Need for a soft decoder. MAP algorithm. Soft bit calculation. Performance. Viterbi E q ualizer. D eco d er. Kalle Ruttik

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Need for a soft decoder. MAP algorithm. Soft bit calculation. Performance. Viterbi E q ualizer. D eco d er. Kalle Ruttik"

Transcript

1 S oft d ecod er p erformance Need for a soft decoder y Viterbi E q ualizer ˆx D eco d er ˆb Kalle Ruttik C ommu n ication s L ab oratory H elsin k i U n iv ersity of T echn oy M ay 2, 2 7 Viterbi E q ualizer p ro v id es o nly ML bit seq uence ˆx ML seq uence ˆx co ntains h ard bits T h e d eco d er fo llo w ing th e Viterbi eq ualizer h as to o p erate o n h ard bits Soft decoder performance Soft bit Performance BER SNR hard soft Comparison of soft and hard Viterbi decoder performance The performance of the decoder can be improved if the decoder operates on the soft values S oft value contains not only the bit value but also the reliability information F or example soft value could be the bit probability Soft bit calculation In order to have soft values at the input of the decoder the equalizer should generate a soft output Viterbi algorithm generates at the output only ML sequence hard bits The soft information can be expressed as aposteriori probability of a bit In the input to the equalizer the soft information is described as the probability of the input symbol A t the output the soft information can be expressed as aposteriori probability of the symbol In case of binary bits the soft information can be expressed as likelihood ratio llr

2 Soft bit Marginalisation Soft bit as likelihood ratio For deciding a binary bit value accordingly to Bayesian decision approach we have to calculate llr for a bit and compare it to the decision threshold Loglikelihood ratio is a suffi cient statistics - it contains all information for making optimal decision In our setup equalizer decoder at the output of the equalizer we do not want to make decision yet but postpone it to the decoder stage W e provide into the decoder input suffi cient statistics For bit sequence the llr for a bit has to be calculated by fi rst marginalising the bit probabilities Marignalization meas integrating summing over the values of nonrelevant variables Marginalisation Marginalisation of a distribution of a variable is a removal of the impact of the nonrelevant variables For exmaple marginal distribution of a variable x 1 from the distribution of three variables x 1, x 2, x 3 is px 1 px 1, x 2, x 3 d x 1 d x 2 for a discrete variables we could replace the integral over distribution by a sum over possible values px 1 px 1, x 2, x 3 x 3 x 2 Marginalisation Marginalisation Marginalisation... Further simpolification: if the variables are independent the probability can be split px 1 px 2 px 3 The marginal proability of x 1 px 1 px 1 x 2 x 3 Because we sum over probabilities: the sum over all possible values of x 2 and x 3 are 1 Soft bit LLR contain sufficient statistics for making optimal decision about the bit p x 1 y p x y replace both of the conditional probabilities by using Bayes formula p x y p x 1 y py x px py x px py x + py x 1 py py x 1px py x 1px py x + py x 1 py If the symbols are apriori equally probable we can write p x 1 y p x 1 y p x 1 y p x y

3 Marginalisation MAP Soft information from a symbol sequence Assume that the symbols are observed in the in additive white noise For a symbol sequence we have from marginalisation p x 1, x 2,..., x k 1,..., x N y 1, y 2,..., y N x k 1 p x 1, x 2,..., x k,..., x N y 1, y 2,..., y N x k Based on Bayes formula p x 1, x 2,..., x k 1,..., x N y 1, y 2,..., y N p y1,y2,...,y N x 1,x 2,...x k 1...,x N px 1,x 2,...,x k 1,...,x N py 1,y 2,...,y N p x 1, x 2,..., x k,..., x N y 1, y 2,..., y N p y1,y2,...,y N x 1,x 2,...,x k,...,x N px 1,x 2,...,x k,...,x N py 1,y 2,...,y N We can simplify p y 1, y 2,..., y k,..., y N x 1, x 2,..., x k 1,..., x N x k 1 x k A W G N p y 1, y 2,..., y k,..., y N x 1, x 2,..., x k,..., x N x k 1 p y k1 x 1, x 2,..., x k 1,..., x N k 1 p y k1 x 1, x 2,..., x k,..., x N k 1 p y k1 x k1, x k 1 x k 1 k 1 p y k1 x k1, x k x k k 1 x k sin g le path MAP MAP multipath x k 1 p y k1 x 1, x 2,..., x k 1,..., x N k 1 p y k1 x 1, x 2,..., x k,..., x N k 1 p y k1 s k1 1, x k1, x k 1 x k 1 k 1 p y k1 s k1 1, x k1, x k x k k 1 x k multipath M ark ov model The last equation is the general form for the Maximum Aposteriori P robability MAP estimation algorithm The optimal algorithm for estimating not only bit values but also their reliability is maximum aposteriori probability MAP estimation for each bit in the received codeword For calculating the likelihood ratio from the aposteriori probabilities we have to sum over all possible bit sequences Sum of the probabilities of the bit sequences where the bit x k 1 and where the bit x k Take the arithm of the ratio of these probabilities This is diff erent compared to the Viterbi algorithm where we selected only one ML path sums over all possible codewords paths in the trellis

4 MAP MAP Comparison of MAP and Viterbi algorithms Viterbi algorithm estiamtes the whole sequence, MAP algorithm estimates each bit separately Minimization of sequence codeword error does not mean that the bit error is minimized Viterbi algorithm estimates ML sequence estimated ˆx is a vector ˆx of hard bits corrsponding to ML sequence the error probability is that given the received symbol vector y the estimted sequence ˆx is not equal to the transmitted codeword x: p ˆx x y Viterbi algorithm minimizes block error ratio BLER no information about the reliability of the estimation Comparison of MAP and Viterbi algorithms... MAP for each bit estimates the a-posteriori probability for each bit and minimizes bit error probability ˆx is a vector of likelihood ratios for each bit the error probability is: given the received symbol vector y the estimations for each bit k ˆx k are not equal to the transmitted bit x k : p ˆx x y The likelihood ratio sign shows the bit value the amplitude describes reliability - how probable the decision is MAP BCJR Implementation of for decoding a linear code was proposed by Bahl, Cocke, J alinek,and Raviv BCJ R in For general trellis the algorithm is also known as forward-backward algorithm or Baum-Welch algorithm The algorithm is more complex than Viterbi algorithm When information bits are not equally likely the MAP decoder performs much better than Viterbi decoder U sed in iterative processing turbo codes For turbo processing BCJ R algorithm is slightly modified Derivation of MAP decoding algorithm in trellis BCJR MAP algorithm for binary transmission finds the marginal probability that the received bit was 1 or Since the bit 1 or could occur in many different code words, we have to sum over the probabilities of all these code words The decision is made by using the likelihood ratio of these marginal distributions for x 1 and x The calculation can be structured by using trellis diagram For every state sequence there is an unique path trough the trellis Codewords sharing common state have common bit sequence. This sequence can be computed only once. The objective of the decoder is to examine states s and compute APPs associated with the state transitions

5 Marginal probability / 1/11 / 1/11 1 /1 1/1 / 1 1/11 /1 1/ /11 1/ /1 1/1 / 1/11 /1 1 1/1 /11 1 1/11 /1 11 1/1 / 1/11 1 /1 1/1 /11 1 1/ /1 11 1/1 The probability of the code words is visualised in the code tree For independent bits the probability of one codeword is multiplication of probabilities of the individual bits in the codeword The marginal probability from the code tree for some particular bit beeing 1 or corresponds to the sum of probabilities over all the codewords where this bit is 1 or A structured way for marginal probability calculation is to use trellis Example: calculation of marginal probabilities pc 1, c 2, c 3 p,, p,, 1 p, 1, p, 1, 1 p1,, p1,, 1 p1, 1, p1, 1, 1 p post c 2 p post c 2 1 pc 1,c 2,c 3 c 2 pc 1,c 2,c 3 + pc 1,c 2,c 3 c 2 c 2 1 pc 1,c 2,c 3 c 2 1 pc 1,c 2,c 3 + pc 1,c 2,c 3 c 2 c 2 1 Example: a-posteriori probability For the independent samples we can separate p post c 2 pc 1 c 2 pc 2 pc 3 c 1, c 2 c 2 pc 1 c 2 pc 2 pc 3 c 1, c 2 + pc 1 c 2 pc 2 pc 3 c 1, c 2 c 2 c 21 pc 1 pc 2 pc 3 c 2 pc 1 pc 2 pc 3 + pc 1 pc 2 pc 3 c 2 c 21 pc 2 pc 1 pc 3 c 1 c 3 pc 1 pc 3 pc 1 + pc 2 c 1,c 3 c 2 c 21 Example:a-posteriori probability... The likelihood ratio becomes p post pc 2 1 pc 1 pc 3 c 2 1 p post c 2 c 1 c 3 pc 2 pc 1 pc 3 c 1 c 3 pc 2 1 pc 1 + pc 1 1 pc 3 + pc 3 pc 2 pc 1 + pc 1 1 pc 3 + pc 3 The computation can be simplified by summing over all possible beginnings and ends of the codewords separately In this simple example the sums can be reduced to 1, for a general code this is not the case

6 Derivation of the forward-backward algorithm For a general HMM the marginalisation can be simplified by grouping together the codewords that have a common terms. p y k1 s k1 1, x k1, x k 1 x k 1 k 1 p y k1 s k1 1, x k1, x k x k k 1 Let denote transition at stage k 1 from state s k1 S i to state s k1 +1 S j in the next stage as Derivation of the forward-backward algorithm x k 1 x k 1 k 1 k 1 p y k1 s k1, x k1, x k 1 x k 1 k 1 p y k1 s k1, s k1+1, x k 1 sum over all the symbol sequences where x k 1 multiplication over all the state transition along a path corresponding to some particular codeword We can regroup: all the codewords contain one common transition py k s k, s k+1, x k 1 M k1,j,i p y k1 s k1 S i, s k1 +1 S j p y k1 S k1, x k1 Derivation of the forward-backward algorithm p y k s k, s k+1, x k 1 s k S p k 1 <k y k1 sk1, s k1 +1 p y k1 sk1, s k1 +1 k 1 >k A k,i p y k1 s k1, s k1 +1 is ca lled fo rw ard m etrics k 1 <k B k,j p y k1 s k1, s k1 +1 is ca lled b a ck w ard m etrics k 1 >k α k,i lo g A k,i is su m o f th e p ro a b ilities a lo n g a ll th e p a th s th a t w h en startin g fro m th e b eg in n in g o f th e trellis a t th e sta g e k w ill m erg e to sta te i β k,j lo g B k,j is su m o f th e p ro a b ilities a lo n g a ll th e p a th s th a t w h en startin g fro m th e en d o f th e trellis a t th e sta g e k + 1 m erg e to sta te j Calculation of metrics A and B can be calculated recursiv ely for particular state k i, i we can write corresponding A k1,i A k1,i s k S i py k1 1, y k1 2,..., y 1 s k1 S i, s k 1,..., s 1 A k1,i B k1,j s k1 1S pyk1 1 s k1 S i, s k1 1 S i1 py k1 2,..., y 1 s k1 1 S i1,..., s 1 i 1 M k1,i,i 1 A k1 1,i 1 s k1 +1S pyk1 +1 s k1 S j, s k1 +1 S j1 py k1 +2,..., y N s k1 +1 S j1,..., s N j 1 M k1,j,j 1 B k1 +1,j 1

7 Illustration: froward metrics Illustration: bacward metrics A k1 1, A k1, M k1,1,1 M k1,2,1 A k1 1,1 A k1,1 B k1, B k1,1 M k1 +1,1,1 M k1 +1,2,1 B k1+1, B k1+1,1 A k1 1,2 A k1,2 B k1,2 B k1+1,2 A k1 1,3 A k1,3 B k1,3 B k1+1,3 A k1,i i 1 M k1,i,i 1 A k1 1,i 1 B k1,i i 1 M k1+1,i,i 1 B k1+1,i 1 M k1,1,1 A k1 1,1 + M k1,2,1 A k1 1,2 M k1+1,1,1 B k1 1,1 + M k1+1+1,2,1 B k1+1,2 Calculation in domain For numerical stability better to compute in arithmic domain A k,i M k,i,j B k,j A k,i + M k,i,j + B k,j α k,i A k,i α k,i + µ k,i,j + β k,j β k,j B k,j µ k,i,j M k,i,j A k1,i M k1,i,i 1 A k1 1,i 1 i 1 B k1,j M k1+1+1,j,j 1 B k1+1,j 1 j 1 i 1 e µ k 1,i,i 1 +α k1 1,i 1 j 1 e µ k 1+1,j,j 1 +β k1+1,j 1 Metric for AWGN channel Probability calcualtion simplification for the equalizer in A W G N channel 1 e y 2 k f x k,s k,h c h 2σ N 2 2πσ 2n y k f x k, s k, h ch 2 2πσ 2 n 1 2σ 2 N 2σ 2 N y 2 k 2y k f x k, s k, h ch + f x k, s k, h ch 2 1 2σN 2 2y k f x k, s k, h ch 1 2σN 2 f x k, s k, h ch 2

8 Initialization Suppose the decoder starts and ends with known states. { 1, s S A,, otherwise If the final state is known B N, { 1, sn S, otherwise If the final state of the trellis is unknown B N,j 1 2 m, s N Metric calculation Map algorithm: Summing over all the codewords where the symbol x k and where it is x k 1 at the node we combine the probabilities meging into this node α k s k S i s k S i py k 1, y k 2,..., y 1 s k S i, s k 1,..., s 1 We do not reject other path but sum the probabilities togeher the probability of the part of the codeword continuing from the trellis state where they merge will be same for both codewords Similarly we can calculate for backward metric B by starting at the end of the trellis E x amp le:prob lem Algorithm Initialize the forward and backward metrics α k C ompute the brance metrics µ k,i,j C ompute the forward metrics α k,i C ompute the backward metrics β k,j C ompute APP L -values Lb optional C ompute hard decisions Example:MAP equalizer Use MAP bit estimation for estimating the transmitted bits if the the channel is h ch 1 δ +.3 δ1. T he received signal is y rec [1.3,.1, 1, 1.4,.9 ] T he input is a sequence of binary bits b modulated as x T he E bn 2d B E stimate the most likely transmitted bits Notice that we are using the same values as in the ex ample about V iterbi equalizer.

9 Example:S olu tion Metric assignment Metric is calculated based on the received value and the value in trellis branch. 1 1 h ch 2 2σN 2 2y k f x k, s k, h ch 1 2σN 2 f x k, s k, h ch 2 where f x k, s k, h ch h 1 x k + h 2 x k h L x k L 1 is the noiseless mean value of the corresponding trellis branch. This metric is normilized by the channel total power 1 h ch 2 T rellis Metric on each branch Mean value on each branch Metric in each trellis branch B ack w ard calculation Example:, Bacward trellis start from the end of the trellis and calcualate the sum of the probabilitites Init the last stage probability to 1 in domain to : β 5, 1 B y using the state probabilities k + 1 and the probabilities on the transitions calculate the probabilities for the states k β k,i j eµ k,i,j +β k+1,j If the values are in the domain for the sum you have to convert them back to the probability domain. 2 Normilize needed for the numerical stability β k,# β k,# max β k,# Example:, Bacward trellis Stage Stage1 Stage2 Stage3 Stage4 Stage5 β, 6.64 β 1, 4.24 β 2, 8.8 β 3, 3.1 β 4, β stage,state β k,i j eµ k+1,i,j +β k+1,j β 2,1 β 3,1 β 4,1 β 5,

10 Example: : Stage 5 to 4 Example: : Stage 5 to 4 β, β 1, β 2, β 3, β 4, β, β 1, β 2, β 3, β 2,1 β 3,1 β 4,1 β 2,1 β 3, The new state probabilities β 4, µ 5,, + β 5,.8 + β 4,1 µ 5,1, + β 5, β 4,.8.8, β 4, The new state probabilities β 4, µ 5,, + β 5,.8 + β 4,1 µ 5,1, + β 5, β 4,.8.8, β 4, Example: : Stage 5 to 4 Example: : Stage 4 to 3 β, β 1, β 2, β 3, β, β 1, β 2, β 2,1 β 3, β 2,1 β 3, The new state probabilities β 4, µ 5,, + β 5,.8 + β 4,1 µ 5,1, + β 5, β 4,.8.8, β 4, S ta tes b a ck w ard p ro b a b ilities β 3, lo g e µ3,,+β4, + e µ3,,1+β4,1 lo g e e β 3,1 lo g e µ3,1,+β4, + e µ3,1,1+β4,1 lo g e e β 4, , β 4,

11 E x amp le :S olu tion B ac k w ard c alc u lation Example: : Stage 4 to 3 Example: : Stage 4 to 3 β, β 1, β 2, 3.1 β, β 1, β 2, 2.53 β 2, β 2, States backward probabilities β 3, e µ3,,+β4, + e µ3,,1+β4,1 e e β 3,1 e µ3,1,+β4, + e µ3,1,1+β4,1 e e β 4, , β 4, States backward probabilities β 3, e µ3,,+β4, + e µ3,,1+β4,1 e e β 3,1 e µ3,1,+β4, + e µ3,1,1+β4,1 e e β 4, , β 4, Example: : Stage 3 to 2 Example: : Stage 3 to 2 β, β 1, β, β 1, β 2, States backward probabilities β 2, e µ 3,,+β 3, + e µ 3,,1+β 3,1 e e β 2,1 e µ 3,1,+β 3, + e µ 3,1,1β 3,1 e e β 2,.91.91, β 2, States backward probabilities β 2, e µ 3,,+β 3, + e µ 3,,1+β 3,1 e e β 2,1 e µ 3,1,+β 3, + e µ 3,1,1β 3,1 e e β 2,.91.91, β 2,

12 Example: : Stage 3 to 2 Example: : Stage 3 to 2 β, β 1, β, States backward probabilities β 2, e µ 3,,+β 3, + e µ 3,,1+β 3,1 e e β 2,1 e µ 3,1,+β 3, + e µ 3,1,1β 3,1 e e β 2,.91.91, β 2, States backward probabilities β 1, e µ 2,,+β 2, + e µ 2,,1+β 2,1 e e e µ 2,1,β 2, + e µ 2,1,1+β 2,1 e e β 1,.88.88, Example: : Stage 3 to 2 Example: : Stage 3 to 2 β,.88 β, States backward probabilities β 1, e µ 2,,+β 2, + e µ 2,,1+β 2,1 e e e µ 2,1,β 2, + e µ 2,1,1+β 2,1 e e β 1,.88.88, States backward probabilities β 1, e µ 2,,+β 2, + e µ 2,,1+β 2,1 e e e µ 2,1,β 2, + e µ 2,1,1+β 2,1 e e β 1,.88.88,

13 F orward calculation Example: start from the beginning of the trellis and calcualate the sum of the probabilitites Init the probability of the fi rst state at the stage to 1 in domain to : α, 1 B y using the state probabilities k and the probabilities on the transitions calculate the probabilities for the states k + 1 α k,i j eµ k,i,j +α k 1,j If the values are in the domain for the sum you have to conv ert them back to the probability domain. 2 N ormiliz e needed for the numerical stability α k,# α k,# max α k,# Example:, Forward trellis Stage Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 α, 6.64 α 1, 4.24 α 2, 8.8 α 3, 3.1 α 4, α 1,1 α stage,state α k,i j eµ k,i,j +α k 1,j α 2,1 α 3,1 α 5, Example: : Stage to 1 Example: : Stage to 1 α 1, α 2, α 3, α 4, α 2, α 3, α 4, α 1,1 α 2,1 α 3, α 2,1 α 3,1 1 T he new state probabilities α 1, µ 1,, + α, 6.64 α 1,1 µ 1,1, + α, α 1, , α 1, The new state probabilities α 1, µ 1,, + α, 6.64 α 1,1 µ 1,1, + α, α 1, , α 1,

14 Example: : Stage to 1 Example: : Stage 1 to α 2, α 3, α 4, α 3, α 4, 1.42 α 2,1 α 3,1 α 2,1 α 3,1 1 The new state probabilities α 1, µ 1,, + α, 6.64 α 1,1 µ 1,1, + α, α 1, , α 1, α 2, e µ2,,+α1, + e µ2,,1+α1,1 e e α 2,1 e µ2,1,+α1, + e µ2,1,1+α1,1 e e α 2, , α 2, Example: : Stage 1 to 2 Example: : Stage 1 to α 3, α 4, 9.17 α 3, α 4, α 3, α 3,1 1 1 α 2, e µ2,,+α1, + e µ2,,1+α1,1 e e α 2,1 e µ2,1,+α1, + e µ2,1,1+α1,1 e e α 2, , α 2, α 2, lo g e µ2,,+α1, + e µ2,,1+α1,1 lo g e e α 2,1 lo g e µ2,1,+α1, + e µ2,1,1+α1,1 lo g e e α 2, , α 2,

15 E x amp le :S olu tion F orw ard calcu lation Example: : Stage 2 to 3 Example: : Stage 2 to α 4, α 4, 1.28 α 3, α 3, e µ3,,+α2, + e µ3,,1+α2,1 e e α 3,1 e µ3,1,+α2, + e µ3,1,1+α2,1 e e α 3, , α 3, α 3, e µ3,,+α2, + e µ3,,1+α2,1 e e α 3,1 e µ3,1,+α2, + e µ3,1,1+α2,1 e e α 3, , α 3, Example: : Stage 2 to 3 Example: : α 4, α 3, e µ3,,+α2, + e µ3,,1+α2,1 e e α 3,1 e µ3,1,+α2, + e µ3,1,1+α2,1 e e α 3, , α 3,

16 Bite aposteriori Pb The bit aposteriori probability is calculated by combing forw ard probability is states k back w ard probabilty in states k + 1 and transitions probabilities. py k x k 1,x py k x k,x e α k,i +µ k,i,j +β k+1,j x k 1 e α k,i +µ k,i,j +β k+1,j x k Example: a-posteriori for the bits: bit 1 α, µ 1,, β 1, µ 1,,1 e α, +µ 1,,1 + e α,+µ 1,, +β 1, e e Example: a-posteriori for the bits: bit 1 Example: a-posteriori for the bits: bit α 2, µ 2,, µ 2,1, µ 2,,1 β 2, 2.8 α 2,1 µ 1,1,1 β 2,1 e α, +µ 1,,1 + e α,+µ 1,, +β 1, e e e α 1, +µ 2,,1 +β 2,1 + e α 1,1+µ 1,1,1 +β 2,1 e α 1,+µ 2,, +β 2, + e α 1,1+µ 2,1, +β 2, e e e e

17 Example: a-posteriori for the bits: bit 2 Example: a-posteriori for the bits: bit α 2, µ 3,, µ 3,1, µ 3,,1 β 3, 2.7 α 2, µ 3,1,1 β 3,1 e α 1, +µ 2,,1 +β 2,1 + e α 1,1+µ 1,1,1 +β 2,1 e α 1,+µ 2,, +β 2, + e α 1,1+µ 2,1, +β 2, e e e e e α 2, +µ 3,,1 +β 3,1 + e α 2,1+µ 3,1,1 +β 3,1 e α 2,+µ 3,, +β 3, + e α 2,1+µ 3,1, +β 3, e e e e Example: a-posteriori for the bits: bit 3 Example: a-posteriori for the bits: bit α 3, µ 4,, µ 4,1, µ 4,,1 β 4, α 3,1 µ 4,1,1 β 4,1 e α 2, +µ 3,,1 +β 3,1 + e α 2,1+µ 3,1,1 +β 3,1 e α 2,+µ 3,, +β 3, + e α 2,1+µ 3,1, +β 3, e e e e e α 3, +µ 4,,1 +β 4,1 + e α 3,1+µ 4,1,1 +β 4,1 e α 3,+µ 4,, +β 4, + e α 3,1+µ 4,1, +β 4, e e e e

18 Example: a-posteriori for the bits: bit e α 3, +µ 4,,1 +β 4,1 + e α 3,1+µ 4,1,1 +β 4,1 e α 3,+µ 4,, +β 4, + e α 3,1+µ 4,1, +β 4, e e e e

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications: UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EECS 150 Fall 2001 Prof. Subramanian Midterm II 1) You are implementing an 4:1 Multiplexer that has the following specifications:

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα