausal 9 y For a iput i, i,, te output is yi i i i, i, Te, for a iput A B, te output is y ( A B ) ( A B )( A B ) Ay By Hece te syste is oliear If o, te y o o o y o Hece, te syste is tieivariat Te ipulse respose of te syste is Sice for all values of <, te syste is causal y y ow for a iput µ, te output y y coverges to soe costat K as Te iput-output relatio of te syste as reduces to K K fro wic we get K or i oter words K K For a iput i, i,, te output is,, i yi yi i Te, yi A for a iput A B, te output is B y y y O te oter ad, A B Ay By Ay y y By y Hece te syste is oliear o If o, te y y y o y Hece, te syste is tie-ivariat y y y For a iput i, i,, te output is yi i yi yi, i, Te, for a iput A B, te output is y A B y y O te oter ad, Ay By ot for sale

23 A Ay Ay B By By y Hece te syste is oliear Let y be te output for a iput, ie, y y y Te, for a iput o te output is give by y o o y o o, or i oter words, te syste is tie-ivariat ow, for a iput µ, te output y coverges to soe costat K as Te differece equatio describig te syste as K, ie, K reduces to K K K, or Te ipulse respose of te factor-of- iterpolator of Eq (66) is te output for a iput ad is give by u { },,,,, ( ) ( ) or equivaletly by { } Te iput-output relatio of a factor-of- L iterpolator is give by L L y u ( u u ) Its ipulse respose is te output for L a iput u or equivaletly by { } ad is tus give by L L L ( ) L L L L {,, K,,,,,, K,, }, L L L L L L Te ipulse respose of a causal discrete-tie syste satisfies te differece equatio a Sice te syste is causal, we ave for < Evaluatig te above differece equatio for, we arrive at a ad tus et, for, we ave a ad tus a Cotiuig we get for, a, ie, a a Assue a wit > Fro te differece equatio we te ave a, ie, a a Sice te last equatio olds for,,, by iductio, it olds for As ad are rigt-sided sequeces, assue for all < ad ad < Hece, y O* for all < ad tus L L L L ot for sale

24 is also a rigt-sided sequece Terefore, y O * y as for all Hece, < y 6 (a) < µ µ µ µ µ,,,, O * µ (b) > µ µ µ µ µ,,, O * 7 ow fro Eq (7) a arbitrary iput ca be epressed as wic ca be rewritte usig Eq (b) as ( ) µ µ µ µ Sice is te respose of a LTI syste for a iput s, µ is te respose for a iput ad s µ s is te respose for a iput Hece, te output for a iput is give by µ µ µ O O * * s s s s y 8 Hece, Tus, is also a periodic sequece wit a period ~ y ~ y y y 9 I tis proble we ae use of te idetity O * r r ot for sale

25 (a) y O* ( ) O* ( ) O* O* 6 O* O* O* O Hece 8 * y (b) y O* ( ) O* ( ) O* 7 O* O* 6 O* O O 7 7 * * 6 (c) y O* ( ) O* ( ) 9 O* O* O* 6 O* O* O 9 6 * (d) y O* ( ) O* ( ) O* O* O* O* O O 8 * * 8 8 (a) u O* y {,,,,,, 66,,, 7,,, }, 8 (b) v O* w {, 7,,, 6,, 8,,, 6,,, }, (c) g w O* y { 8,,,,, 6, 6,, 6,, 6, 9, }, ot for sale

26 y ow, g is defied for Tus, for, is defied for, or equivaletly, for Liewise, for, is defied for, or equivaletly, for For te specified sequeces,,, 6 (a) Te legt of y is 6 ( ) (b) Te rage of for y is i(, ) a(, ), ie, For te specified sequeces te rage of is O* v y y O* ow, v Te Let g O O y O were y O ow * * * * v O* Defie v O* Te fro te results of Proble, v y Hece, y O Terefore, aig use of te results of Proble * agai we get y y O* Substitutig by i tis epressio, we get coutative y O* Let O( ) ( Hece te covolutio operatio is y * ) O* O* covolutio operatio is also distributive Hece te O O O( O ) As O is a ubouded * * * * * sequece, te result of tis covolutio caot be deteried But ot for sale 6

