Ειδικά κεφάλαια παραγωγής ενέργειας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ειδικά κεφάλαια παραγωγής ενέργειας"

Transcript

1 Τμήμα Μηχανολόγων Μηχανικών Ειδικά κεφάλαια παραγωγής ενέργειας Ενότητα 3: Wind Energy Αν. Καθηγητής Γεώργιος Μαρνέλλος (Γραφείο 208) Τηλ.: , Τμήμα Μηχανολόγων Μηχανικών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ψηφιακά Μαθήματα στο Πανεπιστήμιο Δυτικής Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Wind Energy

5 Increasingly Significant Power Source The global theoretical potential of wind power is currently estimated at 55 Gtoe, corresponding to 550% of the global energy balance. The technical potential, i.e., the amount that is technologically feasible to be exploited, is estimated at 5 Gtoe or 50% of the global energy balance. 5

6 Europe Wind Potential 6

7 Why Is Wind Energy So Popular? Wind is a clean/free energy source. Wind Farms are relatively cheap to build because of government incentives. The payback can be in the range of 2-4 years. The operating life of the wind turbine is +30 years. 7

8 Advantages of Wind Power Environmental (no emissions of harmful pollutants). Economic Development. Fuel Diversity & Conservation. Cost Stability to a utility s resource portfolio. Bring income and tax benefits to rural communities. 8

9 Environmental Benefits No air pollution. No greenhouse gasses. No depletion of natural sources (fossil fuels). No pollution through extraction and transportation (No hazardous wastes). There is no need for water. One 750-kW wind turbine would displace: 3 million lbs of carbon dioxide per year lbs of sulfur dioxide lbs of nitrous oxides. 9

10 Economic Development Benefits Expanding Wind Power development brings jobs to rural communities (providing steady income through lease or loyalty payments to farmers and other landowners). Reducing hidden costs resulting from air pollution and health care. Each MW of wind power development provides jobs years of employment. Wind plants can be a valuable source of property tax income for local authorities. 10

11 Fuel Diversity Benefits Domestic and Inexhaustible energy source. Reduced supply risk. Wind facilities consist of small generators that cannot be easily be damaged at the same time and easy to replace. If a wind facility is damaged, there is no secondary risk to the public, such as in the release of radioactivity, explosions, or the flooding of a dam. 11

12 Cost Stability Benefits With good wind resource estimates, the cost of the project is almost all in the up-front construction costs, and therefore constant over the life of the project. Flat-rate pricing: hedge against fuel price volatility risk. Wind electricity is inflation-proof. 12

13 Introduction Of Wind Turbine A wind turbine is a rotating machine which converts the kinetic energy in wind into mechanical energy. If the mechanical energy is used directly by machinery, such as a pump, the machine is usually called a windmill. If the mechanical energy is then converted to electricity, the machine is called a wind generator, wind turbine, wind power unit (WPU), wind energy converter (WEC), or aero generator. 13

14 Wind Energy Technology 14

15 Wind Velocity and Energy The kinetic energy of a mass of air, m, which moves with a certain velocity, V, equals to: The Power (energy per time): Where ρ= Air density (standard conditions ρ ο =1.225 kg/m 3 ). A= (πd 2 /4) Swept rotor area (D= 2xL). 15

16 Power in the Wind (W) 16

17 Specific Wind Power (W/m 2 ) The wind potential in a wind farm site is evaluated based on the specific power p: From the whole power that is included in the wind, only a single fraction can be captured by the wings, P o : Where V= Air velocity before the swept area. V o = Air velocity behind the swept area. 17

18 Mass flow rate through the wings The turbine is intercepting the air flow in the whole swept area although is usually consisting of 2-3 blades which cover the 5-10% of this area. The air velocity at this level equals to: Therefore the air mass flow rate through the wings is given by: 18

19 Rotor Efficiency The power acquired by the blades equals: or Rotor efficiency, C p : 19

20 Betz Limit or Efficiency Theoretical max. efficiency= 0.59 for (V o /V)=1/3. The Betz limit denotes that the max. power that can be extracted from the wind it cannot be over 59% and this efficiency is only achieved when the air velocity behind the wind turbine equals to 1/3 of the air velocity before the turbine. 20

21 Actual Efficiency (1/2) In actual cases, the rotor efficiency reaches 50% and usually is ranged between %. The power that is generated from a steam turbine: P o = C p x ½ x ρ x Α x V 3 The rotor efficiency coefficient is affected by its rotation velocity in relation to air velocity that hits the wind turbine. The tip-speed ratio (TSR) equals to: where V TIP is the velocity of the wing edge. And ω is the angular rotation velocity. 21

22 Actual Efficiency (2/2) 22

23 The effect of air density The power that is contained in the wind and the power that is achieved through the wind turbine is depending on the air density. The air density is related to temperature and pressure: Essentially, the density is not varied that much from temperature fluctuations, however it does change from pressure (altitude). The density is related to height, as follows: 23

24 Wind Energy Characteristics (1/2) Wind Speed: Wind energy increases with the cube of the wind speed. 10% increase in wind speed translates into 30% more electricity. 2X the wind speed translates into 8X the electricity. Height: Wind energy increases with height. 2X the height translates into 10.4% more electricity. 24

25 Wind Energy Characteristics (2/2) Air density: Wind energy increases proportionally with air density. Humid climates have greater air density than dry climates. Lower elevations have greater air density than higher elevations. Blade swept area: Wind energy increases proportionally with swept area of the blades. Blades are shaped like airplane wings. 10% increase in swept diameter 21% greater swept area. Longest blades up to 413 feet in diameter. Resulting in 600 foot total height. 25

26 Air velocity distribution (1/2) Air velocity is always changed and its distribution is also changed from season to season. The variations of air velocity in one year are described from Weibull distribution: where k is the dimensionless Weibull shape factor, c is the Weibull scale factor (m/s), which is related with the mean air velocity, at each location, h i (%) is the probality the air velocity to be equal to V i or the % frequency of V i. 26

27 Air velocity distribution (2/2) The actual air velocity distribution follows the Weibull distribution with k= 2 (Rayleigh distribution) and c= 5-25 m/s. At other c values is inefficient to exploit the wind potential. Rayleigh distribution: λ= 1/c (s/m). 27

28 Annual air velocity distributions The most frequent value of distribution. Mean annual velocity = 0.9 x c. Root mean cubic velocity, V rmc The V rmc is a tool to calculate the specific wind potential. (Wh/m 2 ) 28

29 Exercise 1 (1/3) In South Evia, a land of acres have a mean annual wind velocity of 11,5 m/s. Considering that the wind velocity in these areas follows a Rayleigh distribution, draw the wind velocity and energy distributions and calculate the annual specific wind potential. 29

30 The Rayleigh distribution is the Weibull distribution for k= 2, where c= V ave /0.9= 11.5/0.9= 12.8 m/s. For Rayleigh distribution for λ= 1/c= s/m, the speed frequencies are the following. Exercise 1 (2/3) 30

31 Exercise 1 (3/3) The corresponding energy distribution is calculated from: e i = (24 x 365) x h i x p i = 8760 x h i x (1/2 x ρ x V i3 ) kwh/m 2 /yr. The mean annual specific wind energy potential equals to: V rmc = ( x x x 30 3 ) 1/3 = 13.8 m/s. Mean annual specific power: p rmc = ½ x ρ x V rmc3 = 1.62 kw/m 2. Mean annual wind energy: ε rmc = p rmc x 24 x 365= kwh/m 2. 31

32 Exercise 2 (1/4) Draw the velocity and energy distributions for the same areas of southern Evia and calculate the annual specific wind potential, if the wind velocities follow a Weibull distribution with a shape factor equal to k = 1,75 and 2,25. 32

33 Exercise 2 (2/4) For a Weibull distribution around k=2; c= V ave /0.9= 11.5/0.9= 12.8 m/s. For a Weibull distribution for k= 1.75, the velocity and specific energy distributions are: 33

34 Exercise 2 (3/4) For a Weibull distribution for k= 2.25, the velocity and specific energy distributions are: 34

35 Exercise 2 (4/4) The root mean cubic velocity for the three different k values: Mean annual specific power: Mean annual wind energy potential: 35

36 Exercise 3 (1/6) Apart from the acres of Example 1, in South Evia, there are also the following areas: acres with a mean annual wind velocity of 10,7 m/s acres with a mean annual wind velocity of 9,8 m/s acres with a mean annual wind velocity of 9,0 m/s. Considering that the wind velocity at these locations follows the Rayleigh distribution, design the velocity and and energy distributions. Calculate also the annual specific wind potential. 36

37 Exercise 3 (2/6) The scale factors in the four cases are: mean annual wind velocity 11,5 m/s c = V mean /0,9 = 11,5/0,9 = 12,8 m/s. mean annual wind velocity 10,7 m/s c = V mean /0,9 = 10,7/0,9 = 11,9 m/s. mean annual wind velocity 9,8 m/s c = V mean /0,9 = 9,8/0,9 = 10,9 m/s. mean annual wind velocity 9,0 m/s c = V mean /0,9 = 9,0/0,9 = 10,0 m/s. The velocity and specific energy frequencies for a mean annual wind velocity of 10,7 m/s, are: 37

38 Exercise 3 (3/6) If the mean annual wind speed is equal to 9,8 m/s, then the velocity and specific energy frequencies are: 38

39 Exercise 3 (4/6) And for a mean annual wind velocity of 9,0 m/s, the velocity and specific energy frequencies are: 39

40 Exercise 3 (5/6) 40

41 Exercise 3 (6/6) The corresponding root mean cubic velocities, are: Vmean = 11,5 m/s v rmc = 13,8 m/s. Vmean =10,7 m/s v rmc = 13,0 m/s. Vmean =9,8 m/s v rmc = 11,9 m/s. Vmean =9,0 m/s v rmc = 11,0 m/s. Respectively the mean annual specific power is equal to: Vmean = 11,5 m/s p rmc = 1,74 kw/m 2. Vmean =10,7 m/s p rmc = 1,34 kw/m 2. Vmean =9,8 m/s p rmc = 1,04 kw/m 2. Vmean =9,0 m/s p rmc = 0,81 kw/m 2. And the mean annual potential, are: Vmean = 11,5 m/s ε rmc = kwh/m 2. Vmean =10,7 m/s ε rmc = kwh/m 2. Vmean =9,8 m/s ε rmc = kwh/m 2. Vmean =9,0 m/s ε rmc = kwh/m 2. 41

42 Fundamentals 42

43 Wind Turbine Classification Wind turbines can be separated into two types based by the axis in which the turbine rotates. Turbines that rotate around a Horizontal axis are more common. Vertical-axis turbines are less frequently used. 43

44 Types of Wind Turbine 44

45 Wind Turbines Power for a House or City 45

46 Sizes and Applications 46

47 Generating Electricity To make electricity, the shaft of the turbine must be connected to an electrical generator. Through gearboxes, the generator converts the mechanical energy of the spinning turbine shaft into electricity. Generators are small enough that they can be housed under a light aerodynamically designed cover at the top of the pole or tower. Wires running down the tower carry electricity to the grid, batteries or other appliances, where it is stored, and/or used. 47

48 Components of Wind Turbine 48

49 Components of a Wind Turbine (1/3) A wind turbine of horizontal axis consists of: Τhe tower. Τhe rotor, consisting of the hub and usually 2 or 3 blades. Τhe chamber which contains the gearbox, the control system of the rotational speed, the brake and the electric generator. Τhe orientation system of the chamber and the rotor, and, the corresponding power electronic systems. 49

50 Components of a Wind Turbine (2/3) The tower supports the chamber and the hub and its height serves for the capture of wind energy in the greatest possible distance from the ground, where the wind speed is increased. In wind turbines of small nominal power the height of the tower can be several times greater than the length of the blades. The main problem regarding the design of the tower is its resistance to the torque imposed by the wind and the vibration which arises from the rotation of the blades. Critical to the design of the whole setup is the avoidance of resonance phenomena, in the whole range of possible winds. 50

51 Components of a Wind Turbine (3/3) The blades are manufactured from epoxy synthetic materials of high strength and low specific weight, in order to withstand the developed torques and to minimize them. Especially the connection of the blades to the hub receives the highest mechanical stresses and is the most sensitive point of the whole construction. In order to hold these stresses below a threshold and to prevent the detachment of the blades, the speed of rotation is controlled by a mechanical brake, located inside the chamber. In cases of very strong winds, the rotation of the rotor is stopped and the plane of rotation of the blades, together with the whole chamber, rotates parallel to the wind direction. 51

52 Nominal Capacity of Wind Turbines The categorization of wind turbines is based on the maximum power that the generator can produce and the blade diameter, e.g. 300kW/30m. A second method to classify wind turbines in terms of their size, is the specific rated capacity (SRC), which is defined as: e.g. a 300/30 wind turbine has a SRC= 300/(π x 15 2 )= 0.42 kw/m 2. 52

53 Operation at varied rotational speed For a given wind speed, the rotor efficiency C p varies with the TSR ratio. In order to keep the wind turbine efficiency constant at its maximum value, the rotational speed of rotor has to be controlled at wind speed variations to optimize the TSR at values of maximum efficiency. Based on rotor rotational speed control, 4 different regions of wind speeds are determined: 1 st region is ranged from zero wind speed to the velocity that the rotor starts to rotate (0 < Vi < V s ). P oi = 0 kw and C p = 0. V s is the start velocity and achieves values around 5 m/s. 53

54 Actual Efficiency 54

55 Operation at varied rotational speed (1/2) 2 nd region is ranged between Vs and nominal velocity, V n (V s < V i < V n ), where V n achieves values around 15 m/s. In this region the wind turbine operates at constant C p, equaled to the nominal efficiency (C p = C pn ). In this velocity region, the rotational speed is linearly increased with wind velocity, keeping TSR at its optimum value where C p is maximized. P * oi= c pn x P i (kw/m 2 ) the power that is achieved. 3 rd region is ranged from V n to limit velocity, V L, where the brake immobilizes the rotor and the nacelle turns accordingly in order to locate the blades in parallel to wind direction. In this region, the rotor is rotated at a constant speed, generating constant power (P * oi= const, P oi = const). c pn = 100 x P * oi/p i (%). 55

56 Operation at varied rotational speed (2/2) 4 th region contains velocities higher than V L. The rotor is immobilized. At these too high wind velocities the wings have moved parallel to wind direction (P * oi= 0). 56

57 C p vs Wind Velocity 57

58 Turbines Constantly Improving Larger turbines produce exponentially more power, reducing unit cost. Specialized blade design. Power electronics improve turbine operations and maintenance. Computer modeling: produces more efficient design. Manufacturing improvements. 58

59 Recent Capacity Enhancements 59

60 On-site Generation to Offset Demand 60

61 Components of a Wind Turbine System 61

62 Wind Disadvantages 62

63 Market Barriers Siting: Birds. Noise (has been eliminated nowadays). Aesthetics (local people are reluctant). Intermittent source of power. Transmission constraints Connection to grid. Financing. 63

64 Wind Farm Development 64

65 Wind Farm Development (1/6) Key parameters: Wind resource. Zoning/Public Approval/Land Lease. Power purchase agreements. Connectivity to the grid. Financing. Tax incentives. 65

66 Wind Farm Development (2/6) Wind resource: Absolutely vital to determine finances: Wind is the fuel. Requires historical wind data: Daily and hourly detail. Install meteorological towers: Preferably at projected turbine hub height. Multiple towers across proposed site. Multiyear data reduces financial risk. 66

67 Wind Farm Development (3/6) Zoning/Public Approval/Land Lease: Obtain local and state governmental approvals: Often includes Environmental Impact Studies: Impact to wetlands, birds. NIMBY component. Negotiate lease arrangements with farmers: Annual payments per turbine or production based. 67

68 Wind Farm Development (4/6) Power Purchase Agreements (PPA): Must have upfront financial commitment from utility. 15 to 20 year time frames. Utility agrees to purchase wind energy at a set rate: e.g. Greece, 0.25 /kwh for <50kW capacity. For >50kW capacity /kwh and /kwh (islands). Financial stability/credit rating of utility important aspect of obtaining wind farm financing: PPA only as good as the creditworthiness of the utility. Utility goes bankrupt you re in trouble. 68

69 Wind Farm Development (5/6) Connectivity to the grid: Obtain approvals to tie to the grid: Obtain from grid operators. Power fluctuations stress the grid: Especially when the grid is operating near max capacity. 69

70 Wind Farm Development (6/6) Financing: Once all components are settled : Wind resource. Zoning/Public Approval/Land Lease. Power Purchase Agreements (PPA). Connectivity to the grid. Turbine procurement. Construction costs. Take the deal to get financed. 70

71 Sitting a Wind Farm Winds: Minimum wind speed >7 m/s. Transmission: Distance, voltage excess capacity. Permit approval: Land-use compatibility. Public acceptance. Visual, noise, and bird impacts are biggest concern. Land area: Economies of scale in construction. Number of landowners. 71

72 Distance among wind turbines Wind turbines should be located at certain between them distances in order to maximize the extraction of power. Wind turbine distances are depending on: Area morphology. Wind speed. Wind direction. Turbine size. The optimum distances between the wind turbines are: 8 to 12 X Wing diameter in the wind direction. 2 to 4 X Wing diameter in the vertical direction of the wind. 72

73 Exercise 4 (1/6) Calculate the nominal capacity and the energy produced during the year by a wind turbine (120 m height and 126 m diameter) located in the wind field of Example 1. If the ratio of the blade tip speed which maximizes the efficiency is 5.5, calculate the distribution of the angular velocity of the blade, in the range of wind velocities that the wind turbine operates. ground roughness a = limit velocity v l = 25 m/s. start velocity v s = 5 m/s. nominal rotor efficiency Cpn = 45 %. nominal velocity v n = 15 m/s. generator efficiency nel = 85 %. 73

74 Exercise 4 (2/6) For the estimation of the annual produced energy, the wind velocity distribution of Exercise 1 has to be reformed to the certain height of the wind turbine. 74

75 Exercise 4 (3/6) Remember that a wind turbine starts to operate at V s = 5 m/s and till V n = 15 m/s the rotor efficiency is constant. For velocities higher than V n and lower than V l = 25 m/s, the wind turbine generates constant power. V hi, the wind velocity at the height of the wind turbine. P hi, the specific wind power per swept area, at the height of the WT. C p, WT efficiency, which equals to C pn for V s < V i < V n. The C p for V n < V i < V L is calculated from P * oi/p hi. P * oi, specific rotor power= C p x P hi, which is constant between V n < V i < V L. P * oi= ½ x ρ x C pn x V n3 = ½ x x 0.45 x 15 3 = 0.93 kw/m 2. P oi, achieved rotor power= A x P * oi. h i, possibility for a V hi wind velocity. t i, the hours of the year that the wind velocity equals to V hi (h i x 24 x 365). E oi, the energy that achieved by the rotor during all year at V hi (t i x P oi ). E el, the electrical energy produced by the WT (=n el x E oi ). 75

76 Exercise 4 (4/6) 76

77 Exercise 4 (5/6) C p and wind and rotor power against wind speed variations. 77

78 Exercise 4 (6/6) The specific rated capacity, SRC, of the WT: SRC= Motor Capacity (kw)/swept Area (m 2 )= 12000/(π 63 2 )= 0.96 kw/m 2. The nominal capacity of the motor is selected to be slightly higher compared to the power that will be produced at constant power conditions (12000 kw > kw). The distribution of velocities are: where V tip is the velocity of wing end (= 5.5 x V hi ) and ω is the angular velocity of the wing = (60 s/min) x V tip (2 x π x r). 78

79 Exercise 5 (1/2) Estimate the number of turbines of Example 4 that can be sited in the location of Example 1 as well as the annual electricity generation of the wind farm. 79

80 Exercise 5 (2/2) The turbines are located as follows, where d= 126 m. The area that is needed for each W/T equals to: Therefore in the str, 16000/476.2= 34 W/T will be located. The total electricity generation= 34 x = MWh. 80

81 Exercise 6 (1/5) A private owner has available 10 acres (100 x 100 m) in a region where the average wind velocity is 11,5 m/s, in the southern Evia of Example 1. What is the expected annual electricity production, if the land is used for the installation of a wind farm. Assume that the wind direction that leads to the maximum power acquisition is perpendicular to the one side of the area. Given: ground roughness a = 0,15 limit velocity v l = 25 m/s start velocity v s = 5 m/s nominal rotor efficiency Cpn = 45 % nominal velocity v n = 15 m/s generator efficiency nel = 85 % turbine height 3 x blade diameter 81

82 Exercise 6 (2/5) One or more turbines should be placed at the front (windward) side of the field, that leads to maximum power extraction and should not affect the wind flow for a distance over 100 m downstream (behind turbine). Assuming that a turbine affects the wind flow behind it for a distance of 10 times the diameter of the blades, the maximum diameter should be, 10 m. Also the distance between the turbines in a direction perpendicular to the wind direction, that leads to the maximum power acquisition, is 3 times the diameter of the blades. 82

83 Exercise 6 (3/5) The total area swept by the blades of the turbine is: 3 x π x 5 2 = 235,5 m 2 This is the selected siting A second alternative for turbine siting is the one shown in the figure and involves turbines with 5 m diameter blade in which the total area swept by the blades of the turbine is: 12 x π x 2,5 2 = 235,5 m 2 83

84 Exercise 6 (4/5) The height of the turbines is equal to: Υ = 3 x 10 m = 30 m and the distribution of wind velocities should be converted to the height of turbines by the equation: 84

85 Exercise 6 (5/5) 85

86 The calculation of the annual energy production is: 86

87 Wind Economics 87

88 Wind Farm Design Economics Key Design Parameters: Mean wind speed at hub height. Capacity factor: Start with 100%. Subtract time when wind speed less than optimum. Subtract time due to scheduled maintenance. Subtract time due to unscheduled maintenance. Subtract production losses: Dirty blades, shut down due to high winds. Typically 33% at a typical wind site. 88

89 Wind Farm Financing Financing Terms: Interest rate. Loan term: Up to 15 years. 89

90 Construction Cost Elements Financing & Legal Fees 3% Development Activity 4% Interconnect/ Subsation 4% Interest During Construction 4% Towers (tubular steel) 10% Construction 22% Design & Engineering 2% Land Transportation 2% Turbines, FOB USA 49% 90

91 Wind Cost Components Wind Farm Component Costs 100% 80% 60% 40% 20% Balance of System Transportation Foundations Tower Control System Drive Train Nacelle Blades and Rotor 0% 750 kw 1500 kw 3000 kw 91

92 Cost of Energy Components Cost ( /kwh) = (Capital Recovery Cost + O&M) / kwh/year Capital Recovery = Debt and Equity Cost. O&M Cost = Turbine design, operating environment. kwh/year = Wind Resource. 92

93 Economics of Wind Energy 93

94 Improved Capacity Factor Performance Improvements due to: Better sitting. Larger turbines/energy capture. Technology Advances. Higher reliability. Capacity factors > 35% at good sites. 94

95 Wind Farm Economics (1/2) Key parameter: Distance from grid interconnect: $350,000/mile for overhead transmission lines. 95

96 Wind Farm Economics (2/2) The wind turbine cost is depending on its nominal capacity, P n : [ /kw] The cost of a W/T equals to C WT = c WT x P n ( ). Taking into account all peripherals (per W/T) and the associated installation cost, the total specific cost of a W/T, is a calculated from: c WT,tot = c WT x x P n ( /kw), αnd the total cost C WT,tot =c WT,tot x P n ( ). While the initial investment cost of a wind farm equals to: C= N x C WT,tot ( ), N: number of W/T. 96

97 Exercise 7 (1/8) (a) In the areas of southern Evia, wind farms are to be installed employing wind turbines of 2MW nominal power capacity: 1 st category: acres mean annual wind velocity 11,5 m/s. 2 nd category: acres mean annual wind velocity 10,7 m/s. 3 rd category: acres mean annual wind velocity 9,8 m/s. 4 th category: acres mean annual wind velocity 9,0 m/s. 97

98 Exercise 7 (1/8) (b) Calculate: the number of turbines to be sited, the annual electricity production from each category of land, the installation cost of wind farms in each category of land, the price for MWh electricity, from the wind farms of each category, in order for the initial investment to be paid off in 10 years. Wind velocity in these areas follows Rayleigh distribution, given: ground roughness a = 0,15. limit velocity v l = 25 m/s. start velocity v s = 5 m/s. nominal rotor efficiency Cpn = 45 %. nominal velocity v n = 15 m/s. generator efficiency nel = 85 %. turbine height 100 m. 98

99 Exercise 7 (2/8) The wind velocity distribution for a h= 100 m. 99

100 Exercise 7 (3/8) 100

101 Exercise 7 (4/8) Calculation of wings diameter in order to obtain a 2MW nominal capacity in the designated areas. The wind speed values, V hi, are independent of the area and only the frequency that a specific speed is observed is changing with the specific area. Each speed transfer a certain specific power and only a single fraction is captured by the W/T (P * oi) depending on Cp and the wind speed region (e.g., constant efficiency region or constant power region). The P * oi is multiplied with the swept area, A, which is calculated in order to obtain a nominal capacity, P oi equal to 2 MW. A= 2 MW/0.93 kw/m 2 = 2151 m

102 Since A= 2151 m 2, then D: Exercise 7 (5/8) The needed area for this specific W/T equals to: Therefore the number of W/T that can be located in each region equals to: 102

103 The energy that is going to be produced from each W/T: Exercise 7 (6/8) 103

104 Exercise 7 (7/8) Total annual electricity generation: The specific cost of a W/T: The total specific cost: Total cost: 104

105 Exercise 7 (8/8) Initial investment of the wind farm: Electricity cost to payback in 10 years: 105

106 Future Trends 106

107 Future Cost Reductions Financing Strategies. Manufacturing Economy of Scale. Better Sites and Tuning Turbines for Site Conditions. Technology Improvements. 107

108 The Future of Wind - Offshore 108

109 Wind Energy Storage (1/2) Pumped hydroelectric: Georgetown facility Completed Two reservoirs separated by 1000 vertical feet. Pump water uphill when wind energy production exceeds demand. Flow water downhill through hydroelectric turbines when wind energy production is less than demand. About 70-80% round trip efficiency. Raises cost of wind energy by 25%. Difficult to find, obtain government approval and build new facilities. 109

110 Wind Energy Storage (2/2) Compressed Air Energy Storage: Using wind power to compress air in underground storage caverns. Salt domes, empty natural gas reservoirs. Costly, inefficient. Hydrogen storage: Use wind power to electrolyze water into hydrogen. Store hydrogen for use later in fuel cells. 50% losses in energy from wind to hydrogen and hydrogen to electricity. 25% round trip efficiency. Raises cost of wind energy by 4 X. 110

111 Τέλος Ενότητας 111

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ξενόγλωσση Τεχνική Ορολογία Ενότητα: Principles of an Internal Combustion Engine Παναγιώτης Τσατσαρός Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΦΩΤΟΒΟΛΤΑΙΚΟΥ ΠΑΡΚΟΥ ΜΕ ΟΙΚΙΣΚΟΥΣ ΓΙΑ ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕΣΗΣ ΤΑΣΗΣ STUDY PHOTOVOLTAIC PARK WITH SUBSTATIONS

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. The magnetic flux through a coil of N turns is increased uniformly from zero to a maximum value in a time t. An emf, E, is induced across the coil. What is the maximum value

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ Κνηζακπφπνπινο Υ. Παλαγηψηεο Δπηβιέπσλ: Νηθφιανο Υαηδεαξγπξίνπ Καζεγεηήο Δ.Μ.Π Αζήλα, Μάξηηνο 2010

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3: 4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 6: Working Capital

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 6: Working Capital ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ξένη Ορολογία Ενότητα 6: Working Capital Ευαγγελία Κουτσογιάννη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools

Διαβάστε περισσότερα

EU energy policy Strategies for renewable energy sources in Cyprus

EU energy policy Strategies for renewable energy sources in Cyprus EU energy policy Strategies for renewable energy sources in Cyprus Dr. Andreas Poullikkas Electricity Authority of Cyprus 0 Contents Future energy systems Strategies for RES Towards 2020 Post 2020 - Towards

Διαβάστε περισσότερα

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

1) Formulation of the Problem as a Linear Programming Model

1) Formulation of the Problem as a Linear Programming Model 1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Ανάλυση Υβριδικού Συστήµατος Παραγωγής Ηλεκτρικής Ενέργειας που συνδυάζει ΑΠΕ και Τεχνολογίες Υδρογόνου ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ανάλυση Υβριδικού Συστήµατος Παραγωγής Ηλεκτρικής Ενέργειας που συνδυάζει ΑΠΕ και Τεχνολογίες Υδρογόνου ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Ανάλυση Υβριδικού Συστήµατος Παραγωγής Ηλεκτρικής Ενέργειας που συνδυάζει ΑΠΕ και Τεχνολογίες

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

Nuclear Physics 5. Name: Date: 8 (1)

Nuclear Physics 5. Name: Date: 8 (1) Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

Creative TEchnology Provider

Creative TEchnology Provider 1 Oil pplication Capacitors are intended for the improvement of Power Factor in low voltage power networks. Used advanced technology consists of metallized PP film with extremely low loss factor and dielectric

Διαβάστε περισσότερα

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΥΟΛΗ ΝΑΤΠΗΓΩΝ ΜΗΥΑΝΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ Γιπλυμαηική Δπγαζία «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο Σπιμελήρ Δξεηαζηική

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Δυναμική του χρέους και του ελλείμματος Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control

ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control Torrent Basin, Mountainous Watershed Management Dr. Panagiotis Stefanidis

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΩΝ ΙΣΧΥΟΣ. Περίγραµµα Μαθήµατος ΒΑΣΙΚΕΣ ΑΡΧΕΣ. ρ.-μηχ. Νικόλαος Παπανικολάου. Επίκουρος Καθηγητής. Ηµιαγωγικά στοιχεία ισχύος

ΗΛΕΚΤΡΟΝΙΚΩΝ ΙΣΧΥΟΣ. Περίγραµµα Μαθήµατος ΒΑΣΙΚΕΣ ΑΡΧΕΣ. ρ.-μηχ. Νικόλαος Παπανικολάου. Επίκουρος Καθηγητής. Ηµιαγωγικά στοιχεία ισχύος ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΙΣΧΥΟΣ ρ.-μηχ. Νικόλαος Παπανικολάου Επίκουρος Καθηγητής Περίγραµµα Μαθήµατος Οι εφαρµογές των Ηλεκτρονικών Ισχύος. Υλοποίηση διακοπτών ισχύος Τεταρτηµόρια Λειτουργίας. Ηµιαγωγικά

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD ZLW Series Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD 1 Application Apply as the transportation of liquids in the fields of air condition, heating, sanitary water, water treatment cooling,

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

IMES DISCUSSION PAPER SERIES

IMES DISCUSSION PAPER SERIES IMES DISCUSSION PAPER SERIES Will a Growth Miracle Reduce Debt in Japan? Selahattin mrohorolu and Nao Sudo Discussion Paper No. 2011-E-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 2-1-1

Διαβάστε περισσότερα

Μετρήσεις ηλιοφάνειας στην Κύπρο

Μετρήσεις ηλιοφάνειας στην Κύπρο Πτυχιακή εργασία Μετρήσεις ηλιοφάνειας στην Κύπρο Ιωσήφ Μικαίος Λεμεσός, Μάιος 2018 1 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ i ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΑΡΑΓΩΓΗΣ ΜΕΤΑΦΟΡΑΣ ΔΙΑΝΟΜΗΣ ΚΑΙ ΧΡΗΣΙΜΟΠΟΙΗΣΕΩΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

4 th SE European CODE Workshop 10 th 11 th of March 2011, Thessaloniki, Greece

4 th SE European CODE Workshop 10 th 11 th of March 2011, Thessaloniki, Greece 4 th SE European CODE Workshop 10 th 11 th of March 2011, Thessaloniki, Greece SESSION II: Best case Cogeneration project(s) in Greece Dimitris Miras Head of Thermo-electric Power Projects Dpt, ITA Group

Διαβάστε περισσότερα

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΧΗΜΙΚΑ ΠΡΟΣΘΕΤΑ ΠΟΥ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΤΟ ΝΕΡΟ ΤΟΥ ΑΤΜΟΛΕΒΗΤΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΧΗΜΙΚΑ ΠΡΟΣΘΕΤΑ ΠΟΥ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΤΟ ΝΕΡΟ ΤΟΥ ΑΤΜΟΛΕΒΗΤΑ ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΧΗΜΙΚΑ ΠΡΟΣΘΕΤΑ ΠΟΥ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΤΟ ΝΕΡΟ ΤΟΥ ΑΤΜΟΛΕΒΗΤΑ ΣΠΟΥ ΑΣΤΗΣ : ΑΓΟΡΑΣΤΟΣ ΧΡΥΣΟΒΑΛΑΝΤΗΣ ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ :

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΜΗΧΑΝΙΚΗΣ ΜΕΤΑΤΡΟΠΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του φοιτητή του

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ηλεκτρονική Υγεία Ενότητα: Use Case - an example of ereferral workflow Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

In your answer, you should make clear how evidence for the size of the nucleus follows from your description 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes it suitable for this experiment.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

2013 REV 01 ELECTRONICS CAPACITORS. DC Applications Metallized Polypropylene Film Self Healing

2013 REV 01 ELECTRONICS CAPACITORS. DC Applications Metallized Polypropylene Film Self Healing 2013 REV 01 POWER EECTRONICS CAPACITORS C Applications Metallized Polypropylene Film Healing OUR MISSION: POWER EECTRONICS AN SPECIA CAPACITORS M.V. PFC CAPACITORS AN BANKS IGHTING CAPACITORS MOTOR RUN

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο National Technical University of Athens. Aerodynamics & Aeroelasticity: Applications Σπύρος Βουτσινάς / Spyros Voutsinas

Εθνικό Μετσόβιο Πολυτεχνείο National Technical University of Athens. Aerodynamics & Aeroelasticity: Applications Σπύρος Βουτσινάς / Spyros Voutsinas Εθνικό Μετσόβιο Πολυτεχνείο National Technical University of Athens Aerodynamics & Aeroelasticity: Applications Σπύρος Βουτσινάς / Spyros Voutsinas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΕΝΑΛΛΑΚΤΙΚΗ ΔΙAΧΕIΡΙΣΗ ΑΣΤΙΚΩΝ ΑΠΟΡΡΙΜΜΑΤΩΝ» Του φοιτητή Κασαπιάν Αρτίν Αρ. Μητρώου: 2000.05.0042 Επιβλέπων Καθηγητής Παλαιολόγος Ευάγγελος

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διπλωματική Εργασία του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

PRESENTATION TITLE PRESENTATION SUBTITLE

PRESENTATION TITLE PRESENTATION SUBTITLE COURSE TUTORS : Advanced Materials Processing : D. Mataras, C. Galiotis PRESENTATION TITLE PRESENTATION SUBTITLE A. Student Outline 2 What is my material and why is it interesting? My Application Detailed

Διαβάστε περισσότερα

"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ 2011-2013"

ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ 2011-2013 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Επιμέλεια Κρανιωτάκη Δήμητρα Α.Μ. 8252 Κωστορρίζου Δήμητρα Α.Μ. 8206 Μελετίου Χαράλαμπος Α.Μ.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΓΕΩΡΓΙΟΣ ΙΩΑΝΝΟΥ Α.Μ.: 4674 ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΚΑΘΗΓΗΤΡΙΑΣ: ρ.ελευθερια ΜΠΑΚΟΓΙΑΝΝΗ ΘΕΜΑ: ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΠΑΡΟΥΣΙΑΣ ΧΗΜΙΚΩΝ

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

ΠΟΛΤΣΔΥΝΔΗΟ ΚΡΖΣΖ ΣΜΖΜΑ ΜΖΥΑΝΗΚΧΝ ΟΡΤΚΣΧΝ ΠΟΡΧΝ

ΠΟΛΤΣΔΥΝΔΗΟ ΚΡΖΣΖ ΣΜΖΜΑ ΜΖΥΑΝΗΚΧΝ ΟΡΤΚΣΧΝ ΠΟΡΧΝ ΠΟΛΤΣΔΥΝΔΗΟ ΚΡΖΣΖ ΣΜΖΜΑ ΜΖΥΑΝΗΚΧΝ ΟΡΤΚΣΧΝ ΠΟΡΧΝ ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ ΔΦΑΡΜΟΓΔ ΓΔΧΘΔΡΜΗΑ ΥΑΜΖΛΖ ΔΝΘΑΛΠΗΑ ΣΖΝ ΠΔΡΗΟΥΖ ΑΛΔΞΑΝΓΡΔΗΑ Ν. ΖΜΑΘΗΑ ΓΗΑΜΑΝΣΟΠΟΤΛΟ Η. ΦΧΣΗΟ ΔΞΔΣΑΣΗΚΖ ΔΠΗΣΡΟΠΖ: ΘΔΟΓΧΡΟ ΜΑΡΚΟΠΟΤΛΟ Καζεγεηήο

Διαβάστε περισσότερα

Αγγλική Τουριστική Ορολογία

Αγγλική Τουριστική Ορολογία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αγγλική Τουριστική Ορολογία Ενότητα 8: Exercises Κουτσογιάννη Ευαγγελία Τμήμα Διοίκηση Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction () () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΑΝΘΡΩΠΙΣΤΙΚΩΝ & ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΚΑΙΟΥ «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης» Διπλωματική

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Group 30. Contents.

Group 30. Contents. Group 30 Contents Pump type Page Pump type Page Pump type Page 30A(C)...X002H 4 30A(C)...X013H 5 30A(C)...X068H 6 30A(C)...X068HU 7 30A(C)...X136H 8 30A(C)...X136Y 9 30A(C)...X146H 10 30A(C)...X160H 11

Διαβάστε περισσότερα