Εισαγωγή στην πυρηνοποίηση. Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης."

Transcript

1 Εισαγωγή στην πυρηνοποίηση. Αντικείμενο Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Ομογενής πυρηνοποίηση: αυθόρμητος σχηματισμός στερεών πυρήνων κατά τη διάρκεια της ψύξης τήγματος από την T m. Ο μαθηματικός φορμαλισμός της ετερογενούς πυρηνοποίησης στηρίζεται σε αυτόν της ομογενούς. Το βιβλίο!!!!: Phase transformations in metals and alloys D.A. Porter & K.E. Easterling, an Nostrand Reihold UK (υπάρχει και η έκδοση) Γιατί μας ενδιαφέρει η ετερογενής πυρηνοποίση? Ευρύτατο φάσμα τεχνολογικών εφαρμογών Διεπιφάνειες υγρού/στερεού (π.χ. ανάπτυξη υλικών όγκου ή λεπτών υμενίων). Διεπιφάνειες στερεού/ατμού (π.χ. χημική εναπόθεση αμών) Διεπιφάνειες διαφόρων φάσεων στα στερεά Μετανάστευση διεπιφανειών και ανάπτυξη νέων φάσεων. Στόχος Εισαγωγή στις έννοιες του κρίσιμου πυρήνα με ακτίνα r* και της κρίσιμης ενέργειας G* για σχηματισμό πυρήνων. Υπολογισμός των r* και ΔG* συναρτήσει της θερμοκρασίας (Τ m -ΔΤ όπου το ΔΤ ονομάζεται undercooling). 19/11/2010 Page 1 of 15

2 Απαραίτητες έννοιες Ελεύθερη ενέργεια G Εντροπία S Ενθαλπία H Θερμοδυναμική ισορροπία Φάση συστήματος ενός Μέρος ενός συστήματος που έχει ομογενείς ιδιότητες & χημική σύσταση. Μία φάση μπορεί να αποτελείται από περισσότερα του ενός συστατικά που σχηματίζουν στερεό διάλυμα, π.χ. κράματα Cu-Ni. Οι αλλαγές φάσης (υπό σταθ. P & ) οδηγούνται από την χαμηλότερη ελεύθερη ενέργεια κατά Gibbs της τελικής κατάστασης. G=H-TS, όπου Η=ενθαλπία & S= εντροπία G : μέτρο της σχετικής σταθερότητας του συστήματος & της ικανότητας του να παράγει έργο. S=k lnω όπου ω το πλήθος των διακριτών διευθετήσεων των ατόμων/μορίων που συνιστούν τη φάση. S : μέτρο της αταξίας στο σύστημα Η=E+P : μέτρο του θερμικού περιεχομένου του συστήματος (στα στερεά Η Ε). E kin E E dyn η εσωτερική ενέργεια του συστήματος 19/11/2010 Page 2 of 15

3 Ε kin Ε dyn Στερεά & υγρά: δονήσεις ατόμων Υγρά & αέρια: μετατόπιση & περιστροφή ατόμων & μορίων. Αλληλεπιδράσεις & δεσμοί μεταξύ ατόμων. Σύστημα σε θερμοδυναμική ισορροπία η οδηγός δύναμη ΔG για αντίδραση (χημική ή αλλαγή φάσης) είναι ΔG=0 σύστημα σταθερό για t Κριτήριο για αλλαγή φάσης: ΔG=G fin -G ini <0. Η ταχύτητα αλλαγής φάσης καθορίζεται από την κινητική της αντίδρασης. Χαμηλές Τ: σταθερή η στερεά φάση όπου οι δεσμοί είναι σταθεροί και Ε int Ε min. Υψηλές Τ : κυριαρχεί ο όρος TS σταθερές οι L και φάσεις. Υψηλή P : ευνοούνται οι φάσεις με μικρό όγκο. Intensive ιδιότητες: ανεξάρτητες του μεγέθους του συστήματος, π.χ. P, T. Extensive ιδιότητες: ανάλογες της ποσότητας του υλικού στο σύστημα π.χ., E, H, S, G (μονάδες/mole) 19/11/2010 Page of 15

4 Υπολογισμός της G(T) σε σύστημα ενός συστατικού. Για ένα σύστημα με σταθερή μάζα και χημική σύσταση μεταβολή των T &P): dg (T) = - SdT + dp (ελεύθερη Μεταβολή των C P, H & S versus T Ενθαλπία αναφοράς: Η(Τ=298Κ)=0 & S(T=0)=0. C p H T P H T C P dt 298 S T C T 0 P dt G Για σταθερή πίεση : T με ταχύτητα/κλίση S. P S αυξανομένης της Τ η G ελαττώνεται Μεταβολή της G vs T 19/11/2010 Page 4 of 15

5 Μεταβολή των H & G vs T για την L & S φάση ενός μετάλλου. L είναι η λανθάνουσα θερμότητα τήξης. Για Τ=Τ m, G S =G L συνυπάρχουν οι 2 φάσεις (σημείο e). Σε Τ=Τ m η C P. Η οδηγός δύναμη για στερεοποίηση. Υπολογισμός της ΔG=f(ΔΤ) Ψύξη μεταλλικού τήγματος σε Τ=Τ m -ΔΤ μείωση της G κατά ΔG μέσω σχηματισμού στερεάς φάσης. Μεταβολή των G S & G L vs T. Undercooling κατά ΔΤ στερεοποίηση και μείωση της ελεύθερης ενέργειας κατά G T L T m Aποδεικνύεται ότι η οδηγός δύναμη για την ανάπτυξη στερεού πυρήνα από το τήγμα είναι G L T m 19/11/2010 Page 5 of 15

6 Απόδειξη Ισχύει :G L =H L -TS L & G S =H S -TS S Σε Τ=T m : G L =G S =>ΔG=ΔΗ-T m ΔS=0 S H L T m T m, όπου L η λανθάνουσα θερμότητα της τήξης. Για μικρό undercooling ΔΤ : => CL S P C P => ΔΗ & ΔS είναι ανεξάρτητες της Τ ΔG=ΔH-TΔS L ΔS T m L ΔG=ΔH-T Tm T m T L Tm G L T m Ομογενής πυρηνοποίηση H στερεοποίηση (solidification) είναι μετασχηματισμός φάσης από μία μηκρυσταλλική σε μία κρυσταλλική κατάσταση. Εκτενείς εφαρμογές: βιομηχανία μετάλλου & μικροηλεκτρονική. Η στερεοποίηση αρχίζει με σχηματισμό μικρών στερεών πυρήνων στο τήγμα ομογενής ή στα τοιχώματα του αντιδραστήρα ετερογενής. Under- ή supercooling : Τήγμα σε Τ<Τ m Παράδειγμα: καθαρό Ni μπορεί να διατηρηθεί επ άπειρον σε Τ=Τ m - 250K. 19/11/2010 Page 6 of 15

7 Στην πράξη: η ετερογενής στερεοποίηση αρχίζει όταν ΤΤ m -1Κ Η ψύξη τήγματος σε Τ<Τ m αυθόρμητη στερεοποίηση. Αποδεικνύεται ότι: H οδηγός δύναμη για στερεοποίηση ΔG=G L -G S = S G A Που έχει 2 συνιστώσες: Μία θετική λόγω δημιουργίας διεπιφάνειας S/L (γ το έργο που πρέπει να καταβληθεί για να δημιουργηθεί μοναδιαία διεπιφάνεια υπό Τ=σταθ, P=σταθ). Μία αρνητική λόγω της μικρότερης ελεύθερης ενέργειας του στερεού. Απόδειξη της ΔG=G L -G S = S G A Σχηματισμός σφαιρικού πυρήνα λόγω ομογενούς πυρηνοποίησης G 2 = S L SG LG A G 1 = GL L S Όπου γ το έργο που πρέπει να καταβληθεί για να δημιουργηθεί μοναδιαία διεπιφάνεια υπό Τ=σταθ, P=σταθ. Σχηματισμός πυρήνα ΔG=G 2 -G 1 = S G A όπου G GL GS 19/11/2010 Page 7 of 15

8 Για δεδομένο undercooling ΔΤ οδηγός δύναμη για solidification: L G m για Τ<Τ m η ΔG >0 μείωση της ΔG που έχει 2 συνιστώσες: Μία θετική λόγω δημιουργίας διεπιφάνειας S/L στερεού. Μία αρνητική λόγω της μικρότερης ελεύθερης ενέργειας του Μεταβολή της G λόγω ομογενούς πυρηνοποίησης σφαίρας με ακτίνα r. Υπόθεση: η γ είναι ισότροπη η σχήμα του πυρήνα και για σφαίρα ακτίνας r*: S G ελαχιστοποιείται για σφαιρικό G r 4 rg 4r 2 Εάν r < r* (embryos or clusters) το σύστημα μειώνει την G με διάλυση των στερεών συσσωματωμάτων. Εάν r>r* (πυρήνες) το σύστημα μειώνει την G με ανάπτυξη του στερεού. Εάν r = r* dg=0 ο κρίσιμος πυρήνας είναι πρακτικά σε ασταθή ισορροπία με το περιβάλλον τήγμα. 19/11/2010 Page 8 of 15

9 Υπολογισμός της * r homo H r = r * αντιστοιχεί σε d(δgr)/dr=0 Αποδεικνύεται ότι: 2 T 1 r* m hom o δηλαδή αυξανομένου του ΔΤ L μειώνεται το μέγεθος των πυρήνων που είναι κρίσιμοι ή υπερ-κρίσιμοι, δηλ. σταθεροί. Απόδειξη: Σχηματισμός cluster με r=r * 4 G 2 r r G 4r H r = r * αντιστοιχεί σε d(δgr)/dr=0 Επομένως: d G( r ) dr 4r2G 8r 0 r* 2 G Όμως δείξαμε ότι: G L m Επομένως: r* hom o 2 Tm 1 L Υπολογισμός της * G Αποδεικνύεται ότι: G * 16 L Tm δηλαδή τόσο η r* όσο και η ΔG* μειώνονται όταν αυξάνει το ΔΤ. 19/11/2010 Page 9 of 15

10 Απόδειξη: Για r = r * : Αντικαθιστούμε: Όπως δείξαμε : G 4 2 G* r r* G 4r* 2 r* ΔG * = G L m 16 G 2 και επομένως G * 16 Tm 1 L 2 2 Υπολογισμός του αριθμού των clusters με ακτίνα r. Ο ρυθμός πυρηνοποίησης είναι : I n * όπου β η ταχύτητα με την οποία άτομα προστίθενται σε κρίσιμους πυρήνες & τους καθιστούν σταθερούς (atoms s -1 ) n* η steady-state συγκέντρωση κρίσιμων πυρήνων (πυρήνες m - ) Να σημειωθεί ότι: Η ολική ελεύθερη ενέργεια συστήματος που περιέχει υγρή φάση και n(r) clusters ακτίνας r δίδεται από τη σχέση: G = G L + n(r) ΔG(r) + ΔG mix, όπου ΔG mix η ελεύθερη ενέργεια μείξης των n clusters με Ν άτομα. Αποδεικνύεται ότι G( r ) n( r ) no exp όπου n kt o ο συνολικός αριθμός ατόμων στο σύστημα και ΔG(r) η αύξηση της G λόγω της ύπαρξης των clusters. 19/11/2010 Page 10 of 15

11 Απόδειξη Η ολική ελεύθερη ενέργεια συστήματος που περιέχει υγρή φάση και n(r) clusters ακτίνας r δίδεται από τη σχέση: G = G L + n(r) ΔG(r) + ΔG mix όπου ΔG mix η ελεύθερη ενέργεια μείξης των n clusters με Ν άτομα. Η μεταβολή της ενθαλπίας λόγω της μείξης είναι μικρή ΔG mix = - TS mix. όπου η TS mix εξαρτάται από τους δυνατούς συνδυασμούς n clusters με Ν δυνατές θέσεις πυρηνοποίησης : [(N+n(r))ln(N+n(r)) - N ln(n) - n(r) ln(n(r))] Και επομένως : G = G L + n(r) ΔG(r) kt [(N+n(r))ln(N+n(r))-N ln(n)-n(r) ln(n(r))] dg Το σύστημα είναι σε ισορροπία όταν 0 dn( r ) dg dn( r ) ΔG(r) - kt[ln(n+n(r)) - ln(n(r))] = 0 Ισχύει ότι N>>n(r) N+n(r) N ΔG(r)=kT[ln(N) - ln(n(r))] n( r ) no exp G( r kt ) όπου n o : ο συνολικός αριθμός ατόμων στο σύστημα και ΔG r η αύξηση της G λόγω της ύπαρξης των clusters. 19/11/2010 Page 11 of 15

12 Παρατηρήσεις n r G r no exp kt Για Τ>Τ m ισχύει r Για Τ<Τ m ισχύει για rr m (όταν r>r m ο πυρήνας δεν ανήκει στο τήγμα). Η πιθανότητα να υπάρχει cluster με ακτίνα r μειώνεται εκθετικά αυξανομένου του μεγέθους του cluster. Οπως αποδείξαμε : G r n(r) no exp kt Η G(r) αυξάνεται ραγδαία με το r Η πιθανότητα να υπάρχει cluster ακτίνας r μειώνεται εκθετικά αυξανομένου του r. Παράδειγμα: 1mm Cu at T m περιέχει clusters με 10 άτομα (r=0.nm) 10 clusters με 100 άτομα (r=0.6nm) Μεταβολή των r 1 hom * o και r max με το βαθμό undercooling.. Για undercooling ΔT N η πιθανότητα ορισμένοι πυρήνες να γίνουν κρίσιμοι αυξάνει Για μικρό ΔΤ η r* είναι πολύ μεγάλη και η πιθανότητα να βρεθεί σταθερός πυρήνας 0 19/11/2010 Page 12 of 15

13 Αυξανομένου του ΔΤ η r* μειώνεται. Για ΔΤ Ν η πιθανότητα μερικά clusters να φθάσουν την ακτίνα r* και να γίνουν σταθεροί πυρήνες είναι σημαντική. Ο ρυθμός της ομογενούς πυρηνοποίησης N homo. Πόσο γρήγορα εμφανίζονται στερεοί πυρήνες σε ένα τήγμα για δεδομένο undercooling? Ο ρυθμός της ομογενούς πυρηνοποίησης είναι: N * hom o foc πυρήνες m - s -1 όπου C* είναι ο αριθμός των clusters που έχουν το κρίσιμο μέγεθος C* : G C* C o o exp hom clusters /m kt C o : άτομα /m στο τήγμα (10 29 άτομα m - ). f o : η συχνότητα με την οποία προστίθεται ένα άτομο στο cluster καθιστώντας το σταθερό πυρήνα. Άρα ο ρυθμός ομογενούς πυρηνοποίησης θα είναι: G N f C f C exp hom o hom o o * o o πυρήνες m - s -1 kt Η f o (10 11 ) εξαρτάται από τη συχνότητα δόνησης των ατόμων, την ενέργεια ενεργοποίησης για τη διάχυση στο τήγμα και την επιφάνεια του κρίσιμου πυρήνα. C o cm - Για τυπικό ρυθμό πυρηνοποίησης N homo =1cm - s -1 ΔG * 78kT 19/11/2010 Page 1 of 15

14 Αντικαθιστώντας για το ΔG * : G * 16 Tm 1 L 2 2 Nhom o foco exp A 2 T 16 Tm όπου A, ασθενής συνάρτηση της Τ. Ο όρος (ΔΤ) 2 L kt 2 ισχυρότατη θερμοκρασιακή εξάρτηση της N homo. Μεταβολή του Ν homo vs Τ. ΔΤ Ν είναι το κρίσιμο undercooling για ομογενή πυρηνοποίση. Μικρή μεταβολή του ΔΤ γύρω από την ΔΤ Ν μεταβολή της Ν homo κατά πολλές τάξεις μεγέθους. Τυπική τιμή του ΔΤ Ν στα μέταλλα είναι 0,2Τ m (200K). 19/11/2010 Page 14 of 15

15 Διεπιφάνειες & ελεύθερη ενέργεια διεπιφανειών. Είδη διεπιφανειών στα στερεά Ελεύθερη επιφάνεια κρυστάλλου Grain boundaries όρια κρυσταλλιτών Διαχωρίζει κρυστάλλους που έχουν την ίδια χημική σύσταση και ίδια δομή αλλά διαφορετικό προσανατολισμό. Διεπιφάνεια μεταξύ διαφορετικών φάσεων Διαχωρίζει 2 φάσεις με διαφορετική κρυσταλλική δομή ή/και χημική σύσταση και περιλαμβάνει τις διεπιφάνειες S/L. Δημιουργία διεπιφάνειας εμβαδού Α => αύξηση της G : G=G ο +Αγ όπου το G o σύστημα χωρίς διεπιφάνεια γ το έργο που πρέπει να καταβληθεί για να δημιουργηθεί μοναδιαία διεπιφάνεια υπό Τ=σταθ, P=σταθ. Στα υγρά η γ είναι ανεξάρτητη της επιφάνειας F = γ. Δηλ. επιφάνεια με ελεύθερη ενέργεια γ (Jm -2 ) ασκεί επιφανειακή τάση γ (Nm -1 ) Στα στερεά δεν ισχύει γενικά (dγ/dα)=0 και F = γ για Τ=Τ m. 19/11/2010 Page 15 of 15

Mετασχηματισμοί διάχυσης στα στερεά / Πυρηνοποίηση στην στερεά κατάσταση. Ομογενής πυρηνοποίηση στα στερεά/μετασχηματισμοί διάχυσης.

Mετασχηματισμοί διάχυσης στα στερεά / Πυρηνοποίηση στην στερεά κατάσταση. Ομογενής πυρηνοποίηση στα στερεά/μετασχηματισμοί διάχυσης. Mετασχηματισμοί διάχυσης στα στερεά / Πυρηνοποίηση στην στερεά κατάσταση Ομογενής πυρηνοποίηση στα στερεά/μετασχηματισμοί διάχυσης. Το πρόβλημα: Ιζηματοποίηση φάσης β (πλούσια στο στοιχείο Β) από ένα υπέρκορο

Διαβάστε περισσότερα

Πυρηνοποίηση και διεπιφάνειες Διεπιφάνειες στερεού/ατμού & στερεού/τήγματος

Πυρηνοποίηση και διεπιφάνειες Διεπιφάνειες στερεού/ατμού & στερεού/τήγματος Πυρηνοποίηση και διεπιφάνειες Διεπιφάνειες στερεού/ατμού & στερεού/τήγματος Η ανάπτυξη πυρήνων προάγεται σε διεπιφάνειες στερεού/ατμού, στερεού/υγρού ή μεταξύ διαφορετικών φάσεων σε στερεά. Οι διεπιφάνειες

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ

Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ Για ιδανικά διαλύματα : μ i = μ i lnx i x= γ=1 Για αραιά διαλύματα : x 1 : μ i = μ i lnx i χ μ i = μ i φ lnx i όπου μ i φ =μ i χ Χημική Ισορροπία λ Από σελ. 7 Χημική Ισορροπία όταν ν i μ i = (T,P σταθερό)

Διαβάστε περισσότερα

I. Χρήσιµες Έννοιες της Θερµοδυναµικής

I. Χρήσιµες Έννοιες της Θερµοδυναµικής I. Χρήσιµες Έννοιες της Θερµοδυναµικής I.1 Ισορροπία Η µελέτη των αλλαγών φάσης περιγράφει τις µεταβολές που γίνονται σε ένα δεδοµένο σύστηµα, π.χ. σε ένα κράµα, όπου υπάρχουν µία ή περισσότερες φάσεις.

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006 ΘΕΡΜΟΔΥΝΑΜΙΚΗ Χαροκόπειο Πανεπιστήμιο 11 Μαΐου 2006 Κλάδοι της Θερμοδυναμικής Χημική Θερμοδυναμική: Μελετά τις μετατροπές ενέργειας που συνοδεύουν φυσικά ή χημικά φαινόμενα Θερμοχημεία: Κλάδος της Χημικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Περιληπτική θεωρητική εισαγωγή α) Τεχνική zchralski Η πιο συχνά χρησιμοποιούμενη τεχνική ανάπτυξης μονοκρυστάλλων πυριτίου (i), αρίστης ποιότητας,

Διαβάστε περισσότερα

ΣΤΕΡΕΟΠΟΙΗΣΗ 1. Πυρηνοποίηση ελεύθερη ενέργεια όγκου Gv ελέυθερη επιφανειακή ενέργεια σ

ΣΤΕΡΕΟΠΟΙΗΣΗ 1. Πυρηνοποίηση ελεύθερη ενέργεια όγκου Gv ελέυθερη επιφανειακή ενέργεια σ ΣΤΕΡΕΟΠΟΙΗΣΗ 1. Πυρηνοποίηση Κατά τη διάρκεια της στερεοποίησης συµβαίνει µια διευθέτηση ατόµων στην αρχή σε µικρό χώρο λίγων ατόµων και µετά σε ακόµη µεγαλύτερο καταλήγοντας στη κρυσταλική δοµή. Η πυρηνοποίηση

Διαβάστε περισσότερα

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ ΜΑΘΗΜΑ: «ΓΕΝΙΚΗ ΧΗΜΕΙΑ» Α ΕΞΑΜΗΝΟ (ΧΕΙΜΕΡΙΝΟ) Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Cmmns. Για

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 3-4 (Α. Χημική Θερμοδυναμική) η Άσκηση mol ιδανικού αερίου με c.88 J mol - K - και c p 9. J mol - K - βρίσκονται σε αρχική πίεση p =.3 kpa και θερμοκρασία Τ =

Διαβάστε περισσότερα

Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης.

Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης. Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης. Ανεξάρτητα συστατικά ή συνιστώσες ενός ετερογενούς συστήµατος σε ισορροπία

Διαβάστε περισσότερα

Εντροπία Ελεύθερη Ενέργεια

Εντροπία Ελεύθερη Ενέργεια Μάθημα Εντροπία Ελεύθερη Ενέργεια Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Αυθόρμητες χημικές αντιδράσεις Ηαντίδρασηοξείδωσηςενόςμετάλλουμπορείναγραφτείστη γενική της μορφή

Διαβάστε περισσότερα

ΑΚΤΙΝΟΒΟΛΙΑ. Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ. Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα

ΑΚΤΙΝΟΒΟΛΙΑ. Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ. Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα ΑΚΤΙΝΟΒΟΛΙΑ Μεταφορά ενέργειας (με φωτόνια ή ηλεκτρομαγνητικά κύματα) Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα Φασματικές περιοχές στο σύστημα

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 3: Στερεά διαλύματα και ενδομεταλλικές ενώσεις. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 3: Στερεά διαλύματα και ενδομεταλλικές ενώσεις. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 3: Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το [1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής

Διαβάστε περισσότερα

Η Δομή των Μετάλλων. Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής

Η Δομή των Μετάλλων. Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής Η Δομή των Μετάλλων Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής Τρισδιάστατο Πλέγμα Οι κυψελίδες των 14 πλεγμάτων Bravais (1) απλό τρικλινές, (2) απλό μονοκλινές, (3) κεντροβασικό μονοκλινές, (4) απλό ορθορομβικό,

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η ανάπτυξη μαθηματικών

Διαβάστε περισσότερα

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 4: Θερμοδυναμικά δεδομένα. Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 4: Θερμοδυναμικά δεδομένα. Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας ΥΔΡΟΧΗΜΕΙΑ Ενότητα 4: Θερμοδυναμικά δεδομένα Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας Σκοποί ενότητας Εισαγωγικές έννοιες της Θερμοδυναμικής Κατανόηση των εννοιών της εντροπίας, ενθαλπίας

Διαβάστε περισσότερα

Χημικές Διεργασίες: Εισαγωγή

Χημικές Διεργασίες: Εισαγωγή : Εισαγωγή Ορολογία Μοναδιαίες Διεργασίες ( Unit Processes ) - Οξείδωση - Υδρογόνωση - Αφυδρογόνωση - Πυρόλυση - Ενυδάτωση κλπ Ορολογία Μοναδιαίες Διεργασίες ( Unit Processes ) - Οξείδωση - Υδρογόνωση

Διαβάστε περισσότερα

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ 1 ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ Προβλήματα μεταφοράς θερμότητας παρουσιάζονται σε κάθε βήμα του μηχανικού της χημικής βιομηχανίας. Ο υπολογισμός των θερμικών απωλειών, η εξοικονόμηση ενέργειας και ο σχεδιασμός

Διαβάστε περισσότερα

4. Θερμοδυναμική κραμάτων και διαγράμματα ισορροπίας των φάσεων

4. Θερμοδυναμική κραμάτων και διαγράμματα ισορροπίας των φάσεων 4. Θερμοδυναμική κραμάτων και διαγράμματα ισορροπίας των φάσεων ΠΕΡΙΛΗΨΗ Ο σχηματισμός της μικροδομής των κραμάτων διέπεται από την θερμοδυναμική και την κινητική. Η θερμοδυναμική καθορίζει το αν θα σχηματιστεί

Διαβάστε περισσότερα

ΕΦΕΛΚΥΣΜΟΣ ΚΡΑΜΑΤΩΝ ΜΕ ΜΝΗΜΗΣ ΣΧΗΜΑΤΟΣ

ΕΦΕΛΚΥΣΜΟΣ ΚΡΑΜΑΤΩΝ ΜΕ ΜΝΗΜΗΣ ΣΧΗΜΑΤΟΣ ΕΦΕΛΚΥΣΜΟΣ ΚΡΑΜΑΤΩΝ ΜΕ ΜΝΗΜΗΣ ΣΧΗΜΑΤΟΣ Το φαινόµενο της µνήµης σχήµατος συνδέεται µε τη δυνατότητα συγκεκριµένων υλικών να «θυµούνται» το αρχικό τους σχήµα ακόµα και µετά από εκτεταµένες παραµορφώσεις

Διαβάστε περισσότερα

Ελεύθερη ενέργεια. Ελεύθερη ενέργεια Gibbs. Αποτελείται από δύο όρους: την ενθαλπία H και την εντροπία S.

Ελεύθερη ενέργεια. Ελεύθερη ενέργεια Gibbs. Αποτελείται από δύο όρους: την ενθαλπία H και την εντροπία S. Κεφάλαιο 5: Θερµοδυναµικές και κινητικές έννοιες Οι µεταβολές στα στερεά άρα και στα κεραµικά, κυρίως αυτές που προέρχονται από θέρµανση ή ψύξη, προκύπτουν επειδή οδηγούν σε µείωση της ελεύθερης ενέργειας

Διαβάστε περισσότερα

Τα αρχικά στάδια της επιταξιακής ανάπτυξης

Τα αρχικά στάδια της επιταξιακής ανάπτυξης Τα αρχικά στάδια της επιταξιακής ανάπτυξης Η κύριες διαφορές μεταξύ της ανάπτυξης από το τήγμα και της επιταξιακής ανάπτυξης προκύπτουν από την παρουσία του υποστρώματος και ειδικότερα τις εξής παραμέτρους:

Διαβάστε περισσότερα

ΕΝΤΑΣΗ (ή λαμπρότητα - radiance)

ΕΝΤΑΣΗ (ή λαμπρότητα - radiance) ΕΝΤΑΣΗ (ή αμπρότητα - radiance) Ακτινοβοούμενη ενέργεια σε καθορισμένη διεύθυνση ανά μονάδα χρόνου, ανά μονάδα εύρους μήκους κύματος (ή συχνότητας) ανά μονάδα στερεάς γωνίας και ανά μονάδα επιφάνειας κάθετης

Διαβάστε περισσότερα

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε:

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε: ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ 5-6 (Α. Χημική Θερμοδυναμική) η Άσκηση Η αντίδραση CO(g) + H O(g) CO (g) + H (g) γίνεται σε θερμοκρασία 3 Κ. Να υπολογιστεί το κλάσμα των ατμών του

Διαβάστε περισσότερα

Τα αρχικά στάδια της επιταξιακής ανάπτυξης

Τα αρχικά στάδια της επιταξιακής ανάπτυξης Τα αρχικά στάδια της επιταξιακής ανάπτυξης 1 Bulk versus epitaxial growth Η κύριες διαφορές μεταξύ της ανάπτυξης από το τήγμα και της επιταξιακής ανάπτυξης προκύπτουν από την παρουσία του υποστρώματος

Διαβάστε περισσότερα

du đ Q đw đ E m (1) και στον 2 ο Νόμο, (2) Συνήθως χρησιμοποιείται η γνωστή από τη Μηχανική

du đ Q đw đ E m (1) και στον 2 ο Νόμο, (2) Συνήθως χρησιμοποιείται η γνωστή από τη Μηχανική KΕΦΑΛΑΙΟ 3 Aπό τις διαλέξεις το τελευταίο μέρος της δίωρης της 17/10 (4 ο VIDEO) και όλη η διάλεξη της 18/10 (5 ο VIDEO) αφορούν στο τρίτο κεφάλαιο με περισσότερες λεπτομέρειες και διευκρινήσεις από τα

Διαβάστε περισσότερα

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΧΗΜΕΙΑ

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΧΗΜΕΙΑ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΧΗΜΕΙΑ Ενότητα 1: Βασικές Έννοιες, Συχνότητα κατανομής των χημικών στοιχείων Χαραλαμπίδης Γεώργιος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

Διαδικασίες Υψηλών Θερμοκρασιών

Διαδικασίες Υψηλών Θερμοκρασιών Διαδικασίες Υψηλών Θερμοκρασιών Θεματική Ενότητα 4: Διαδικασίες σε υψηλές θερμοκρασίες Τίτλος: Διάχυση Ονόματα Καθηγητών: Κακάλη Γλυκερία, Ρηγοπούλου Βασιλεία Σχολή Χημικών Μηχανικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υ

ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υ ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υγρού Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. Πορώδης κόκκος τιτανίου. Χρήση ως καταλύτης αντιδράσεων.

ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. Πορώδης κόκκος τιτανίου. Χρήση ως καταλύτης αντιδράσεων. ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ Πορώδης κόκκος τιτανίου. Χρήση ως καταλύτης αντιδράσεων. Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015 Χημική κινητική Η χημική κινητική μελετά: Την ταχύτητα με την οποία εξελίσσεται μία

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ

ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ ΓENIKA Θερµική κατεργασία είναι σύνολο διεργασιών που περιλαµβάνει τη θέρµανση και ψύξη µεταλλικού προϊόντος σε στερεά κατάσταση και σε καθορισµένες θερµοκρασιακές και χρονικές συνθήκες.

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας,

Διαβάστε περισσότερα

Κεφάλαιο 3 ο. Χημική Κινητική. Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών. 35 panagiotisathanasopoulos.gr

Κεφάλαιο 3 ο. Χημική Κινητική. Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών. 35 panagiotisathanasopoulos.gr . Κεφάλαιο 3 ο Χημική Κινητική Χημικός, 35 Διδάκτωρ Πανεπιστημίου Πατρών Χημικός Διδάκτωρ Παν. Πατρών 36 Γενικα για τη χημικη κινητικη και τη χημικη Τι μελετά η Χημική Κινητική; Πως αντλεί τα δεδομένα

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ

ΜΕΛΕΤΗ ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ ΜΕΛΕΤΗ ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ 1. ΙΜΕΡΕΣ ΙΑΓΡΑΜΜΑ ΜΕ ΠΛΗΡΗ ΣΤΕΡΕΑ ΙΑΛΥΤΟΤΗΤΑ (Σχ. 1) Σχήµα1: ιµερές διάγραµµα µε πλήρη στερεά διαλυτότητα Μελετάται η απόψυξη διµερούς κράµατος Α-Β, το οποίο βρίσκεται

Διαβάστε περισσότερα

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών

Διαβάστε περισσότερα

Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες

Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες Σε πολλές χημικές αντιδράσεις, οι ταχύτητές τους επηρεάζονται από κάποια συστατικά τα οποία δεν είναι ούτε αντιδρώντα ούτε προϊόντα. Αυτά τα υλικά

Διαβάστε περισσότερα

Από τα Κουάρκ μέχρι το Σύμπαν Τελική Εξέταση 7/2/2014 A. 2. H βασική εξίσωση της Κοσμολογίας για ένα ομογενές και ισότροπο μέσο χωρίς όρια

Από τα Κουάρκ μέχρι το Σύμπαν Τελική Εξέταση 7/2/2014 A. 2. H βασική εξίσωση της Κοσμολογίας για ένα ομογενές και ισότροπο μέσο χωρίς όρια Από τα Κουάρκ μέχρι το Σύμπαν Τελική Εξέταση 704 A. Την εποχή της φωτοκρατίας η εξάρτηση του από το χρόνο είναι: t t t xp( H0t). H βασική εξίσωση της Κοσμολογίας για ένα ομογενές και ισότροπο μέσο χωρίς

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 15: Διαλύματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 15: Διαλύματα Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 15: Διαλύματα Αν. Καθηγητής Γεώργιος Μαρνέλλος e-mail: gmarnellos@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4)

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4) Μιχαήλ Π. Μιχαήλ ΚΕΦΑΛΑΙΟ 3o ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 1 3.1 Ερωτήσεις πολλαπλής επιλογής Στις ερωτήσεις 1-34 βάλτε σε ένα κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το αντικείµενο µελέτης της χηµικής

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. Δεν μπορούμε να κατασκευάσουμε το αεικίνητο.

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 13: Χημική κινητική

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 13: Χημική κινητική Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 13: Χημική κινητική Αν. Καθηγητής Γεώργιος Μαρνέλλος e-mail: gmarnellos@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Φυσικοχημεία για Βιολόγους. Εργ. Φυσικοχημείας. Τηλ

Φυσικοχημεία για Βιολόγους. Εργ. Φυσικοχημείας. Τηλ Ιωάννης Πούλιος, Καθηγητής Εργ. Φυσικοχημείας Α.Π.Θ. Τηλ. 2310 997785 poulios@chem.auth.gr http://photocatalysisgroup.web.auth.gr/ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΓΕΝΙΚΕΣ ΕΝΟΙΕΣ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΘΕΡΜΟΧΗΜΕΙΑ ΔΕΥΤΕΡΟ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. - Όλα τα σώματα που αρχικά ολισθαίνουν πάνω

Διαβάστε περισσότερα

Θερμότητα. Κ.-Α. Θ. Θωμά

Θερμότητα. Κ.-Α. Θ. Θωμά Θερμότητα Οι έννοιες της θερμότητας και της θερμοκρασίας Η θερμοκρασία είναι μέτρο της μέσης κινητικής κατάστασης των μορίων ή ατόμων ενός υλικού. Αν m είναι η μάζα ενός σωματίου τότε το παραπάνω εκφράζεται

Διαβάστε περισσότερα

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός υγρού µόνο από την επιφάνειά του, σε σταθερή

Διαβάστε περισσότερα

Σε ένα δάλ διάλυμα, η διαλυμένη ουσία διασπείρεται ομοιόμορφα σε όλη τη μάζα του διαλύτη

Σε ένα δάλ διάλυμα, η διαλυμένη ουσία διασπείρεται ομοιόμορφα σε όλη τη μάζα του διαλύτη Διαλύματα 1 Διαδικασία διάλυσης Σε ένα δάλ διάλυμα, η διαλυμένη ουσία διασπείρεται ομοιόμορφα σε όλη τη μάζα του διαλύτη 1. Τα μόρια του διαλύτη έλκονται από τα επιφανειακά ιόντα 2. Κάθε ιόν περιβάλλεται

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT ΕΝΤΡΟΠΙΑ-ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNO Η εντροπία είναι το φυσικό µέγεθος το οποίο εκφράζει ποσοτικά το βαθµό αταξίας µιας κατάστασης ενός θερµοδυναµικού συστήµατος. ΣΤΑΤΙΣΤΙΚΟΣ ΟΡΙΣΜΟΣ Η εντροπία

Διαβάστε περισσότερα

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια Χαρακτηριστικά Θερμοδυναμικών Νόμων 0 ος Νόμος Εισάγει την έννοια της θερμοκρασίας Αν Α Γ και Β Γ τότε Α Β, όπου : θερμική ισορροπία ος

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. Δεν μπορούμε να κατασκευάσουμε το αεικίνητο.

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο

Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο Μάθημα Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Αναγωγικά μέσα Πως μπορεί να απομακρυνθεί το O 2 (g) από

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Η Επιστήμη της Θερμοδυναμικής ασχολείται με την ποσότητα της θερμότητας που μεταφέρεται σε ένα κλειστό και απομονωμένο σύστημα από μια κατάσταση ισορροπίας σε μια άλλη

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

Μεταφορά Θερμότητας. Βρασμός και συμπύκνωση (boiling and condensation)

Μεταφορά Θερμότητας. Βρασμός και συμπύκνωση (boiling and condensation) ΜΜK 312 Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής γής MMK 312 1 Βρασμός και συμπύκνωση (boiing and condenion Όταν η θερμοκρασία ενός υγρού (σε συγκεκριμένη πίεση αυξάνεται μέχρι τη θερμοκρασία

Διαβάστε περισσότερα

1.1. Ιστορική Εξέλιξη των Αντιλήψεων για τα Άτομα Η Φύση του Φωτός. Τα Φάσματα των Στοιχείων Το ατομικό πρότυπο του Bohr...

1.1. Ιστορική Εξέλιξη των Αντιλήψεων για τα Άτομα Η Φύση του Φωτός. Τα Φάσματα των Στοιχείων Το ατομικό πρότυπο του Bohr... ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 15 1.1. Ιστορική Εξέλιξη των Αντιλήψεων για τα Άτομα... 19 1.2. Η Φύση του Φωτός. Τα Φάσματα των Στοιχείων... 20 1.2.1. Το ατομικό πρότυπο του Bohr... 23 1.3. Κυματομηχανική Θεώρηση...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ.

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. 2.1 Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΑΡΗΣ ΟΥΣΙΑΣ. Μια ουσία της οποίας η χημική σύσταση παραμένει σταθερή σε όλη της την έκταση ονομάζεται καθαρή ουσία. Δεν είναι υποχρεωτικό να

Διαβάστε περισσότερα

Δύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at

Δύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at Δύναμη F F=m*a kgm/s 2 1 kg*m/s 2 ~ 1 N 1 N ~ 10 5 dyn Ισχύς Ν = Έργο / χρόνος W = F*l 1 N*m = 1 Joule ( J ) N = W / t 1 J / s = 1 Watt ( W ) 1 1 kp*m / s 1 HP ~ 76 kp*m / s ~ 746 W 1 PS ~ 75 kp*m / s

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ

ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 004 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Στην

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 9: Θερμοδυναμική αερίων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 9: Θερμοδυναμική αερίων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 9: Θερμοδυναμική αερίων Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι ο ορισμός του ιδανικού αερίου με βάση το χημικό

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ

ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ ΓΕΝΙΚΟ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΔΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ Τ.Ε.Ι. ΠΕΙΡΑΙΑ Δρ Αθ. Ρούτουλας Καθηγητής ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ

Διαβάστε περισσότερα

Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε λ [10-9 -10-12 m] (ή 0,01-10Å) και ενέργεια φωτονίων kev.

Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε λ [10-9 -10-12 m] (ή 0,01-10Å) και ενέργεια φωτονίων kev. Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε λ [10-9 -10-12 m] (ή 0,01-10Å) και ενέργεια φωτονίων kev. To ορατό καταλαµβάνει ένα πολύ µικρό µέρος του ηλεκτροµαγνητικού φάσµατος: 1,6-3,2eV. Page 1

Διαβάστε περισσότερα

ΕΝΖΥΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΣΕ ΕΤΕΡΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ

ΕΝΖΥΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΣΕ ΕΤΕΡΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ ΕΝΖΥΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΣΕ ΕΤΕΡΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ ΚΙΝΗΤΙΚΗ ΕΝΖΥΜΩΝ ΣΕ ΔΙΑΛΥΜΑ ΕΠΕΝΕΡΓΟΥΝΤΩΝ ΣΕ ΑΔΙΑΛΥΤΑ ΥΠΟΣΤΡΩΜΑΤΑ το υπόστρωμα σε στερεά (αδιάλυτη) μορφή κλασσική περίπτωση: η υδρόλυση αδιάλυτων πολυμερών

Διαβάστε περισσότερα

Πετρογένεση Πυριγενών Πετρωμάτων & Οφιολιθικών Συμπλεγμάτων

Πετρογένεση Πυριγενών Πετρωμάτων & Οφιολιθικών Συμπλεγμάτων Πετρογένεση Πυριγενών Πετρωμάτων & Οφιολιθικών Συμπλεγμάτων ιαγράμματα φάσεων Βασικές αρχές Τα διαγράμματα φάσεων απεικονίζουν πεδία σταθερότητας των φάσεων που συμμετέχουν σε ένα σύστημα. Σύστημα είναι

Διαβάστε περισσότερα

ΧΗΜΙΚΟΙ ΔΕΣΜΟΙ. Να δίδουν τον ορισμό του χημικού δεσμού. Να γνωρίζουν τα είδη των δεσμών. Να εξηγούν το σχηματισμό του ιοντικού ομοιοπολικού δεσμού.

ΧΗΜΙΚΟΙ ΔΕΣΜΟΙ. Να δίδουν τον ορισμό του χημικού δεσμού. Να γνωρίζουν τα είδη των δεσμών. Να εξηγούν το σχηματισμό του ιοντικού ομοιοπολικού δεσμού. ΧΗΜΙΚΟΙ ΔΕΣΜΟΙ ΣΤΟΧΟΙ ΜΑΘΗΜΑΤΟΣ Στο τέλος αυτής της διδακτικής ενότητας οι μαθητές θα πρέπει να μπορούν: Να δίδουν τον ορισμό του χημικού δεσμού. Να γνωρίζουν τα είδη των δεσμών Να εξηγούν το σχηματισμό

Διαβάστε περισσότερα

2. και 3. Βλέπε τα παρακάτω γραφήματα του G vs. T για διάφορες πιέσεις και για

2. και 3. Βλέπε τα παρακάτω γραφήματα του G vs. T για διάφορες πιέσεις και για ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦ.. και. Βλέπε τα παρακάτω γραφματα του G vs. για διάφορες πιέσεις και για στερεά (σ), υγρ(υ) και αέρια(α) φάση Σε οποιοδποτε σηµείο P, της διαχωριστικς γραµµς µεταξύ της φάσης και της

Διαβάστε περισσότερα

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι

Διαβάστε περισσότερα

RT = σταθ. (1) de de de

RT = σταθ. (1) de de de ΚΕΦ. 14.2 : ΚΟΣΜΟΛΟΓΙΑ ΙΙ ΣΕΛ. 2 έως 2 ΤΟΥ ΒΙΒΛΙΟΥ ΚΣ. 2 Ο VIDEO, 1/14 λ έως 1λ Επαναληψη E o E K E B H Εντροπία των φωτονίων που είναι ανάλογη τουvt διατηρείται. Επομένως και το γινόμενο Επιπλέον, λόγω

Διαβάστε περισσότερα

Φυσικοχημεία για Βιολόγους. Εργ. Φυσικοχημείας. Τηλ

Φυσικοχημεία για Βιολόγους. Εργ. Φυσικοχημείας. Τηλ Ιωάννης Πούλιος, Καθηγητής Εργ. Φυσικοχημείας Α.Π.Θ. Τηλ. 2310 997785 poulios@chem.auth.gr http://photocatalysisgroup.web.auth.gr/ XHMIKH IΣΟΡΡΟΠΙΑ Σύστημα διαφόρων ουσιών που σε σταθερή θερμοκρασία δεν

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Στατιστικές Συλλογές. Κατανομή Gibbs 3. Από την Κατανομή Gibbs στις Κατανομές Maxwell

Διαβάστε περισσότερα

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες Ιδιότητες Μιγμάτων Μερικές Μολαρικές Ιδιότητες ΙΔΑΝΙΚΟ ΔΙΑΛΥΜΑ = ή διαιρεμένη διά του = x όπου όλα τα προσδιορίζονται στην ίδια T και P. = Όπου ή διαιρεμένη διά του : = x ορίζεται η μερική μολαρική ιδιότητα

Διαβάστε περισσότερα

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km)

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km) ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>1 km) Οι αποστάσεις μεταξύ των μορίων είναι πολύ μεγάλες σχετικά με τον όγκο που κατέχουν Οι συγκρούσεις μεταξύ τους

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών

Διαβάστε περισσότερα

Απαντήσεις ο Μάθηµα

Απαντήσεις ο Μάθηµα 79. 1 ο Μάθηµα: 1. διαµοριακές, ασθενέστερες. διαµοριακές, ενδοµοριακές 3. διαφορετικά, HCl, χηµικών στοιχείων, Η 4. πολικότητας, διανυσµατικό, q. r, πολικότητα, δεσµών 5. µορίων, υδρογόνου 6. διπόλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΕΞΑΤΜΙΣΗΣ ΚΑΙ ΚΑΥΣΗΣ ΣΤΑΓΟΝΑΣ ΥΓΡΟΥ ΚΑΥΣΙΜΟΥ. Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 2004

ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΕΞΑΤΜΙΣΗΣ ΚΑΙ ΚΑΥΣΗΣ ΣΤΑΓΟΝΑΣ ΥΓΡΟΥ ΚΑΥΣΙΜΟΥ. Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 2004 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΕΞΑΤΜΙΣΗΣ ΚΑΙ ΚΑΥΣΗΣ ΣΤΑΓΟΝΑΣ ΥΓΡΟΥ ΚΑΥΣΙΜΟΥ Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 24 Σχηµατισµός Νέφους Σταγόνων Αρχή ιασκορπισµού ιασκορπισµός είναι η σταγονοποίηση των υγρών καυσίµων

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Δ. Τσιπλακίδης Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Φυσική Χημεία Υλικών και Ηλεκτροχημεία» ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Βασικές

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr Παναγιώτης Αθανασόπουλος. Κεφάλαιο 3ο Χημική Κινητική Παναγιώτης Αθανασόπουλος Χημικός, 35 Διδάκτωρ Πανεπιστημίου Πατρών Χηµικός ιδάκτωρ Παν. Πατρών 36 Γενικα για τη χημικη κινητικη και τη χημικη Παναγιώτης

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 Ροή (γενικά): Ηλεκτρική Ροή Η ποσότητα ενός μεγέθους που διέρχεται από μία επιφάνεια. Ε Ε dα dα θ Ε Ε θ Ηλεκτρική ροή dφ Ε μέσω στοιχειώδους επιφάνειας da (αφού da στοιχειώδης

Διαβάστε περισσότερα

Χειμερινό εξάμηνο

Χειμερινό εξάμηνο Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από

Διαβάστε περισσότερα

Θεωρία του Sommerfeld ή jellium model (συνέχεια από το 1 ο μάθημα).

Θεωρία του Sommerfeld ή jellium model (συνέχεια από το 1 ο μάθημα). MA8HMA _08.doc Θεωρία του Sommerfeld ή jellium model (συνέχεια από το ο μάθημα). Τα e καταλαμβάνουν ενεργειακές στάθμες σύμφωνα με την αρχή του Pauli και η κατανομή τους για Τ0 δίδεται από τη συνάρτηση

Διαβάστε περισσότερα

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Κεφάλαιο : Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Ασχοληθήκαμε με συστήματα με μεταβλητό αριθμό σωματιδίων. Τον τρίτο

Διαβάστε περισσότερα

Εναλλαγή θερμότητας. Σχ. 4.1 (α) Διάταξη εναλλάκτη θερμότητας καθ` ομορροή (πάνω) και αντίστοιχο θερμοκρασιακό προφίλ (κάτω)

Εναλλαγή θερμότητας. Σχ. 4.1 (α) Διάταξη εναλλάκτη θερμότητας καθ` ομορροή (πάνω) και αντίστοιχο θερμοκρασιακό προφίλ (κάτω) Εναλλαγή θερμότητας Σχ. 4.1 (α) Διάταξη εναλλάκτη θερμότητας καθ` ομορροή (πάνω) και αντίστοιχο θερμοκρασιακό προφίλ (κάτω) Σχ. 4.1 (β) Διάταξη εναλλάκτη θερμότητας καντ` αντιρροή (πάνω) και αντίστοιχο

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

υναµική ισορροπία Περιορισµένη περιστροφή Αναστροφή δακτυλίου Αναστροφή διάταξης Ταυτοµέρεια

υναµική ισορροπία Περιορισµένη περιστροφή Αναστροφή δακτυλίου Αναστροφή διάταξης Ταυτοµέρεια υναµική ισορροπία Η φασµατοσκοπία MR µπορεί να µελετήσει φυσικές και χηµικές διεργασίες, οι οποίες µεταβάλλονται µε το χρόνο. Μπορεί, για παράδειγµα, να µελετήσει την αλληλοµετατροπή δύο ή περισσότερων

Διαβάστε περισσότερα

ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ

ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ ο αριθμός Avogadro, N A, L = 6,022 10 23 mol -1 η σταθερά Faraday, F = 96 487 C mol -1 σταθερά αερίων R = 8,314 510 (70) J K -1 mol -1 = 0,082 L atm mol -1 K -1 μοριακός

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08-11-2015 ΔΙΑΡΚΕΙΑ: 3 ώρες

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08-11-2015 ΔΙΑΡΚΕΙΑ: 3 ώρες ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08--05 ΔΙΑΡΚΕΙΑ: 3 ώρες ΘΕΜΑ Α Για τις ερωτήσεις Α. Α.5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος 2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές

Διαβάστε περισσότερα

Παράγοντες που επηρεάζουν τη θέση της χημικής ισορροπίας. Αρχή Le Chatelier.

Παράγοντες που επηρεάζουν τη θέση της χημικής ισορροπίας. Αρχή Le Chatelier. Παράγοντες που επηρεάζουν τη θέση της χημικής ισορροπίας. Αρχή Le Chatelier. H θέση ισορροπίας επηρεάζεται από τους εξής παράγοντες χημικής ισορροπίας: Τη συγκέντρωση των αντιδρώντων ή των προϊόντων. Την

Διαβάστε περισσότερα