27 O O O( O ) ow O for all values * * * * * of, ad ece te overall result is zero As a result, for te give sequeces O O O O * * * * 6 w O O g Defie y O* ad * * w ( O* )O* g f O* g g Cosider y O* g g ow cosider w O( O g ) * * O* f g Te differece betwee te epressios for w ad w is tat te order of te suatios is caged A) Assuptios: ad g are causal sequeces, ad for < Tis iplies, for <, y Tus, w g y -, for g All sus ave oly a fiite uber of ters Hece, te itercage of te order of te suatios is ustified ad will give correct results B) Assuptios: ad g are stable sequeces, ad is a bouded sequece wit B < Here, y ε, wit ε, ε B I tis case, all sus ave effectively oly a fiite uber of ters ad te error ε ca be reduced by coosig ad, sufficietly large As a result, i tis case te proble is agai effectively reduced to tat of te oe-sided sequeces Tus, te itercage of te order of te suatios is agai ustified ad will give correct results Hece, for te covolutio to be associative, it is sufficiet tat te sequeces be stable ad sigle-sided 7 y Sice is of legt ad defied for, ( ) te covolutio su reduces to y y will be ozero for all tose values of ad for wic satisfies iiu value of ad occurs for lowest at ad aiu value of ad occurs for aiu value of at Tus Hece te total uber of ozero saples ot for sale 7

28 8 y Te aiu value of y occurs at we all product ters are preset Te aiu value is give by y a a 9 y Te aiu value of y occurs at we all product ters are preset Te aiu value is give by y a b 6 (a) y g O* g ow, ev ev ev ev ev y ev g ev ev ( ) g ev gev O* ev y g Replace by Te te suatio o te left becoes y Hece is a eve sequece ev (b) y g ev O* od od g ev ow, od ev od ev od ev od ev Hece gev O* od is a odd sequece y g g ( ) g g y (c) y g od O* od od g od ow, od od od od od od od od Hece god O* od is a eve sequece y g g ( ) g g y 6 Te ipulse respose of te cascade is give by O were * µ ad β µ Hece, ( β ) µ 6 ow µ Terefore y y Hece, y y Tus te iverse syste is give by y Te ipulse respose of te iverse syste is give by {, }, 6 Fro te results of Proble 6 we ave ( β ) µ ow, ot for sale 8

29 y β µ β Substitutig β r i te last epressio we get β β r r y r r r r r r r β β r r r r r r r K β y Te iverse syste is terefore give by ) ( β β y y y 6 (a) O O O O O * * * * * (b) O O O O * * * * 6 ow O * ) )O( ( O * * O O O O * * * * 6 ad 7 Terefore, (a) Te legt of is 8 Usig y we arrive at },,,, {, } { (b) Te legt of is 7 Usig y we arrive at },,, {, } { (c) Te legt of is 8 Usig y we arrive at },,, {, } { ot for sale 9

30 67 y ay b Hece, y ay b et, ( ay b ) b a y ab b a way we obtaied y a y a b (a) Let y be te output due to a iput Te y a y a b If o, te y ay b Cotiuig furter i a siilar o o r y a y a b o a y r a b r However, r y o a y a b o o a y o o r a b Hece y y o if y, ie, te syste is tie-variat Te syste is tie-ivariat if ad oly if y, as te y y o (b) Let y ad y be te outputs due to iputs ad, respectively Let y be te output due to a iput β However, y βy β a y a y a b β a b, wereas, y a y a b β a b Hece, te syste is oliear if y ad is liear if ad oly if y (c) Geeralizig te above result it ca be sow tat a t order causal discretetie syste is liear ad tie-ivariat if ad oly if y r, r 68 y p p d y leads to y y, wic is te differece equatio caracterizig te iverse syste I oter words, siply solve te equatio for i ters of preset ad past values of y ad 69 s µ,, ad s, < Sice is oegative, s is a ootoically icreasig fuctio of for, ad is ot oscillatory Hece, tere is o oversoot 7 (a) f f f Let f r, te te differece equatio reduces to r r r wic reduces furter to r r resultig i ± r Tus, f As f, ece Also f,, ad ece Solvig for ad, we get Hece, p d p p p r ot for sale

31 f (b) y y y As te syste is LTI, te iitial coditios are equal to zero Let Te y y y Hece, y y y ad y y y For >, te correspodig differece equatio is y y y wit iitial coditios y ad y, wic are te sae as tose for te solutio of te Fiboacci s Tus deotes te ipulse respose of a causal LTI syste described by te differece equatio y y y sequece Hece y 7 y y Deotig y y y, ad a b, we get re i re yi ( a b)( yre yi ) y Equatig te real ad te iagiary parts, ad otig tat is real, we get yre ayre byi, yi byre ayi Fro te a secod equatio we ave yi yi yre Substitutig tis equatio i te top left equatio we arrive at y b b re re a i a re ayre ( a b ) yre yre ayre byi ayre ( a b ) yre ay y y, fro wic we get byi a Substitutig tis equatio i te equatio we arrive at yre a wic is a secod-order differece equatio represetig y re i ters of 7 Te first-order causal LTI syste is caracterized by te differece equatio y p p d y Lettig we obtai te differece Solvig it for,,, we get p, p d p d p, ad d d p ( p d p ) Solvig tese equatios we get p, d, ad p equatio represetatio of its ipulse respose p p d 7 p d y Let Te p d Tus, r b a p d r Sice te syste is assued to be causal, r ot for sale

32 r r for all > r Hece, p d r d 7 For a filter wit a cople-valued ipulse respose, te first part of te proof is te sae as tat for a filter wit a real-valued ipulse respose Fro y we get y Sice te iput is bouded B Terefore y B So if S <, te y BS idicatig tat y is also bouded To prove te coverse we eed to sow tat if a bouded iput is produced by a bouded iput te S < Cosider te followig bouded iput defied by * * Te y S ow sice te output is bouded, S < Tus for a filter wit a cople ipulse respose is BIBO stable if ad oly if < S 7 Te ipulse respose of te cascade is g r r Tus g r r r Sice r r ad are stable, < ad < Hece g < result, a cascade of two stable LTI systes is also stable 76 Te ipulse respose of te parallel structure is g ow, ad as a g Sice ad are stable, < ad < Hece g < parallel coectio of two stable LTI systes is also stable ad as a result, a 77 Cosider a cascade coectio of two passive LTI systes wit a iput ad a output y Let y ad y be te outputs of te two systes for te iput ow y ad y Let y y satisfyig te above iequalities Te y y y ad as a result, > y Hece, te parallel coectio of two passive LTI systes ay ot be passive 78 Cosider a parallel coectio of two passive LTI systes wit a iput ad a output y Let y ad y be te outputs of te two systes for te iput ot for sale

33 y satisfyig te above iequalities Te y y y ad as a result, > y ow y ad y Let y parallel coectio of two passive LTI systes ay ot be passive Hece, te 79 Let te differece equatio p y d y represets te causal IIR digital filter For a iput, te correspodig output is te y, te ipulse respose of te filter As te uber of coefficiets { p } is ad te uber of coefficiets { d } is, tere are a total of uows To deterie tese coefficiets fro te ipulse respose saples, we copute oly te first ipulse respose saples To illustrate te etod, witout ay loss of geerality, we assue Te, fro te differece equatio we arrive at te followig 7 equatios: p, d p, d d p, d d d p, d d d, d d d, 6 d d d Writig te last tree equatios i atri for we arrive at d d d, ad ece, d 6 d 6 d Substitutig tese values i te first four equatios writte i atri for we get p p d p d p d 8 y y l l y l lµ l y l l y ( ) (a) For y, y (b) For y, y ( ) ( ) ot for sale

34 ( T ( ) T T y T y y( T ) ad ( T ) 8 y T ) y( ( ) T ) ( τ) dτ y( ( ) T ) T ( ( ) ) Terefore, te differece equatio represetatio is give by y were l l l l ( ) y y y 8 y l l, ow y l l,, ie, Tus, te differece equatio represetatio is give by 8 y y µ wit y Te total solutio is give by y yc y p, were y c is te copleetary solutio ad y p is te particular solutio y c is obtaied by solvig yc yc To tis ed we set y c λ, wic yields λ λ resultig i te solutio λ Hece y c () For te particular solutio we coose y p β Substitutig tis solutio i te differece equatio represetig te syste we get β β µ For we get β β, ie, ( ) β ad ece β / 6 8 / Terefore y yc y p (), For, we tus ave 8 8 y () iplyig Te total solutio is tus give by y (), µ 8 y y y wit y ad y Te total solutio is give by y yc y p, were y c is te copleetary solutio ad y p is te particular solutio y c is obtaied by solvig yc yc yc To tis ed we set y λ, wic yields λ λ λ resultig i te solutios c λ or λ Hece y () ( ) For te particular solutio we coose 8 c y p β() differece equatio represetig te syste we get β() β() β β() β() β() µ wic yields For Substitutig tis solutio i te we ave β 66 Terefore ot for sale

35 y yc y p () ( ) 66(), For ad () ( ) 66() we tus ave y () ( ) 66() ad y Solvig tese two equatios we get 89 ad Hece, y 89() ( ) 66(), 8 y y y wit, y ad y Te total solutio is give by y yc y p, were y c is te copleetary solutio ad y p is te particular solutio Fro te solutio of Proble 8, te copleetary solutio is of te for y c () ( ) µ To deterie y p we observe tat te it is give by te su of te particular solutio y p of te differece equatio Proble 8, we ave µ y y y ad te particular solutio y p of te differece equatio y y y µ Fro te solutio of y p β() Hece, y p y p β() Terefore, y p y p y p β() β() µ µ For te above equatio reduces to β β Tus, β Terefore, te total solutio is give by y yc y p () ( ) () (), For ad () ( ) () () we tus ave y () ( ) () () ad y Solvig tese two equatios we get 88 ad Hece, y 88() ( ) () () 86 Te solutio is give by, is te copleetary solutio ad p is te particular solutio If is te ipulse respose, te c p, were c p Fro Proble 8 we ote tat () Tus, Tis iplies Hece, (), 87 Te overall syste ca be regarded as te cascade of two causal LTI systes: S: y y y ad S: c ot for sale

36 Te ipulse respose of te syste S ca be foud by solvig te copleetary solutio of Let te copleetary solutio be c λ, we ave λ λ λ ece λ {, } Terefore, te ipulse respose is give by c A() B( ), Solvig costats A, B, we get A 8 ad B Hece 8() ( ), Te ipulse respose of te syste S is give by Te ipulse respose of te overall syste is ( 8() ( ) ) µ ( 8() ( ) ) µ * 9() µ 8( ) µ 88 ( ) µ, < < Step respose is te give by s O* µ ) µ Oµ ( ) µ µ * ( ),,, < ( ( ),, K, < K A 89 Let A ( λi ) Te λi ow li Sice tere A eists a positive iteger A coverges A λi o suc tat for all > o, < < < Hece A 9 { } {,,,,,, },, { y } {6,,,, 8, 7, },, { w } {,,,,,, }, 8 (a) r l l, 6 l 6 { r l} { 8,,,,,, 9,,,,,, 8}, 6 l 6, ryy l y y l, 6 l 6 { r l} {, 8, 9,,, 7, 6, 7,,, 9, 8, }, 6 l 6, yy r 6 ww l 6 w w l, 6 l 6 { r ww l} {,, 6,, 6,, 7,, 6,, 6,, }, 6 l 6, K ot for sale 6

37 (b) r y l y l, 8 l { r y l} {8, 8,,,,, 68,,,,, 6, }, 8 l, r w l 8 y l, l { r l} {,,, 8,, 7,,, 7,,,, 6}, l, w 9 (a) µ l r µ l l l l µ µ l l l l l, l <,, l, l, l, l <, l ote for l, r, l ad for l <, r l Replacig l wit l ( l) l i te secod epressio we get r l r l l Hece, r is a eve fuctio of l aiu value of r l occurs at l sice is a decayig fuctio for icreasig we < (b),, ow r, were, oterwise l l, for l < ( ), l, for ( ) l,, l l, l Terefore, r, oterwise, for, l l l, for < l,, for l > It follows fro te above tat r is a triagular fuctio of, ad ece is a l l eve fuctio wit a aiu value of at l 9 (a) cos were is a positive iteger Period of is, ad ( l) ece r l l cos cos l l cos cos cos si si l cos cos l l ot for sale 7

38 ow cos cos cos cos Let C cos ad ( / ) S si Te C S e e Tis iplies C Tus cos / e l l Hece, r cos cos l (b) { } 6 {,,,,, }, It is a periodic sequece wit a period 6 Tus, r 6, l 6 l l r is also a l periodic sequece wit a period 6 r ( ), 6 6 r ( ), 6 6 r ( ), r ( ), 6 6 r ( ), 6 6 r ( ) 6 6 (c) ( ) is a periodic sequece wit a period Tus, r l l, l Hece, r ( ), r ( ) r l is also a periodic sequece wit a period (a) Te iput data etered durig te eecutio of Progra are: Type i real epoet -/ Type i iagiary epoet pi/6 Type i gai costat Type i legt of sequece (b) Te iput data etered durig te eecutio of Progra are: Type i real epoet -/ Type i iagiary epoet pi/6 Type i gai costat Type i legt of sequece ot for sale 8

39 Real part Iagiary part Aplitude Aplitude Tie ide ~ a Tie ide (a) e Te plots geerated usig Progra are sow below: Iagiary part Real part Aplitude - - Tie ide Aplitude - - Tie ide (b) Te code fraget used to geerate ~ b si(8 8 ) is as follows: si(8*pi* 8*pi); Te plot of te periodic sequece is give below: Aplitude - - (c) Te code fraget used to geerate ~ / / Re( e ) I( e ) c is as follows: real(ep(i*pi*/) iag(ep(i*pi*/); Te plot of te periodic sequece is give below: ot for sale 9

40 Aplitude - - (d) Te code fraget used to geerate ~ d cos() si( ) is as follows: *cos(*pi*)-*si(*pi**pi); Te plot of te periodic sequece is give below: Aplitude - - (e) ~ Te code fraget used to geerate e cos( 7) cos(6) si( ) is as follows: *cos(*pi*7*pi)*cos(6*pi*)-si(*pi*); Te plot of te periodic sequece is give below: Aplitude - - (a) L iput('desired legt '); A iput('aplitude '); oega iput('agular frequecy '); pi iput('pase '); :L-; ot for sale

41 A*cos(oega* pi); ste(,); label('tie Ide'); ylabel('aplitude'); title('\oega{o} ',ustr(oega/pi),'\pi'); (b) ω o 6 ω o 8 Aplitude - Aplitude Aplitude - Tie Ide ω o Tie Ide Aplitude - Tie Ide ω o - ω o Tie Ide Aplitude Tie Ide t ::; fo iput('frequecy of siusoid i Hz '); FT iput('saplig frequecy i Hz '); g cos(*pi*fo*t); plot(t,g,'-'); label('tie'); ylabel('aplitude'); old ::FT; gs cos(*pi*fo*/ft); plot(/ft,gs,'o'); old off t ::8; ot for sale

42 g cos(6*pi*t); g cos(*pi*t); g cos(6*pi*t); plot(t/8,g,'-', t/8, g, '--', t/8, g,':'); label('tie'); ylabel('aplitude'); old ::8; gs cos(6*pi*); plot(/8,gs,'o'); old off 6 As te legt of te ovig average filter is icreased, te output of te filter gets ore sooter However, te delay betwee te iput ad te output sequeces also icreases (Tis ca be see fro te plots geerated by Progra for various values of te filter legt) 7 alpa iput('alpa '); y ; y *(y (alpa/y)); wile abs(y-y)> y *(y(alpa/y)); y y; y y; ed disp('squre root of alpa is'); disp(y); 8 forat log alpa iput('alpa '); y ; y zeros(,6); L legt(y) - ; y() alpa - y*y y; ; wile abs(y(-) - y) > y alpa - y(-)*y(-) y(-); y y(-); y() y; ; ed disp('square root of alpa is');disp(y(-)); :-; err y(:-) - sqrt(alpa); ste(,err); ais( - i(err) a(err)); label('tie ide '); ylabel('error'); title('\alpa ',ustr(alpa)); Te displayed out is Square root of alpa is 8789 ot for sale

43 786 Error Tie ide 9 { } {,,,,,, },, { y } {6,,,, 8, 7, },, { w } {,,,,,, }, 8 { r } { 8,,,,,, 9,,,,,, 8}, 6 6 { } {, 8, 9,,, 7, 6, 7,,, 9, 8, }, 6 6 r yy { r ww } {,, 6,, 6,, 7,, 6,, 6,, }, r r yy Aplitude Aplitude Lag ide Lag ide Aplitude 6 r ww Lag ide Aplitude r y - Lag ide ot for sale

44 r w 6 r yw Aplitude Aplitude Lag ide Lag ide iput('legt of sequece '); :-; ep(-8*); y rad(,)-; legt()-; r cov(y,fliplr(y)); (-):; ste(,r); label('lagide'); ylabel('aplitude'); Aplitude Lag ide ot for sale

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Chapter 2 Discrete-Time Signals and Systems

Chapter 2 Discrete-Time Signals and Systems P.: Chapter Discrete-Time Sigals ad Systems (a) ( ) ( ) δ ( ) δ ( ) x = m+ m m, 5. m= clear; close all; Hf_ = figure( Uits, ormalized, positio,[.,.,.8,.8], color,[,,]); set(hf_, NumberTitle, off, Name,

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 2: Συστήματα διακριτού χρόνου Συστήματα διακριτού χρόνου Σύστημα διακριτού χρόνου: Μετασχηματισμός Τ που μετατρέπει το σήμα εισόδου x[] στο σήμα

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane. upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators Higer Order Properties of Bootstrap ad Jackkife Bias Corrected Maximum Likeliood Estimators Jiyog Ha Brow Uiversity Guido Kuersteier MIT Marc 5, 2002 Witey Newey MIT Abstract Pfazagl ad Wefelmeyer (978)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΕΡΓΑΣΤΗΡΙΟΥ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔ. ΕΤΟΣ 8-9 ΔΙΔΑΣΚΩΝ : Χ. Βοζίκης ΟΝΟΜΑΤΕΠΩΝΥΜΟ Αριθμός

Διαβάστε περισσότερα

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE ECE 6382 Fall 2017 David R. Jackso Notes 21 Bessel Fuctio Examples Notes are from D. R. Wilto, Dept. of ECE Note: j is used i this set of otes istead of i. 1 Impedace of Wire A roud wire made of coductig

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

arxiv: v3 [math.pr] 24 Nov 2017

arxiv: v3 [math.pr] 24 Nov 2017 Time-depedet weak rate of covergece for fuctios of geeralized bouded variatio Atti Luoto arxiv:169.5768v3 [mat.p] 4 Nov 17 Abstract Let W deote te Browia motio. For ay expoetially bouded Borel fuctio g

Διαβάστε περισσότερα

CHAPTER 1. Second Order Partial Differential Equation and Finite Difference Methods Introduction

CHAPTER 1. Second Order Partial Differential Equation and Finite Difference Methods Introduction CHAPTER Secod Order Partia Differetia Equatio ad Fiite Differece Metods.. Itroductio A partia differetia equatio describes a reatio betwee a ukow fuctio ad its partia derivatives. Partia differetia equatios

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Consider a single-degree-of-freedom system in a free-fall due to gravity. &&x

Consider a single-degree-of-freedom system in a free-fall due to gravity. &&x SIMPLE DROP SHOCK Revisio D By Tom Irvie Email: tomirvie@aol.com November 10, 004 DERIVATION Cosier a sigle-egree-of-freeom system i a free-fall ue to gravity. &&x g m k Where m is the mass, k is the sprig

Διαβάστε περισσότερα

Proof of Lemmas Lemma 1 Consider ξ nt = r

Proof of Lemmas Lemma 1 Consider ξ nt = r Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

arxiv: v1 [math.nt] 17 Sep 2016

arxiv: v1 [math.nt] 17 Sep 2016 arxiv:609.057v [math.nt] 7 Sep 06 Covolutio idetities for Tetraacci umbers Ruse Li School of Mathematics ad Statistics Wuha Uiversity Wuha 43007 Chia limajiashe@whu.edu.c Abstract We give covolutio idetities

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 06 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα,

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης 2 η Διάλεξη Ακολουθίες 29 Νοεµβρίου 206 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Fiey R.L. / Weir M.D. / Giordao F.R. Πανεπιστημιακές Εκδόσεις Κρήτης 2 Όρια Ακολουθιών

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

SOLUTIONS TO RAINVILLE S SPECIAL FUNCTIONS (1960)

SOLUTIONS TO RAINVILLE S SPECIAL FUNCTIONS (1960) SOLUTIONS TO RAINVILLE S SPECIAL FUNCTIONS 96 SOLUTIONS BY SYLVESTER J PAGANO AND LEON HALL; EDITED BY TOM CUCHTA Cotets Preface Chapter Solutios 4 Chapter Solutios 9 3 Chapter 3 Solutios 7 4 Chapter 4

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα, Αλγόριθμοι και Πολυπλοκότητα

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction Supplemet to A theoretical framework for Bayesia oparametric regressio: radom series ad rates of cotractio A Proof of Theorem 31 Proof of Theorem 31 First defie the followig quatity: ɛ = 3 t α, δ = α α

Διαβάστε περισσότερα

17 Monotonicity Formula And Basic Consequences

17 Monotonicity Formula And Basic Consequences Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα