ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ"

Transcript

1 5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Θ ΕΜΑ Β Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι Α= 8. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ. α. Να υπολογίσετε τις γωνίες των τριγώνων ΒΔΕ και ΓΖΕ. β. Να υπολογίσετε τη γωνία ΕΖ Μονάδες 15 Μονάδες Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του κύκλου αντίστοιχα. α. i. τα τρίγωνα ΚΒΣ και ΚΔΣ είναι ίσα. Μονάδες 1

2 6 ii. ΚΛ=ΚΜ. β. Να αιτιολογήσετε γιατί οι χορδές ΑΒ και ΓΔ είναι ίσες. Μονάδες 1 Μονάδες Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο μέσο Δ της πλευράς ΑΒ φέρουμε κάθετη ευθεία που τέμνει την ΑΓ στο Ε. Από το Ε φέρουμε ευθεία παράλληλη στη βάση ΒΓ που τέμνει την ΑΒ στο Ζ. α. Να αποδείξετε ότι ΑΕ= ΒΕ. Μονάδες 15 β. Να αποδείξετε ότι το τετράπλευρο ΒΓΕΖ είναι ισοσκελές τραπέζιο. Μονάδες Στο σχήμα που ακολουθεί, η Αx είναι εφαπτομένη του κύκλου (Ο, ρ) σε σημείο του Α και επιπλέον ισχύουν ΓΑ x = 85 και ΒΑ= 4. α. Να αποδείξετε ότι Β 1 = 45 β. Να υπολογίσετε τη γωνία φ Μονάδες 1 Μονάδες 15

3 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. α. το τρίγωνο ΒΑΕ είναι ισοσκελές. β. το ΔΕΓΒ είναι παραλληλόγραμμο. γ. η ΑΗ είναι διάμεσος του ΒΑΕ τριγώνου Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ) και οι διχοτόμοι του ΒΔ και ΓΕ. Αν ΕΗ ΒΓ και ΔΖ ΒΓ, να αποδείξετε ότι: α. Τα τρίγωνα ΒΓΔ και ΓΒΕ είναι ίσα. β. ΕΗ = ΔΖ Δίνεται τρίγωνο ΑΒΓ, στο οποίο φέρουμε τις διαμέσους του ΒΜ και ΓΝ. Προεκτείνουμε την ΒΜ (προς το Μ) κατά τμήμα ΜΔ=ΒΜ και την ΓΝ (προς το Ν) κατά τμήμα ΝΕ=ΓΝ. α. Να αποδείξετε ότι ΑΔ//ΒΓ και ΑΕ//ΒΓ. β. Είναι τα σημεία Ε, Α και Δ συνευθειακά; Να αιτιολογήσετε την απάντησή σας Δίνεται παραλληλόγραμμο ΑΒΓΔ και η διαγώνιός του ΒΔ. Από τις κορυφές Α και Γ φέρουμε τις κάθετες ΑΕ και ΓΖ στη ΒΔ, που την τέμνουν στα σημεία Ε και Ζ αντίστοιχα. α. Να αποδείξετε ότι τα τρίγωνα ΑΔΕ και ΓΒΖ είναι ίσα.

4 β. Να αποδείξετε ότι το τετράπλευρο ΑΕΓΖ είναι παραλληλόγραμμο. 8 Μονάδες 1 Μονάδες Δίνεται τρίγωνο ΑΒΓ. Από το μέσο Μ της πλευράς ΒΓ φέρουμε ευθύγραμμο τμήμα ΜΔ ίσο και παράλληλο προς την πλευρά ΒΑ και ευθύγραμμο τμήμα ΜΕ ίσο και παράλληλο προς την πλευρά ΓΑ. α. ΔΑ=ΑΕ β. Τα σημεία Δ, Α και Ε βρίσκονται στην ίδια ευθεία. γ. ΔΕ=ΒΓ Δίνεται τρίγωνο ΑΒΓ και Δ το μέσο της πλευράς ΑΒ. Από το Δ διέρχεται μια τυχαία ευθεία (ε) που τέμνει την πλευρά ΑΓ σε εσωτερικό της σημείο Ε. Η ευθεία (ε) χωρίζει το τρίγωνο ΑΒΓ σε ένα τρίγωνο ΑΔΕ και σε ένα τετράπλευρο ΒΔΕΓ.

5 9 α. Ποια πρέπει να είναι η θέση του σημείου Ε, ώστε το τετράπλευρο ΒΔΕΓ να είναι τραπέζιο; Να αιτιολογήσετε την απάντησή σας. β. Ποιo πρέπει να είναι το είδος του ΑΒΓ τριγώνου, ώστε το τραπέζιο του ερωτήματος (α) να είναι ισοσκελές τραπέζιο; Να αιτιολογήσετε την απάντησή σας Σε παραλληλόγραμμο ΑΒΓΔ, προεκτείνουμε την πλευρά ΔΑ (προς το Α) κατά τμήμα ΑΗ=ΔΑ. Φέρουμε τη διχοτόμο της γωνίας, η οποία τέμνει την ΑΒ στο σημείο Ζ. α. Το τρίγωνο ΑΔΖ είναι ισοσκελές. β. Το τρίγωνο ΔΖΗ είναι ορθογώνιο με ορθή τη γωνία Ζ Δίνεται ΑΒΓΔ παραλληλόγραμμο με ΑΒ=2ΑΔ. Φέρουμε τη διχοτόμο της γωνίας του παραλληλογράμμου, η οποία τέμνει την ΑΒ στο Ε. α. Να αποδείξετε ότι το τρίγωνο ΑΔΕ είναι ισοσκελές. β. Είναι το σημείο Ε μέσο της πλευράς ΑΒ; Να αιτιολογήσετε την απάντησή σας Δίνεται παραλληλόγραμμο ΑΒΓΔ και Ο το σημείο τομής των διαγωνίων του. Θεωρούμε σημείο Ε του τμήματος ΑΟ και σημείο Ζ του τμήματος ΟΓ, ώστε ΟΕ=ΟΖ. α. ΔΕ=ΒΖ β. το ΔΕΒΖ είναι παραλληλόγραμμο.

6 Σε ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ), η διχοτόμος τη γωνίας τέμνει την πλευρά ΑΒ στο σημείο Δ. Από το Δ φέρουμε προς την πλευρά ΒΓ την κάθετο ΔΕ, η οποία τέμνει τη ΒΓ στο σημείο Ε. α. ΑΔ=ΔΕ β. ΑΔ<ΔΒ Γ Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ). Η διχοτόμος της γωνίας Β τέμνει την πλευρά ΑΓ στο σημείο Δ. Φέρουμε τμήμα ΔΕ κάθετο στην πλευρά ΒΓ. α. ΒΕ=ΑΒ. β. Αν επιπλέον Β Α= 55, να υπολογίσετε τις γωνίες του τριγώνου ΓΔΕ Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( Α= 9 ) και ΑΔ η διχοτόμος της γωνίας Α. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο Ε. ΒΓ α. Α = 2 β. Το τρίγωνο ΔΕΓ είναι ορθογώνιο. ΑΓ γ. Ε = 2

7 Δίνεται παραλληλόγραμμο ΑΒΓΔ με γωνία Α= 12 και ΑΒ=2ΑΔ. Φέρουμε τη διχοτόμο της γωνίας Δ του παραλληλογράμμου, η οποία τέμνει την ΑΒ στο Ε, και στη συνέχεια το κάθετο τμήμα ΑΖ στη ΔΕ. α. γωνία β. ΑΒ ΑΖ = 4 Α Ε= 3 Μονάδες 1 Μονάδες Σε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) φέρουμε τη διχοτόμο ΑΔ και μια ευθεία (ε) παράλληλη προς την ΒΓ, που τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. α. Το τρίγωνο ΑΕΖ είναι ισοσκελές. β. Τα τρίγωνα ΑΕΔ και ΑΖΔ είναι ίσα. Μονάδες 1 Μονάδες 15

8 Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και τα ύψη του ΒΔ και ΓΕ. α. Τα τρίγωνα ΒΔΓ και ΓΕΒ είναι ίσα. Μονάδες 15 β. ΑΔ=ΑΕ Μονάδες Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και το μέσο Μ της βάσης του ΒΓ. Φέρουμε τις αποστάσεις ΜΚ και ΜΛ του σημείου Μ από τις ίσες πλευρές του τριγώνου ΑΒΓ. α. ΜΚ=ΜΛ. β. Η ΑΜ είναι διχοτόμος της γωνίας ΚΜΛ Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ. Από το μέσο Μ της ΒΓ φέρουμε τα κάθετα τμήματα ΜΔ και ΜΕ στις πλευρές ΑΒ και ΑΓ αντίστοιχα. Να αποδείξετε ότι α. ΜΔ=ΜΕ β. το τρίγωνο ΑΔΕ είναι ισοσκελές Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ) με ΒΓ = 8 cm. Έστω ΑΜ είναι διάμεσος του τριγώνου και ΜΔ ΑΓ. Αν η γωνία ΑΜΓ είναι ίση με 12, τότε:

9 13 α. Να δείξετε ότι ΑΒ = 4 cm. β. Να βρείτε το μήκος της ΜΔ. 23. Δίνεται τραπέζιο ΑΒΓΔ με 285 Α= = 9, ΑΒ > ΓΔ, ΒΓ = 4ΓΔ και Β= 6. Φέρουμε την ΓΗ ΑΒ και θεωρούμε τα μέσα Ε και Ζ των πλευρών ΑΔ και ΒΓ αντιστοίχως. Να δείξετε ότι: α. ΑΒ = 3ΓΔ. β. Το τετράπλευρο ΕΗΒΖ είναι παραλληλόγραμμο. 24. Δίνεται ισοσκελές τραπέζιο ΑΒΓΔ με ΑΒ//ΓΔ, ΑΒ > ΓΔ και ΑΔ = ΒΓ α. Αν τα μήκη των βάσεων είναι ΑΒ = 3x + 2, ΓΔ = x + 2 και το μήκος της διαμέσου του τραπεζίου είναι ΜΝ =x+4, τότε να δείξετε ότι x=2.

10 14 β. Αν η γωνία Γ είναι διπλάσια της γωνίας του τραπεζίου. Β, να υπολογίσετε τις γωνίες Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ). Στην προέκταση της ΒΑ (προς το μέρος της κορυφής Α) παίρνουμε σημείο Δ ώστε ΑΒ = ΑΔ και στην προέκταση της ΔΓ (προς το μέρος της κορυφής Γ) παίρνουμε σημείο Ε ώστε ΔΓ = ΓΕ. α. Να δείξετε ότι το τρίγωνο ΔΓΒ είναι ορθογώνιο. β. Να δείξετε ότι ΒΕ//ΑΓ και ΒΕ ΑΓ = Ένας μαθητής της Α' λυκείου βρήκε έναν τρόπο να κατασκευάζει παράλληλες ευθείες. Στην αρχή σχεδιάζει μια τυχαία γωνία xο y. Στη συνέχεια με κέντρο την κορυφή Ο της γωνίας σχεδιάζει δυο ομόκεντρους διαφορετικούς κύκλους με τυχαίες ακτίνες. Ο μικρότερος κύκλος τέμνει τις πλευρές Οx και Οy της γωνίας στα σημεία Α, Β αντίστοιχα και ο μεγαλύτερος στα σημεία Γ, Δ. Ισχυρίζεται ότι οι ευθείες που ορίζονται από τις χορδές ΑΒ και ΓΔ είναι παράλληλες. Μπορείτε να το δικαιολογήσετε; Μονάδες 25

11 Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Οι διχοτόμοι των εξωτερικών γωνιών Β και Γ τέμνονται στο σημείο Μ και Κ, Λ είναι αντίστοιχα τα μέσα των πλευρών ΑΒ και ΑΓ. α. Να δείξετε ότι το τρίγωνο ΒΜΓ είναι ισοσκελές με ΜΒ=ΜΓ. β. Να δείξετε ότι ΜΚ=ΜΛ. 28. Δίνεται τρίγωνο ΑΒΓ στο οποίο εξ Α = ΑΒΓ.Φέρουμε τη μεσοκάθετη της πλευράς ΑΒ, η οποία τέμνει την πλευρά ΑΓ στο Δ και σχηματίζεται γωνία ΑΔΒ ίση με 8. α. Να δείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Μονάδες 1 β. Να υπολογίσετε τις γωνίες του τριγώνου ΑΒΓ. Μονάδες 15

12 Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Φέρουμε, εκτός του τριγώνου, τις ημιευθείες Αx και Αy τέτοιες ώστε Αx ΑΒ και Αy ΑΓ. Στις Αx και Αy θεωρούμε τα σημεία Δ και Ε αντίστοιχα, ώστε ΑΔ=ΑΕ. α. Να αποδείξετε ότι ΒΔ=ΓΕ. β. Αν Μ και Ν είναι τα μέσα των τμημάτων ΒΔ και ΓΕ αντίστοιχα, να αποδείξετε ότι το τρίγωνο ΑΜΝ είναι ισοσκελές Δίνεται το ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ. Φέρουμε, εκτός του τριγώνου, τις ημιευθείες Αx και Αy τέτοιες ώστε Αx ΑΒ και Αy ΑΓ. Οι κάθετες στην πλευρά ΒΓ στα σημεία Β και Γ τέμνουν τις Αx και Αy στα σημεία Δ και Ε αντίστοιχα. α. Να αποδείξετε ότι ΒΔ=ΓΕ. β. Αν η γωνία ΒΑΓ είναι ίση με τριγώνου ΔΑΕ. 8, να υπολογίσετε τις γωνίες του

13 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ και Ε το μέσο της πλευράς του ΑΒ. α. Το τρίγωνο ΕΑΔ είναι ισοσκελές. β. Η ΔΕ είναι διχοτόμος της γωνίας Μονάδες 1 Μονάδες Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και Ι το σημείο τομής των διχοτόμων των γωνιών Β και Γ. α. Το τρίγωνο ΒΙΓ είναι ισοσκελές. β. Οι γωνίες ΑΙΓ και ΑΙΒ είναι ίσες. γ. Η ευθεία ΑΙ είναι μεσοκάθετος του τμήματος ΒΓ. Μονάδες Δίνεται τρίγωνο ΑΒΓ και η διάμεσός του ΑΜ. Στην προέκταση της διαμέσου ΜΔ του τριγώνου ΑΜΓ θεωρούμε σημείο Ε ώστε ΜΔ=ΔΕ. α. Το τετράπλευρο ΑΜΓΕ είναι παραλληλόγραμμο. β. Η ΒΕ διέρχεται από το μέσο της διαμέσου ΑΜ Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και η διάμεσός του ΑΜ. Στην προέκταση της διαμέσου ΜΔ του τριγώνου ΑΜΓ θεωρούμε σημείο Ε ώστε ΜΔ=ΔΕ. Αν το σημείο Ζ είναι η προβολή του Δ στην ΑΜ,

14 18 να αποδείξετε ότι: α. Το τετράπλευρο ΑΜΓΕ είναι ορθογώνιο. β. ΒΓ Ζ = Στο ακόλουθο σχήμα, η εφαπτομένη του κύκλου στην κορυφή Α του τριγώνου ΑΒΓ σχηματίζει γωνία ϕ= 3 με την πλευρά ΑΒ. Αν το μέτρο του τόξου ΒΔΓ είναι 16, α. να υπολογίσετε τις γωνίες του τριγώνου ΑΒΓ. β. να βρείτε το μέτρο του τόξου ΑΕΓ. 36. Θεωρούμε ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) με ΑΔ=12 και ΓΔ=2. Φέρουμε τα ύψη του ΑΕ και ΒΖ. Μονάδες Γ= = 6,

15 19 α. Να αποδείξετε ότι ΔΕ=ΓΖ και ΑΒ=ΕΖ. β. Να υπολογίσετε την περίμετρο του τραπεζίου Θεωρούμε ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ). Φέρουμε τα ύψη του ΑΕ και ΒΖ. α. ΔΕ=ΓΖ. β. ΑΖ=ΒΕ Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ), το ύψος του ΑΔ και τα μέσα Ε και Ζ των πλευρών του ΑΒ και ΑΓ αντίστοιχα.

16 2 Να αποδείξτε ότι: α. Τα τρίγωνα ΒΔΕ και ΓΔΖ είναι ίσα. β. Το τετράπλευρο ΑΖΔΕ είναι ρόμβος. Μονάδες 15 Μονάδες Έστω δυο ισοσκελή τρίγωνα ΑΒΓ (ΑΒ=ΑΓ) και Α Β Γ (Α Β =Α Γ ) α. αν ισχύει ΑΒ = Α'Β' και ΑΒΓ και Α Β Γ είναι ίσα. Α = Α, τότε τα τρίγωνα β. αν ισχύει ΑΓ = Α'Γ' και Β = Β, τότε τα τρίγωνα ΑΒΓ και Α Β Γ είναι ίσα Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε και Ζ των πλευρών του ΑΒ, ΒΓ και ΓΑ αντίστοιχα. α. Το τετράπλευρο ΔΒΕΖ είναι παραλληλόγραμμο. β. Η ευθεία ΔΖ διχοτομεί το τμήμα ΑΕ.

17 Δίνεται οξυγώνιο τρίγωνο ΑΒΓ με ΑΒ<ΑΓ και γωνία Γ= 3. Θεωρούμε το ύψος ΑΔ και το μέσο Ζ της πλευράς ΑΓ. Προεκτείνουμε το ύψος ΑΔ (προς το Δ) κατά ίσο τμήμα ΔΕ. ΑΓ α. Ζ = 2 β. Το τρίγωνο ΑΓΕ είναι ισόπλευρο Θεωρούμε τρίγωνο ΑΒΓ και τα ύψη του ΒΔ και ΓΕ που αντιστοιχούν στις πλευρές του ΑΓ και ΑΒ αντίστοιχα. Να αποδείξετε ότι : α. Αν το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ, τότε τα ύψη ΒΔ και ΓΕ είναι ίσα. β. Αν τα ύψη ΒΔ και ΓΕ είναι ίσα, τότε το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΓ=ΑΒ Σε οξυγώνιο τρίγωνο ΑΒΓ προεκτείνουμε τη διάμεσο ΑΜ (προς το Μ) κατά ίσο τμήμα ΜΔ. α. Τα τρίγωνα ΑΒΜ και ΜΓΔ είναι ίσα. β. Τα σημεία Α και Δ ισαπέχουν από την πλευρά ΒΓ Θεωρούμε οξυγώνιο τρίγωνο ΑΒΓ με ΑΒ<ΑΓ και το ύψος του ΑΔ. Προεκτείνουμε το ΑΔ (προς το Δ) κατά τμήμα ΔΕ=ΑΔ. Έστω Κ το συμμετρικό του Β ως προς το Δ. α. Το τρίγωνο ΑΒΚ είναι ισοσκελές. β. Το τετράπλευρο ΑΒΕΚ είναι ρόμβος.

18 Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ) και ΒΔ η διχοτόμος της γωνίας Β. Από το Δ φέρουμε ΔΕ ΒΓ, και έστω Ζ το σημείο στο οποίο η ευθεία ΕΔ τέμνει την προέκταση της ΒΑ (προς το Α). α. ΑΒ=ΒΕ β. Τα τρίγωνα ΑΒΓ και ΖΕΒ είναι ίσα Θωρούμε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και σημεία Δ και Ε στην ευθεία ΒΓ τέτοια, ώστε ΒΔ=ΓΕ. Έστω ότι Ζ ΑΒ και ΕΗ ΑΓ. α. i. ΒΖ=ΓΗ. ii. Το τρίγωνο ΑΖΗ είναι ισοσκελές. β. Αν Α=, να υπολογίσετε τις γωνίες του τριγώνου ΑΖΗ. 5 Μονάδες Στο ακόλουθο σχήμα, η ΑΔ είναι διάμεσος του τριγώνου ΑΒΓ και το Ε είναι σημείο στην προέκταση της ΑΔ, ώστε ΔΕ=ΑΔ.

19 23 α. ΑΒ=ΓΕ β. ΑΒ + ΑΓ Α < Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ) και η διχοτόμος της γωνίας του Γ, η οποία τέμνει την πλευρά ΑΒ στο Δ. Από το Δ φέρουμε Ε ΒΓ. α. Τα τρίγωνα ΑΓΔ και ΔΓΕ είναι ίσα. β. Η ευθεία ΓΔ είναι μεσοκάθετος του τμήματος ΑΕ Το τετράπλευρο ΑΒΓΔ του σχήματος είναι παραλληλόγραμμο. Έστω ότι ΑΕ ΒΓ και ΑΖ Γ. α. Αν το παραλληλόγραμμο ΑΒΓΔ είναι ρόμβος, τότε ΑΖ=ΑΕ. β. Αν για το παραλληλόγραμμο ΑΒΓΔ ισχύει ΑΖ=ΑΕ, τότε αυτό είναι ρόμβος Σε ημικύκλιο διαμέτρου ΑΒ προεκτείνουμε την ΑΒ προς το μέρος του Α και παίρνουμε ένα σημείο Γ. Θεωρούμε Ε ένα σημείο του ημικυκλίου και έστω Δ το σημείο τομής του τμήματος ΓΕ με το ημικύκλιο. Αν το τμήμα ΓΔ

20 24 ισούται με το ΟΒ και η γωνία ΓΟ=x ΒΟΕ= 45 να υπολογίσετε τη γωνία Μονάδες Δίνεται τραπέζιο ΑΒΓΔ με ΑΒ // ΓΔ στο οποίο η διαγώνιος ΒΔ είναι ίση με την πλευρά ΑΔ. Αν η γωνία υπολογίσετε τη γωνία Α Β Γ= 11 και η γωνία ΒΓ = 3, να Μονάδες Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Οι μεσοκάθετες ευθείες των ίσων πλευρών του τέμνονται στο Μ και προεκτεινόμενες τέμνουν τη βάση ΒΓ στα Ζ και Η. α. Να συγκρίνετε τα τρίγωνα ΔΒΗ και ΕΖΓ. Μονάδες 15

21 25 β. Να αποδείξετε ότι το τρίγωνο ΜΖΗ είναι ισοσκελές. Μονάδες Δίνεται ισοσκελές τραπέζιο ΑΒΓΔ με ΑΒ//ΓΔ και ΑΒ<ΓΔ. Θεωρούμε τα σημεία Ε και Ζ πάνω στην ΑΒ έτσι ώστε ΑΕ=ΕΖ=ΖΒ και έστω Κ το σημείο τομής των ΔΖ και ΓΕ. α. ΔΖ=ΓΕ β. Τα τρίγωνα ΕΚΖ και ΔΚΓ είναι ισοσκελή 54. Στο ακόλουθο σχήμα η επίκεντρη γωνία γωνία ΓΒΑ είναι 15 ΒΟ είναι και η α. Να υπολογίσετε τη γωνία ΒΓΔ. β. Να αποδείξετε ότι η γωνία ω είναι Σε κύκλο κέντρου Ο δίνονται οι χορδές ΑΒ και ΑΔ τέτοιες ώστε η γωνία ΒΑ να είναι 44. Θεωρούμε τυχαίο σημείο Γ του κύκλου και σχηματίζουμε το τετράπλευρο ΒΓΔΟ. α. Να υπολογίσετε τη γωνία x.

22 β. Να αποδείξετε ότι η γωνία y είναι Αν στο παρακάτω σχήμα είναι αποδείξετε ότι: α=δ, 517 β=γ και ΑΒ=ΑΓ, να α. Τα τρίγωνα ΑΒΔ και ΑΓΔ είναι ίσα. β. Οι γωνίες ε και ζ είναι ίσες Δίνεται παραλληλόγραμμο ΑΒΓΔ και Ο είναι το κέντρο του. Έστω Ε, Ζ, Η, Θ τα μέσα των ΟΔ, ΟΑ, ΟΒ και ΟΓ αντίστοιχα. Να αποδείξετε ότι : α. Το τετράπλευρο ΕΖΗΘ είναι παραλληλόγραμμο. Μονάδες 1 β. Αν η περίμετρος του παραλληλογράμμου ΑΒΓΔ είναι 4, να βρείτε την περίμετρο του ΕZΗΘ. Μονάδες

23 Σε κύκλο κέντρου Ο, έστω ΟΑ μία ακτίνα του. Φέρουμε τη μεσοκάθετη της ΟΑ που τέμνει τον κύκλο στα σημεία Β και Γ. α. Το τρίγωνο ΟΒΑ είναι ισόπλευρο. β. Το τετράπλευρο ΟΒΑΓ είναι ρόμβος. 59. Έστω κυρτό τετράπλευρο ΑΒΓΔ με BA=BΓ και Α=Γ 529 Να αποδείξτε ότι: α. ΒΑΓ =ΒΓΑ β. Το τρίγωνο ΑΔΓ είναι ισοσκελές. γ. Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ. Μονάδες Δίνεται γωνία xο y και σημείο Α στο εσωτερικό της. Από το Α φέρνουμε τις κάθετες ΑΒ, ΑΓ προς τις πλευρές Οx, Oy της γωνίας αντίστοιχα, και ονομάζουμε Μ το μέσο του ΟΑ.

24 28 α. Το τρίγωνο ΒΜΓ είναι ισοσκελές. β. ΒΜΓ = 2x Ο y Μονάδες Αν για το ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) του σχήματος ισχύουν α=β και γ=δ να γράψετε μια απόδειξη για καθέναν από τους ακόλουθους ισχυρισμούς: α. Τα τρίγωνα ΑΕΒ και ΑΕΓ είναι ίσα. β. Το τρίγωνο ΓΕΒ είναι ισοσκελές. γ. Η ευθεία ΑΔ είναι μεσοκάθετος του τμήματος ΒΓ Σε κύκλο κέντρου Ο θεωρούμε τρεις διαδοχικές ίσες γωνίες ΑΟΒ, ΒΟΓ και ΓΟΑ. α. Να αποδείξετε ότι η προέκταση της ακτίνας ΑΟ διχοτομεί τη γωνία ΒΟΓ. Μονάδες 1 β. Να βρείτε το είδος του τριγώνου ΑΒΓ ως προς τις πλευρές του.

25 29 γ. Αν με κέντρο Ο και ακτίνα ΟΚ όπου Κ το μέσο της ακτίνας ΟΑ, γράψουμε έναν άλλο κύκλο που θα τέμνει τις ακτίνες ΟΒ και ΟΓ στα σημεία Λ και Μ αντίστοιχα, τότε τα τόξα ΚΜ και ΑΒ είναι ίσα; Δικαιολογήστε την απάντησή σας Δίνεται τρίγωνο ΑΒΓ με Β= 4 και Γ= 6. Επιπλέον, τα σημεία Δ, Ε και Ζ είναι τα μέσα των πλευρών του ΑΒ, ΒΓ και ΓΑ αντίστοιχα. α. Να υπολογίσετε τη γωνία Α του τριγώνου ΑΒΓ. β. Να αποδείξετε ότι γ. Να υπολογίσετε τη γωνία Β Ε=ΕΖΓ= 8. ΕΖ Δίνεται ευθεία ε του επιπέδου. Τα παράλληλα τμήματα ΑΒ και ΓΔ καθώς και ένα τυχαίο σημείο Ε βρίσκονται στο ίδιο ημιεπίπεδο της ε. α. Αν το Ε είναι εκτός των τμημάτων ΑΒ και ΓΔ τότε: ω = ϕ+ θ Μονάδες 1

26 3 β. Αν το Ε είναι ανάμεσα στα τμήματα ΑΒ και ΓΔ και ΕΖ//ΑΒ, τότε να αποδείξετε ότι θ = ω+ ϕ Μονάδες Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και Κ εσωτερικό σημείο του τριγώνου τέτοιο ώστε ΚΒ=ΚΓ. α. Τα τρίγωνα ΒΑΚ και ΚΑΓ είναι ίσα. β. Η ΑΚ είναι διχοτόμος της γωνίας ΒΑΓ Μονάδες 6 γ. Η προέκταση της ΑΚ διχοτομεί τη γωνία ΒΚΓ του τριγώνου ΒΚΓ.

27 Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στην προέκταση της πλευράς ΒΓ και προς τα δυο της άκρα, θεωρούμε σημεία Δ και Ε αντίστοιχα έτσι ώστε ΒΔ= ΓΕ. Β εξ =Γ εξ α. Μονάδες 6 β. Τα τρίγωνα ΑΒΔ και ΑΓΕ είναι ίσα. γ. Η διάμεσος ΑΜ του τριγώνου ΑΒΓ είναι και διάμεσος του τριγώνου ΑΔΕ. 67. Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ και σημείο της διχοτόμου της γωνίας Α, τέτοιο ώστε ΚΒ=ΚΑ=ΚΓ. 555 Α=. Έστω Κ 8 α. Να αποδείξετε ότι τα τρίγωνα ΒΚΑ και ΓΚΑ είναι ίσα. β. Να υπολογίσετε τις γωνίες γ. Να υπολογίσετε τη γωνία ΑΒΚ και ΒΚΓ. ΑΓΚ. Μονάδες 1

28 Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ). Έστω Δ σημείο της πλευράς ΑΓ τέτοιο ώστε, η διχοτόμος ΔΕ της γωνίας Α Β να είναι παράλληλη στην πλευρά ΒΓ. α. Να αποδείξετε ότι το τρίγωνο ΒΔΓ είναι ισοσκελές. β. Αν Α Β= 6, I. να υπολογίσετε τη γωνία Γ. II. να αποδείξετε ότι BΓ=2AB Μονάδες Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και η διάμεσός του ΑΜ. Φέρουμε ημιευθεία Γx ΒΓπρος το ημιεπίπεδο που δεν ανήκει το Α και παίρνουμε σε αυτήν τμήμα ΓΔ= ΑΒ. α. Η γωνία ΑΓ είναι ίση με τη γωνία Γ Α.

29 33 β. Η ΑΔ είναι διχοτόμος της γωνίας ΜΑΓ Δίνεται τρίγωνο ΑΒΓ με ΑΒ<ΑΓ.Έστω Αx η διχοτόμος της εξωτερικής του γωνίας Α εξ = 12. Από την κορυφή Β φέρνουμε ευθεία παράλληλη στην Αx, η οποία τέμνει την πλευρά ΑΓ στο σημείο Δ. α. i. το τρίγωνο ΑΒΔ είναι ισόπλευρο. Μονάδες 1 ii. ΔΓ=ΑΓ ΑΒ β. Αν η γωνία Β Α είναι διπλάσια της γωνίας υπολογίσετε τις γωνίες του τριγώνου ΒΔΓ. Μονάδες 5 Γ του τριγώνου ΑΒΓ, να Μονάδες Στις προεκτάσεις των πλευρών ΒΑ (προς το Α) και ΓΑ (προς το Α) τριγώνου ΑΒΓ παίρνουμε τα τμήματα ΑΔ=ΑΒ και ΑΕ=ΑΓ. α. Τα τρίγωνα ΑΒΓ και ΑΔΕ είναι ίσα. β. ΕΔ//ΒΓ Στις προεκτάσεις των πλευρών ΒΑ και ΓΑ τριγώνου ΑΒΓ παίρνουμε τα τμήματα ΑΔ=ΑΒ και ΑΕ=ΑΓ. Να αποδείξετε ότι α. Τα τρίγωνα ΑΒΓ και ΑΔΕ είναι ίσα.

30 34 β. Η προέκταση της διαμέσου ΑΜ προς το μέρος της κορυφής Α διχοτομεί την πλευρά ΕΔ του τριγώνου ΔΑΕ Σε ορθογώνιο ΑΒΓΔ, αν Μ και Ν είναι τα μέσα των ΑΒ και ΓΔ αντίστοιχα, να αποδείξετε ότι: α. ΜΔ=ΜΓ. β. Η ευθεία ΜΝ είναι μεσοκάθετος του τμήματος ΓΔ Θεωρούμε παραλληλόγραμμο ΑΒΓΔ και Α, Γ οι προβολές των κορυφών Α και Γ στη διαγώνιο ΒΔ. Αν τα σημεία Α και Γ δεν ταυτίζονται να αποδείξετε ότι: α. ΑΑ // ΓΓ β. ΑΑ =ΓΓ γ. Το τετράπλευρο ΑΓ ΓΑ είναι παραλληλόγραμμο. Μονάδες Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και σημείο Μ εσωτερικό του τριγώνου, τέτοιο ώστε ΜΒ=ΜΓ. α. Τα τρίγωνα ΑΜΒ και ΑΜΓ είναι ίσα. β. Η ευθεία ΑΜ διχοτομεί τη γωνία ΒΜΓ.

31 Δίνεται τρίγωνο ισοσκελές ΑΒΓ (ΑΒ=ΑΓ) με γωνία Δ είναι σημείο της πλευράς ΑΓ, τέτοιο ώστε ΒΔ=ΒΓ. 58 Α= 5. Έστω α. Να υπολογίσετε τις γωνίες β. Να αποδείξετε ότι η γωνία Β και Γ του τριγώνου ΑΒΓ. ΒΓ είναι ίση με τη γωνία Α. 77. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ) με τυχαίο σημείο της πλευράς ΑΓ και ΔΕ ΒΓ. 589 Γ= 4. Έστω Δ Να υπολογίσετε: α. τις γωνίες του τριγώνου ΔΕΓ. β. τις γωνίες του τετραπλεύρου ΑΔΕΒ. Μονάδες 1 Μονάδες 15

32 Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) με γωνία κορυφής Α= 4. Στην προέκταση της ΓΒ (προς το Β) παίρνουμε τμήμα ΒΔ τέτοιο ώστε ΒΔ=ΑΒ. Να υπολογίσετε α. τις γωνίες του τριγώνου ΑΒΓ. β. τη γωνία ΑΓ. Μονάδες 1 Μονάδες Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ). Έστω ότι η ΑΔ είναι η διχοτόμος της γωνίας Α και η ΔΕ//ΑΒ. Αν η γωνία Β= 2 +Γ. α. να υπολογίσετε: I. τις γωνίες Β και Γ του τριγώνου ΑΒΓ. II. τις γωνίες ϕ και ω. β. να αποδείξετε ότι το τρίγωνο ΑΕΔ είναι ισοσκελές. Μονάδες Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ) με γωνία Β= 2Γ. Από το μέσο Μ της ΒΓ φέρνουμε ευθεία παράλληλη στην ΑΒ, η οποία τέμνει την πλευρά ΑΓ στο Δ.

33 37 α. Να υπολογίσετε I. τις γωνίες Β και Γ του τριγώνου ΑΒΓ. II. τις γωνίες του τριγώνου ΑΜΓ. β. Να αποδείξετε ότι η ευθεία ΜΔ είναι μεσοκάθετος του ΑΓ. 81. Στο παρακάτω σχήμα ισχύουν ΔΒ=ΒΑ=ΑΓ=ΓΕ και ΒΑΓ= Να αποδείξετε ότι α. ΑΒ = ΑΓΕ= 11. β. τα τρίγωνα ΑΒΔ και ΑΓΕ είναι ίσα. γ. το τρίγωνο ΔΑΕ είναι ισοσκελές. Μονάδες 1 Μονάδες 1 Μονάδες 5

34 82. Δίνεται τρίγωνο ΑΒΓ με 38 είναι τα μέσα των ΑΒ και ΑΓ με ΔΕ=9 και ΕΓ= Α= 4 και Β= 7. Τα σημεία Δ και Ε α. Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές και να βρείτε ποιες είναι οι ίσες πλευρές του. β. Να αποδείξετε ότι ΒΓ=18. γ. Να υπολογίσετε την περίμετρο του τριγώνου ΑΒΓ Θεωρούμε παραλληλόγραμμο ΑΒΓΔ. Αν οι διχοτόμοι των απέναντι γωνιών και Β τέμνουν τις πλευρές ΑΒ και ΓΔ στα σημεία Ε και Ζ αντίστοιχα, να αποδείξετε ότι: α. Τα τρίγωνα ΑΕΔ και ΒΓΖ είναι ίσα. β. Το τετράπλευρο ΔΕΒΖ είναι παραλληλόγραμμο Στις πλευρές ΑΔ και ΒΓ παραλληλογράμμου ΑΒΓΔ θεωρούμε σημεία E και Z, τέτοια ώστε ΑE=ΓZ. Αν η ευθεία ΖΕ τέμνει τις προεκτάσεις των πλευρών ΑΒ και ΓΔ στα σημεία H και Θ,

35 39 να αποδείξετε ότι: α. ΗΒΖ=Ε Θ β. ΒΖΗ = ΕΘ γ. ΒΗ=ΘΔ 85. Δίνεται τρίγωνο ΑΒΓ με 5111 Β=. Έστω ότι τα σημεία Δ και Ε είναι τα μέσα των πλευρών ΒΓ και ΑΓ αντίστοιχα, τέτοια ώστε 5 ΕΓ=. 7 α. Να δικαιολογήσετε γιατί ΔΕ//ΑΒ. β. Να υπολογίσετε I. τη γωνία x. II. τις γωνίες Α και Γ του τριγώνου ΑΒΓ.

36 Έστω τρίγωνο ΑΒΓ με Δ και Ε τα μέσα των πλευρών ΑΒ και ΑΓ αντίστοιχα, ΑΔ=9, ΕΓ=1 και ΒΓ=3. α. Να υπολογίσετε την περίμετρο του τριγώνου ΑΒΓ. β. Να αποδείξετε ότι το τετράπλευρο ΔΕΓΒ είναι τραπέζιο. γ. Να υπολογίσετε το μήκος x του τμήματος ΔΕ Στο τρίγωνο ΑΒΓ του παρακάτω σχήματος τα σημεία Δ και Ε είναι τα μέσα των πλευρών ΑΒ και ΑΓ αντίστοιχα, ΑE=8, ΕΔ=9 και ΔΒ=1. α. Να αποδείξετε ότι το τετράπλευρο ΔΕΓΒ είναι τραπέζιο. β. Να υπολογίσετε το μήκος της πλευράς ΒΓ. γ. Να συγκρίνετε τις περιμέτρους του τριγώνου ΑΒΓ και του τετραπλεύρου ΔΕΓΒ.

37 Δίνεται τρίγωνο ΑΒΓ. Τα σημεία Δ και Ε είναι τα μέσα των πλευρών ΑΒ και ΑΓ αντίστοιχα. Επιπλέον ισχύουν ΑΔ=ΕΔ=ΔΒ με ΑΕ=8 και ΔΒ=1 α. Να αποδείξετε ότι το τρίγωνο ΑΕΒ είναι ορθογώνιο. β. Να αποδείξετε ότι ΒΓ=2. γ. Να υπολογίσετε την περίμετρο του τριγώνου ΑΒΓ Δίνεται τρίγωνο ΑΒΓ. Τα σημεία Δ και Ε είναι τα μέσα των πλευρών ΑΒ και ΑΓ αντίστοιχα. Επιπλέον ισχύουν ΑΔ=ΕΔ=ΔΒ με ΑΕ=8 και ΔΒ=1. α. Να αποδείξετε ότι το τρίγωνο ΑΕΒ είναι ορθογώνιο. β. Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. γ. Να υπολογίσετε την περίμετρο του τριγώνου ΑΒΓ. Μονάδες 6 Μονάδες 1

38 42 9. Στο ακόλουθο σχήμα ισχύουν ΑΒ=ΒΔ=ΑΓ=ΓΕ=5, BK ΑΔ και ΓΛ ΑΕ α. Να προσδιορίσετε, ως προς τις πλευρές, το είδος των τριγώνων ΑΒΔ και ΑΓΕ. Να αιτιολογήσετε την απάντησή σας. Μονάδες 6 β. Να αποδείξετε ότι τα σημεία Κ και Λ είναι τα μέσα των τμημάτων ΑΔ και ΑΕ αντίστοιχα. Μονάδες 1 γ. Αν η περίμετρος του τριγώνου ΑΒΓ είναι 12, να υπολογίσετε το τμήμα ΚΛ Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθυγράμμου τμήματος ΟΡ, να αποδείξετε ότι: α. τα τρίγωνα ΡΑΜ και PMB είναι ίσα. β. οι γωνίες ΜΑΟ και ΜΒΟ είναι ίσες.

39 Στο παρακάτω σχήμα είναι ε1// ε 2 και το σημείο Ο είναι το μέσο της ΒΔ. α. τα τρίγωνα ΑΟΒ και ΓΟΔ είναι ίσα και να γράψετε τα ίσα στοιχεία τους. β. το ΑΒΓΔ είναι παραλληλόγραμμο. 93. Στο παρακάτω σχήμα είναι ε1// ε 2 και AB= α. Να υπολογίσετε τις γωνίες φ και ω. Μονάδες 1 β. Να προσδιορίσετε το είδος του τριγώνου ΑΒΚ ως προς τις γωνίες του. γ. Να υπολογίσετε το μήκος της ΑΚ, αιτιολογώντας την απάντησή σας.

40 Στο παρακάτω σχήμα δίνεται κύκλος (O,R) και τα εφαπτόμενα τμήματα ΜΑ και ΜΒ. Προεκτείνουμε την ΑΜ κατά τμήμα ΜΓ=ΜΑ και την ΟΜ κατά τμήμα ΜΔ=ΟΜ. α. Να αποδείξετε ότι τα τρίγωνα ΟΜΒ και ΜΓΔ είναι ίσα, και να γράψετε τα ίσα στοιχεία τους. β. Να αιτιολογήσετε γιατί ΟΑ//ΓΔ Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και στις ίσες πλευρές 1 1 ΑΒ,ΑΓ παίρνουμε αντίστοιχα τμήματα Α = ΑΒ και ΑΕ = ΑΓ. Αν Μ 3 3 είναι το μέσο της ΒΓ, να αποδείξετε ότι: α. τα τμήματα ΒΔ και ΓΕ είναι ίσα. Μονάδες 5 β. τα τρίγωνα ΒΔΜ και ΜΕΓ είναι ίσα. Μονάδες 1 γ. το τρίγωνο ΔΕΜ είναι ισοσκελές. Μονάδες Δίνεται ισοσκελές τρίγωνο ΚΑΒ (ΚΑ=ΚΒ) και ΚΓ διχοτόμος της γωνίας. Κ. Στην προέκταση της ΒΑ (προς το Α) παίρνουμε σημείο Λ και στην προέκταση της ΑΒ (προς το Β) παίρνουμε σημείο Μ, έτσι ώστε ΑΛ=ΒΜ. α. το τρίγωνο ΚΛΜ είναι ισοσκελές

41 45 β. η ΚΓ είναι διάμεσος του τριγώνου ΚΛΜ 97. Δίνεται τρίγωνο ΑΒΓ με διχοτόμος της γωνίας Α Α= 8 και 5142 Β= 2 +Γ, και ΑΔ η α. Να υπολογίσετε τις γωνίες Β και Γ. β. Φέρουμε από το Δ ευθεία παράλληλη στην ΑΒ, που τέμνει την ΑΓ στο Ε. Να υπολογίσετε τις γωνίες Α Ε, Ε Γ Δίνεται τετράπλευρο ΑΒΓΔ με ΒA=ΒΓ και ΔA=ΔΓ. Οι διαγώνιοι ΑΓ, ΒΔ του τετραπλεύρου είναι ίσες και τέμνονται κάθετα. α. Η ΒΔ είναι διχοτόμος των γωνιών Β και του τετραπλεύρου ΑΒΓΔ. β. Η ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Φέρουμε την εξωτερική διχοτόμο Αx της γωνίας Α και από το σημείο Γ την κάθετο ΓΔ στην Αx. Τα σημεία Ε και Ζ είναι τα μέσα των πλευρών ΑΒ και ΑΓ αντίστοιχα.

42 46 α. το τρίγωνο ΑΖΔ είναι ισόπλευρο. β. το τετράπλευρο ΑΔΖΕ είναι ρόμβος Δίνεται κύκλος (Ο, R) διαμέτρου ΑΒ, και χορδή ΑΓ τέτοια ώστε ΒΑΓ= 3. Στο σημείο Γ φέρουμε την εφαπτομένη του κύκλου, η οποία τέμνει την προέκταση της διαμέτρου ΑΒ (προς το Β) στο σημείο Δ. α. Να υπολογίσετε τις γωνίες του τριγώνου ΟΓΔ. β. Να αποδείξετε ότι τα τρίγωνα ΑΟΓ και ΓΒΔ είναι ίσα Δίνεται γωνία xoy και η διχοτόμος της Οδ. Θεωρούμε σημείο Μ της Οδ και σημεία Α και Β στις ημιευθείες Οx και Oy αντίστοιχα, τέτοια ώστε ΟΑ=ΟΒ. α. MA=MB. Μονάδες 15

43 β. Η Οδ είναι διχοτόμος της γωνίας 47 ΑΜΒ. Μονάδες Σε παραλληλόγραμμο ΑΒΓΔ (ΑΒ//ΓΔ) με ΑΒ > ΒΓ φέρουμε από τις κορυφές Α και Γ καθέτους στη διαγώνιο ΒΔ, οι οποίες την τέμνουν σε διαφορετικά σημεία Ε και Ζ αντίστοιχα. α. ΑΕ=ΓΖ. β. Το τετράπλευρο ΑΕΓΖ είναι παραλληλόγραμμο. Μονάδες 15 Μονάδες Θεωρούμε ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) με ΓΔ>ΑΒ και Β= 135. Από τις κορυφές Α και Β φέρουμε τα ύψη του ΑΕ και ΒΖ. α. Να υπολογίσετε τις γωνίες του τραπεζίου. β. Να αποδείξετε ότι ΑΕ=ΕΔ=ΒΖ=ΓΖ Μονάδες 1 Μονάδες 15

44 Δίνεται οξυγώνιο τρίγωνο ΑΓΒ. Φέρουμε από τη κορυφή Α ευθεία (ε) παράλληλη στη ΒΓ. Η μεσοκάθετος της πλευράς ΑΒ τέμνει την (ε) στο Δ και την ΒΓ στο Ε. α. Να αποδείξετε ότι ΔΑ=ΔΒ και ΕΑ=ΕΒ. Μονάδες 6 β. Αν Μ το μέσο του ΑΒ, να συγκρίνετε τα τρίγωνα ΑΜΔ και ΕΜΒ. Μονάδες 1 γ. Να αποδείξετε ότι το τετράπλευρο ΑΔΒΕ είναι ρόμβος Σε τρίγωνο ΑΒΓ ισχύει Α+ Γ = 12 και Α= 3Γ. α. Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ορθογώνιο και να υπολογίσετε τις γωνίες του. Μονάδες 15 β. Αν η πλευρά ΒΓ=2cm να βρείτε το μήκος της ΑΒ. Μονάδες Αν ΑΟΒ=ΒΟΓ=ΓΟ και ΟΑ=ΟΒ=ΟΓ=ΟΔ, 556 να αποδείξετε ότι:

45 49 α. ΑΓ=ΒΔ. Μονάδες 1 β. Tο Μ είναι μέσον της ΒΔ, όπου Μ το σημείο τομής των τμημάτων ΟΓ και ΒΔ. Μονάδες Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με Α= 9 και Γ= 25. Δίνονται επίσης η διάμεσος ΑΜ, το ύψος ΑΗ από την κορυφή Α και η διχοτόμος ΑΔ της γωνίας Α. α. Να υπολογίσετε τις γωνίες ΑΜΒ, ΗΑΒ, Α Β. β. Να αποδείξετε ότι ΜΑ = ΑΗ = 2. Μονάδες 15 Μονάδες Δίνεται ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ), με ΑΒ=6, ΒΓ=4 και Γ= 6. Δίνονται επίσης τα ύψη ΑΕ και ΒΖ από τις κορυφές Α και Β αντίστοιχα.

46 5 α. Να υπολογίσετε τις υπόλοιπες γωνίες του τραπεζίου ΑΒΓΔ. β. Να αποδείξετε τα τρίγωνα ΑΕΔ, ΒΖΓ είναι ίσα. γ. Να υπολογίσετε την περίμετρο του ΑΒΓΔ. 19. Δίνεται τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ), με ΑΒ=ΒΓ=4, Γ= 6. Δίνεται επίσης το ύψος ΒΕ από τη κορυφή Β. Μονάδες 6 Μονάδες Α= 9 και α. Να υπολογίσετε τις άλλες δυο γωνίες του τραπεζίου ΑΒΓΔ. β. Να αποδείξετε 2ΕΓ=ΒΓ. γ. Αν Μ,Ν τα μέσα των πλευρών ΑΔ, ΒΓ αντίστοιχα να βρείτε το μήκος του ευθυγράμμου τμήματος ΜΝ Δίνεται κύκλος κέντρου Ο, και από ένα σημείο Ρ εκτός αυτού φέρουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Το τμήμα ΡΟ τέμνει τον κύκλο στο σημείο Μ και η εφαπτομένη του κύκλου στο Μ τέμνει τα ΡΑ και ΡΒ στα σημεία Δ και Γ αντίστοιχα.

47 51 α. Να αποδείξετε ότι το τρίγωνο ΡΔΓ είναι ισοσκελές. β. Αν η γωνία ΑΡΒ είναι 4 να υπολογίσετε τη γωνία ΑΟΒ Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Στην προέκταση της ΒΓ (προς το μέρος του Γ) θεωρούμε τμήμα ΓΔ=ΒΓ. Φέρουμε τμήμα ΔΕ κάθετο στην ΑΔ στο σημείο της Δ, τέτοιο ώστε ΔΕ=ΒΓ. ( Α και Ε στο ίδιο ημιεπίπεδο ως προς την ΒΔ). α. Να βρείτε τις γωνίες του τριγώνου ΑΒΔ. β. Να αποδείξετε ότι ΑΒΔΕ παραλληλόγραμμο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ (με Α= 9 ) και η διχοτόμος της γωνίας Γ τέμνει την πλευρά ΑΒ στο σημείο Δ, τέτοιο ώστε ΓΔ=ΔΒ=2cm. α. Β= 3

48 52 β. ΑΒ=3cm Στα ορθογώνια τρίγωνα ΑΒΓ και ΑΔΕ (γωνία Α ορθή) του παρακάτω σχήματος ισχύει Β= = 3. α. Να υπολογίσετε τις γωνίες του τετραπλεύρου ΑΕΖΓ. β. Να αποδείξετε ότι τα τρίγωνα ΓΖΔ και ΕΒΖ είναι ισοσκελή Στο παρακάτω σχήμα, οι ΑΔ και ΒΕ είναι παράλληλες. Επιπλέον ισχύουν ΑΔ=ΑΖ, ΒΕ=ΒΖ και Α= 7. α. Να υπολογίσετε τις γωνίες των τριγώνων ΑΔΖ και ΒΖΕ. β. Να αποδείξετε ότι ΖΕ= 9. Μονάδες 16

49 Στο παρακάτω σχήμα οι γωνίες, ΑΔ=ΒΓ και ΑΓ=ΒΕ Α Βείναι ορθές και επιπλέον α. Τα τρίγωνα ΑΓΔ και ΒΓΕ είναι ίσα. β. Αν η γωνία ισοσκελές. ΕΓΒ= 4 τότε το τρίγωνο ΔΓΕ είναι ορθογώνιο και Δίνεται τρίγωνο ΑΒΓ στο οποίο ισχύει ΒΓ=2ΑΒ και έστω Μ το μέσο της ΒΓ. Αν η ΑΔ είναι διάμεσος του τριγώνου ΑΒΜ και Ε σημείο στην προέκτασή της ώστε ΑΔ=ΔΕ. α. Το τετράπλευρο ΑΒΕΜ είναι παραλληλόγραμμο. β. MΕ=ΜΓ Θεωρούμε τετράγωνο ΑΒΓΔ και σημεία Ε και Ζ στις προεκτάσεις των ΑΒ (προς το Β) και ΒΓ (προς το Γ) αντίστοιχα, ώστε ΒΕ=ΓΖ.

50 54 α. Τα τρίγωνα ΑΒΖ και ΑΕΔ είναι ίσα. β. Οι γωνίες ΕΔΓ και ΑΖΒ είναι ίσες Δίνεται τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) με ΑΒ=3, ΓΔ=4. Θεωρούμε σημείο Ε στην ΑΒ ώστε ΑΕ=1. Στο τραπέζιο ΕΒΓΔ θεωρούμε τα Κ και Λ, μέσα των ΕΔ και ΒΓ αντίστοιχα. α. Να υπολογίσετε τη διάμεσο ΚΛ του τραπεζίου ΕΒΓΔ. β. Να αποδείξετε ότι το τετράπλευρο ΑΒΛΚ είναι παραλληλόγραμμο Σε τρίγωνο ΑΒΓ ισχύουν 2 Α+ Γ = Β και Α= 3Γ. 5578

51 55 α. Να αποδείξετε ότι η γωνία Β είναι 6. Μονάδες 1 β. Αν το ύψος του ΑΔ και η διχοτόμος του ΒΕ τέμνονται στο σημείο Ζ, να αποδείξετε ότι το τρίγωνο ΑΖΕ είναι ισόπλευρο. Μονάδες Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο με ορθή τη γωνία Α. Η ΒΔ είναι διχοτόμος της γωνίας Β, η ΔΕ είναι κάθετη στην ΒΓ και η γωνία Γ είναι μικρότερη της γωνίας Β. α. ΑΔ=ΔΕ β. ΑΔ < ΔΓ γ. ΑΓ>ΑΒ 121. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με της ΒΓ. α. Να υπολογίσετε τη γωνία Γ. β. Να υπολογίσετε τις γωνίες του τριγώνου ΑΜΒ Α= 9, Β= 35 και Μ το μέσο Μονάδες 1 Μονάδες Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ. Στις προεκτάσεις των πλευρών ΒΑ και ΓΑ (προς το Α) θεωρούμε τα σημεία Ε και Δ αντίστοιχα τέτοια ώστε ΑΔ = ΑΕ.

52 56 α. ΒΕ = ΓΔ β. ΒΔ = ΓΕ γ. ΒΓ =ΕΓΒ Μονάδες 6 Μονάδες Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με τη γωνία Α ορθή, 2 Γ=Β και ΑΔ το ύψος του. α. Να υπολογιστούν οι οξείες γωνίες του τριγώνου ΑΒΓ. β. Να υπολογιστεί η γωνία ΒΑΔ. γ. ΑΒ Β = Δίνεται τραπέζιο ΑΒΓΔ με ΑΒ // ΓΔ και ΒΔ = ΒΓ. Αν και Α Β= 25 να υπολογίσετε: 5585 ΒΓ = 11

53 57 α. Τη γωνία Γ. β. Τη γωνία Α. Μονάδες 11 Μονάδες Δίνεται ισόπλευρο τρίγωνο ΑΒΓ και εκτός αυτού κατασκευάζουμε τετράγωνο ΒΓΔΕ. α. Να υπολογίσετε τις γωνίες i. ΑΒΕ ii. ΒΕΑ β. Να αποδείξετε ότι το τρίγωνο ΑΕΔ είναι ισοσκελές Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ. Κατασκευάζουμε εξωτερικά του τριγώνου το τετράγωνο ΑΒΔΕ.

54 58 α. Το τρίγωνο ΑΓΕ είναι ισοσκελές. β. 2ΕΓΑ= 9 ΒΑΓ. Μονάδες 1 Μονάδες Στο παρακάτω σχήμα το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο και το ΑΓΔΕ είναι ορθογώνιο. α. Το σημείο Α είναι μέσο του ΒΕ. β. Το τρίγωνο ΒΕΓ είναι ισοσκελές. γ. ΒΓΑ= Α Ε 128. Δίνονται τα παραλληλόγραμμα ΑΒΔΓ και ΒΔΕΖ α. Το τετράπλευρο ΑΓΕΖ είναι παραλληλόγραμμο.

55 59 β. ΑΒΖ=Γ Ε Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με τη γωνία Α ορθή και Μ το μέσο της ΒΓ. Φέρουμε ημιευθεία Αx παράλληλη στη ΒΓ (στο ημιεπίπεδο που ορίζει η ΑΜ με το σημείο Γ). α. ΜΑΓ=ΜΓΑ β. η ΑΓ είναι διχοτόμος της γωνίας ΜΑx Δίνεται τρίγωνο ΑΒΓ και ΜΔ, ΝΕ οι μεσοκάθετοι των πλευρών του ΑΒ, ΑΓ αντίστοιχα. α. Αν ΜΔ = ΝΕ τότε το τρίγωνο ΑΒΓ είναι ισοσκελές. β. Αν ΑΒ = ΑΓ τότε ΜΔ = ΝΕ

56 Δίνεται τρίγωνο ΑΒΓ και από σημείο Μ της πλευράς ΒΓ φέρουμε τα κάθετα τμήματα ΜΔ και ΜΕ στις πλευρές ΑΒ και ΑΓ αντίστοιχα. α. Αν ΜΔ = ΜΕ, τότε τα τρίγωνα ΑΜΔ και ΑΜΕ είναι ίσα. β. Αν ΑΒ = ΑΓ και Μ μέσο του ΒΓ, τότε ΜΔ = ΜΕ Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με τη γωνία Α ορθή και από το μέσο Μ της πλευράς ΒΓ φέρουμε τα κάθετα τμήματα ΜΔ και ΜΕ στις πλευρές ΑΒ και ΑΓ αντίστοιχα. α. Αν ΜΔ = ΜΕ τότε: i. τα τρίγωνα ΒΔΜ και ΓΕΜ είναι ίσα. ii. το τρίγωνο ΑΒΓ είναι ισοσκελές.

57 61 β. Αν ΑΒ = ΑΓ τότε ΜΔ = ΜΕ Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ. Στην προέκταση της ΒΓ (προς το Γ) θεωρούμε σημείο Δ και στην προέκταση της ΓΒ (προς το Β) θεωρούμε σημείο Ε έτσι ώστε ΓΔ = ΒΕ. Από το Δ φέρουμε ΔΗ κάθετη στην ευθεία ΑΓ και από το Ε φέρουμε ΕΖ κάθετη στην ευθεία ΑΒ. α. ΑΔ = ΑΕ β. ΕΖ = ΔΗ 134. Δίνεται τρίγωνο ΑΒΓ και Ε το μέσο της διαμέσου του ΑΜ. Αν ΒΓ = 2 ΒΕ να αποδείξετε ότι: 5597 α. ΑΕΒ=ΕΜΓ β. ΑΒ = ΕΓ.

58 Δίνεται τρίγωνο ΑΒΓ με ΑΒ = ΑΓ και η διάμεσός του ΑΔ τέτοια ώστε ΒΑ = 3. Θεωρούμε σημείο Ε στην ΑΓ τέτοιο ώστε ΑΔ = ΑΕ. α. Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισόπλευρο. β. Να υπολογίσετε τις γωνίες του τριγώνου ΑΔΕ. γ. Να υπολογίσετε τη γωνία ΕΔΓ Σε κύκλο κέντρου Ο φέρουμε τις διαμέτρους του ΑΓ και ΒΔ. α. Να αποδείξετε ότι το τετράπλευρο ΑΒΓΔ είναι ορθογώνιο. β. Ποια σχέση πρέπει να έχουν οι διάμετροι ΑΓ και ΒΔ ώστε το τετράπλευρο ΑΒΓΔ να είναι τετράγωνο; Να αιτιολογήσετε την απάντησή σας Έστω κύκλος με κέντρο Ο και ακτίνα ρ. Αν η διάμετρος ΑΔ είναι διχοτόμος της γωνίας ΒΑΓ,

59 63 να αποδείξετε ότι: α. Τα τόξα ΒΔ και ΔΓ είναι ίσα. β. Τα τρίγωνα ΑΒΔ και ΑΓΔ είναι ίσα. Μονάδες 1 Μονάδες Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και τις διαμέσους του ΒΚ και ΓΛ, οι οποίοι τέμνονται στο σημείο Θ. α. Οι διάμεσοι ΒΚ και ΓΛ είναι ίσες. β. Τα τρίγωνα ΑΒΘ και ΑΓΘ είναι ίσα Θεωρούμε κύκλο (Ο, ρ) και διάμετρό του ΑΒ. Στην εφαπτομένη του κύκλου στο Β θεωρούμε σημείο Γ τέτοιο ώστε, η γωνία ΒΓΟ να είναι ίση με 3. Αν η ΟΓ τέμνει τον κύκλο στο Δ

60 64 να αποδείξετε ότι: α. ΟΓ = 2ΟΑ. β. ΒΓ = ΑΔ Σε ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ ( Α= 9 ) θεωρούμε τα μέσα Δ, Ε και Ζ των πλευρών του ΑΒ, ΑΓ και ΒΓ αντίστοιχα. α. Το τετράπλευρο ΑΕΖΔ είναι ορθογώνιο παραλληλόγραμμο. β. Το τετράπλευρο ΕΔΒΓ είναι ισοσκελές τραπέζιο Δίνονται δύο ομόκεντροι κύκλοι με κέντρο Ο και ακτίνες ρ και R (ρ<r). Οι χορδές ΔΓ και ΖΕ του κύκλου (Ο,R) εφάπτονται του κύκλου (Ο, ρ) στα σημεία Α και Β αντίστοιχα. α. Να αποδείξετε ότι ΔΓ=ΖΕ.

61 65 β. Αν οι ΔΓ και ΖΕ προεκτεινόμενες τέμνονται στο σημείο Κ, να αποδείξετε ότι το τρίγωνο ΚΕΓ είναι ισοσκελές Έστω ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ και Μ το μέσο της πλευράς ΒΓ. Στα σημεία Β και Γ φέρουμε κάθετες στη ΒΓ προς το ίδιο μέρος, και θεωρούμε σε αυτές σημεία Δ και Ε αντίστοιχα, τέτοια ώστε ΜΔ = ΜΕ. α. Τα τμήματα ΒΔ και ΓΕ είναι ίσα. β. Το τετράπλευρο ΒΔΕΓ είναι ορθογώνιο παραλληλόγραμμο Δίνεται ισοσκελές τραπέζιο ΑΒΓΔ, το σημείο Μ είναι το μέσο της πλευράς ΔΓ και τα σημεία Κ και Λ είναι τα μέσα των μη παράλληλων πλευρών του ΑΔ και ΒΓ αντίστοιχα. α. Τα τμήματα ΚΜ και ΛΜ είναι ίσα.

62 66 β. Τα τμήματα ΑΜ και ΒΜ είναι ίσα Δίνεται γωνία xαy και η διχοτόμος της Αδ. Από τυχαίο σημείο Β της Αx φέρνουμε κάθετη στη διχοτόμο, η οποία τέμνει την Αδ στο Δ και την Ay στο Γ. Να αποδείξετε ότι : α. Τα τμήματα ΑΒ και ΑΓ είναι ίσα. β. Το τυχαίο σημείο Ε της Αδ ισαπέχει από τα Β και Γ Έστω ορθογώνιο τρίγωνο ΑΒΓ με Α= 9 και Β= 3. Αν τα σημεία Ε και Δ είναι τα μέσα των ΑΒ και ΒΓ αντίστοιχα με ΕΔ=1, να υπολογίσετε τα τμήματα: α. ΑΓ β. ΒΓ..

63 67 γ. ΑΔ.. Να δικαιολογήσετε τις απαντήσεις σας Θεωρούμε κύκλο διαμέτρου ΒΓ. Φέρουμε την εφαπτομένη του κύκλου σε σημείο του Α ώστε να σχηματίζει με τη χορδή ΑΓ γωνία 45. Φέρουμε επίσης μια παράλληλη ευθεία στη ΒΓ που τέμνει την ΑΒ στο Δ και την ΑΓ στο Ε. α. Να υπολογίσετε τις γωνίες του τριγώνου ΒΑΓ. Μονάδες 1 β. Να αποδείξετε ότι το τετράπλευρο ΒΓΕΔ είναι ισοσκελές τραπέζιο και να υπολογίσετε τις γωνίες του. Μονάδες Δίνονται δυο ίσοι κύκλοι (Ο,ρ) και (Κ,ρ) με ΟΚ=ρ, οι οποίοι τέμνονται στα σημεία Α και Δ. α. Να αποδείξετε ότι το τρίγωνο ΟΑΚ είναι ισόπλευρο. β. Να υπολογίσετε τις γωνίες του τριγώνου ΒΑΚ. Μονάδες 1 Μονάδες 15

64 Δίνονται τα τμήματα ΑΓ=ΒΔ που τέμνονται στο σημείο Ο έτσι ώστε ΟΑ=ΟΒ, και τα σημεία Η και Ζ στα τμήματα ΑΓ και ΒΔ αντίστοιχα, έτσι ώστε ΟΗ=ΟΖ. α. Οι γωνίες Α Ο και β. ΑΖ=ΒΗ. ΒΓΟ είναι ίσες Έστω ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ. Από τα μέσα Κ και Λ των πλευρών ΑΓ και ΑΒ αντίστοιχα, φέρουμε τα κάθετα τμήματα ΚΕ και ΛΖ στην πλευρά ΒΓ. α. Τα τρίγωνα ΚΕΓ και ΛΖΒ είναι ίσα. Μονάδες 15 β. ΕΗ=ΖΘ, όπου Η, Θ τα μέσα των τμημάτων ΚΓ, ΛΒ αντίστοιχα. Μονάδες 1

65 Έστω κύκλος με κέντρο Ο και ακτίνα ρ. Σε σημείο Ν του κύκλου φέρουμε την εφαπτόμενή του, και εκατέρωθεν του Ν θεωρούμε σημεία Α και Β, τέτοια ώστε ΝΑ=ΝΒ. Οι ΟΑ και ΟΒ τέμνουν τον κύκλο στα Κ και Λ αντίστοιχα. α. Το τρίγωνο ΑΟΒ είναι ισοσκελές. β. Το σημείο Ν είναι μέσο του τόξου ΚΛ Έστω κύκλος με κέντρο Ο και ακτίνα ρ. Θεωρούμε διάμετρο ΑΒ και τυχαίο σημείο Γ του κύκλου. Αν ΑΕ κάθετο στην ΟΓ και ΓΔ κάθετο στην ΑΟ να αποδείξετε ότι: α. Το τρίγωνο ΔΟΕ είναι ισοσκελές. β. Η ΟΖ διχοτομεί τη γωνία ΑΟΓ και προεκτεινόμενη διέρχεται από το μέσο του τόξου ΑΓ.

66 Έστω κύκλος με κέντρο Ο και ακτίνα ρ. Θεωρούμε κάθετες ακτίνες ΟΑ, ΟΓ και εφαπτόμενο στον κύκλο τμήμα ΑΒ με ΑΒ = ΟΓ. α. Να αποδείξετε ότι τα τμήματα ΑΟ και ΒΓ διχοτομούνται. β. Να υπολογίσετε τις γωνίες του τετραπλεύρου ΑΒΟΓ. Μονάδες 1 Μονάδες Έστω κύκλος με κέντρο Ο και ακτίνα ρ. Θεωρούμε την ακτίνα ΟΑ και τη χορδή ΒΓ κάθετη στην ΟΑ στο μέσο της Μ. α. Να αποδείξετε ότι το τετράπλευρο ΑΓΟΒ είναι ρόμβος. β. Να υπολογίσετε τις γωνίες του τετραπλεύρου ΑΓΟΒ. Μονάδες 1 Μονάδες Έστω ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ). Στις προεκτάσεις των πλευρών ΑΒ και ΑΓ προς το Α φέρνουμε τμήματα ΒΔ και ΓΕ κάθετα στις ΑΓ και ΑΒ αντίστοιχα.

67 71 α. Να αποδείξετε ότι ΒΔ = ΓΕ. β. Αν Μ το μέσο της ΒΓ τότε: i. Να αποδείξετε ότι ΜΔ = ΜΕ. ii. Nα αποδείξετε ότι η ΑΜ διχοτομεί τη γωνία ΜΕ. Μονάδες Δίνεται ρόμβος ΑΒΔΓ. Στην προέκταση της διαγωνίου ΑΔ (προς το Δ) παίρνουμε τυχαίο σημείο Ε. α. Το σημείο Ε ισαπέχει από τις προεκτάσεις των πλευρών ΑΒ και ΑΓ (προς το μέρος των Β και Γ αντίστοιχα). Μονάδες 1 β. Το σημείο Ε ισαπέχει από τα σημεία Β και Γ. Μονάδες Έστω τρίγωνο ΑΒΔ με Α= 12. Εξωτερικά του τριγώνου κατασκευάζουμε τα ισόπλευρα τρίγωνα ΑΕΒ και ΑΖΔ.

68 72 α. Τα τρίγωνα ΑΕΖ και ΑΒΔ είναι ίσα. β. Το τετράπλευρο ΒΔΖΕ είναι ισοσκελές τραπέζιο Σε κύκλο κέντρου Ο φέρουμε δυο διαμέτρους του ΑΒ και ΓΔ α. Οι χορδές ΑΓ και ΒΔ του κύκλου είναι ίσες. β. Το τετράπλευρο ΑΓΒΔ είναι ορθογώνιο Έστω κύκλος με κέντρο Ο και ακτίνα ρ. Από σημείο Α εκτός του κύκλου, φέρουμε τα εφαπτόμενα τμήματα ΑΒ και ΑΓ. Τα σημεία Ε και Δ είναι τα αντιδιαμετρικά σημεία των Β και Γ αντίστοιχα.

69 73 α. Τα τρίγωνα ΑΒΕ και ΑΓΔ είναι ίσα. β. Τα τρίγωνα ΑΒΔ και ΑΓΕ είναι ίσα Έστω ορθογώνιο τρίγωνο ΑΒΓ με Β= 9 και Ζ το μέσο του ΑΓ. Με υποτείνουσα το ΑΓ κατασκευάζουμε ορθογώνιο ισοσκελές τρίγωνο ΑΔΓ με = 9. α. Να αποδείξετε ότι ΒΖ = ΔΖ. β. Αν ΑΓΒ=, να υπολογίσετε τις γωνίες ΒΑΔ και ΒΓΔ Έστω ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ, και γωνία Θεωρούμε Δ και Ε τα μέσα των ΑΓ και ΒΓ αντίστοιχα. Β= α. Να αποδείξετε ότι το τρίγωνο ΕΔΓ είναι ισοσκελές και να υπολογίσετε τις γωνίες του. Μονάδες 16 β. Να αποδείξετε ότι το τρίγωνο ΑΔΕ είναι ισόπλευρο.

70 Έστω παραλληλόγραμμο ΑΒΓΔ. Προεκτείνουμε την πλευρά ΒΑ (προς το Α) και την πλευρά ΔΓ (προς το Γ) κατά τμήματα AE=AB και ΓΖ = ΔΓ. α. ΒΖ = ΕΔ β. Το τετράπλευρο ΕΒΖΔ είναι παραλληλόγραμμο Στο παρακάτω σχήμα έχουμε το χάρτη μίας περιοχής όπου είναι κρυμμένος ένας θησαυρός. Οι ημιευθείες Αx και Αy παριστάνουν δυο ποτάμια και στα σημεία Β και Γ βρίσκονται δυο πλατάνια. Να προσδιορίσετε γεωμετρικά τις δυνατές θέσεις του θησαυρού, αν είναι γνωστό ότι: α. ισαπέχει από τα δυο πλατάνια. β. ισαπέχει από τα δυο ποτάμια. γ. ισαπέχει και από τα δυο πλατάνια και από τα δυο ποτάμια.

71 75 Να αιτιολογήσετε την απάντησή σας σε κάθε περίπτωση Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Θεωρούμε σημείο Ε στην προέκταση της ΒΑ (προς το Α) και σημείο Δ στο εσωτερικό της πλευράς ΑΓ, ώστε ΑΕ=ΑΔ. α. Να υπολογίσετε τις γωνίες του τριγώνου ΑΔΕ. Μονάδες 1 β. Αν Ζ είναι το σημείο τομής της προέκτασης της ΕΔ (προς το Δ) με την ΒΓ, να αποδείξετε ότι η ΕΖ είναι κάθετη στην ΒΓ. Μονάδες Σε ορθογώνιο τρίγωνο ΑΒΓ με Α= 9 και ύψος του ΑΔ και την διάμεσο ΑΜ στην πλευρά ΒΓ. ˆ α. οι γωνίες Β και ΓΑ είναι ίσες, β.. ΑΜ = 2 Γ 658 Β>Γφέρουμε το Δίνεται παραλληλόγραμμο ΑΒΓΔ με Β= 6. Φέρουμε τα ύψη ΑΕ και ΒΖ του παραλληλογράμμου που αντιστοιχούν στην ευθεία ΔΓ. Α α. ΓΖ = 2

72 76 β. το τρίγωνο ΑΔΕ είναι ίσο με το τρίγωνο ΒΓΖ, γ. το τετράπλευρο ΑΒΖΕ είναι ορθογώνιο Έστω ορθογώνιο ΑΒΓΔ και τα σημεία Ν και Κ των ΑΒ και ΔΓ αντίστοιχα, τέτοια ώστε ΑΝ = ΚΓ. α. i. τα τρίγωνα ΑΝΔ και ΒΓΚ είναι ίσα, ii. το τετράπλευρο ΝΒΚΔ είναι παραλληλόγραμμο. β. Αν Ε και Ζ είναι τα μέσα των ΝΔ και ΔΚ αντίστοιχα, να αποδείξετε ότι το τετράπλευρο ΝΚΖΕ είναι τραπέζιο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ) και ΑΔ η διχοτόμος της γωνίας Α. Από το σημείο Δ φέρουμε την παράλληλη προς την ΑΒ που τέμνει την ΑΓ στο Ε. α. Να αποδείξετε ότι το τρίγωνο ΕΔΓ είναι ορθογώνιο. β. Να υπολογίσετε τη γωνία ΑΔΕ. γ. Αν η γωνία Β είναι 2 μοίρες μεγαλύτερη της γωνίας υπολογίσετε τη γωνία Ε Γ. ˆ Γ, να Δίνεται ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ ) με ΑΒ=8 και ΔΓ=12. Αν ΑΗ και ΒΘ τα ύψη του τραπεζίου, α. να αποδείξετε ότι ΔΗ = ΘΓ. β. να υπολογίσετε τη διάμεσο του τραπεζίου.

73 Στο παρακάτω σχήμα η ευθεία ε εφάπτεται του κύκλου (O,ρ) στο σημείο Γ. α. Να υπολογίσετε τις γωνίες x,y και ω δικαιολογώντας σε κάθε περίπτωση την απάντησή σας. Μονάδες 15 β. Να βρείτε το είδος του τριγώνου ΟΑΓ ως προς τις πλευρές. Μονάδες Έστω κύκλος κέντρου Κ, μια διάμετρός του ΒΓ και σημείο Α του κύκλου τέτοιο ώστε ΒΑ=ΚΓ. Αν Δ τυχαίο σημείο του κύκλου διαφορετικό των Β και Γ, α. να αποδείξετε ότι το τρίγωνο ΒΚΑ είναι ισόπλευρο. β. να υπολογίσετε την γωνία Β Α. γ. να υπολογίσετε τις γωνίες του τριγώνου ΑΒΓ.

74 Στο τραπέζιο του παρακάτω σχήματος έχουμε Γ ΑΒ = Α =, = 6 και Μ το μέσο της πλευράς ΓΔ α. η ΔΒ είναι διχοτόμος της γωνίας β. η ΒΜ χωρίζει το τραπέζιο σε ένα ρόμβο και ένα ισόπλευρο τρίγωνο. Μονάδες Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στα σημεία Β και Γ της ΒΓ φέρουμε προς το ίδιο μέρος της ΒΓ, τα τμήματα Β ΒΓ και ΓΕ ΒΓ τέτοια ώστε ΒΔ=ΓΕ. Αν Μ το μέσο της ΒΓ, να αποδείξετε ότι : α. τα τρίγωνα ΒΔΜ και ΓΕΜ είναι ίσα, β. ΑΔ=ΑΕ Έστω ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). 6593

75 79 α. Να αποδείξετε ότι τα μέσα Δ και Ε των πλευρών ΑΒ και ΑΓ αντίστοιχα, ισαπέχουν από τη βάση ΒΓ. β. Αν Α= +Β, να υπολογίσετε τις γωνίες του τριγώνου ΑΒΓ Στο παρακάτω σχήμα, να αποδείξετε ότι: 6595 α. το τρίγωνο ΑΒΓ είναι ισοσκελές. β. η γωνία ΑΕΔ είναι ορθή Δίνεται τρίγωνο ΑΒΓ με ΑΒ<ΑΓ και Μ το μέσο της ΒΓ. Προεκτείνουμε τη διάμεσο ΑΜ κατά τμήμα ΜΔ=ΜΑ. Από το Α φέρουμε παράλληλη προς τη ΒΓ η οποία τέμνει την προέκταση της ΔΓ στο σημείο Ε. α. το τετράπλευρο ΑΒΔΓ είναι παραλληλόγραμμο, ΑΕ β. ΒΜ = Δίνεται τρίγωνο ΑΒΓ τέτοιο ώστε ΑΓ<ΑΒ. Στην πλευρά ΑΒ θεωρούμε σημείο Δ τέτοιο ώστε ΑΔ=ΑΓ και στην προέκταση της ΒΑ (προς το Α) θεωρούμε σημείο Ε τέτοιο ώστε AE=AΓ α. Γ ΕΓ,

76 8 β. η γωνία ΕΑΓ είναι διπλάσια της γωνίας ΑΔΓ Έστω κύκλος κέντρου Ο και διαμέτρου ΒΓ. Θεωρούμε τα σημεία Α και Δ του κύκλου εκατέρωθεν της ΒΓ, τέτοια ώστε το τόξο ΒΔ να είναι διπλάσιο του τόξου ΔΓ. Να υπολογίσετε: α. το μέτρο x του τόξου ΓΔ β. τη γωνία ΒΟΔ γ. τη γωνία ΒΑΔ Σε παραλληλόγραμμο ΑΒΓΔ είναι ΕΖ η διάμεσος του τριγώνου ΔΕΓ Β= 12 και Ε ΒΓ. Έστω α. Να υπολογίσετε τις γωνίες Α και Γ του παραλληλογράμμου.

77 81 β. Αν Κ είναι το μέσο της πλευράς ΑΒ, να αποδείξετε ότι ΕΖ=ΑΚ. γ. Να υπολογίσετε τη γωνία ΕΖΓ Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ) και η διχοτόμος του ΒΔ. Από το Δ φέρουμε ΔΕ ΒΓ που τέμνει την προέκταση της ΑΒ (προς το Α) στο Ζ. α. ΒΕ=ΑΒ, β. το τρίγωνο BΓΖ είναι ισοσκελές.

78 82 ΘΕΜΑ Δ Στο τρίγωνο ΑΒΓ του παρακάτω σχήματος, η κάθετη από το μέσο Μ της ΒΓ τέμνει την προέκταση της διχοτόμου ΑΔ στο σημείο Ε. Αν Θ, Ζ είναι οι προβολές του Ε στις ΑΒ, ΑΓ, να αποδείξετε ότι: α. Το τρίγωνο ΕΒΓ είναι ισοσκελές. β. Τα τρίγωνα ΘΒΕ και ΖΓΕ είναι ίσα. γ. A Γ E + A Β E = 18 Μονάδες Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ) με Β= 5, το ύψος του ΑΔ και σημείο Ε στην ΔΓ ώστε ΔΕ=ΒΔ. Το σημείο Ζ είναι η προβολή του Γ στην ΑΕ. α. i. Το τρίγωνο ΑΒΕ είναι ισοσκελές.

79 83 Μονάδες 6 ii. ΓΑ E = 1 β. Να υπολογίσετε τις γωνίες του τριγώνου ΖΓΕ. Μονάδες Δίνεται τρίγωνο ΑΒΓ, στο οποίο η εξωτερική του γωνία Γ είναι διπλάσια της εσωτερικής του γωνίας Α. Από την κορυφή Α διέρχεται ημιευθεία Ax // ΒΓ στο ημιεπίπεδο (ΑΒ, Γ). Στην ημιευθεία Ax θεωρούμε σημείο Δ τέτοιο ώστε ΑΔ=ΒΓ. α. Η ΒΔ διέρχεται από το μέσο του τμήματος ΑΓ. β. Η ΓΔ είναι διχοτόμος της Γ εξ γ. Το τρίγωνο ΑΒΓ είναι ισοσκελές Δίνεται ευθύγραμμο τμήμα ΑΒ και στο εσωτερικό του θεωρούμε τα σημεία Γ, Δ ώστε να ισχύει ΑΓ= ΓΔ= ΔΒ. Επίσης θεωρούμε σημείο Ο εκτός του ευθυγράμμου τμήματος ΑΒ έτσι ώστε να ισχύουν ΟΓ=ΑΓ και ΟΔ=ΔΒ.

80 84 α. i. η γωνία ΓΟ είναι 6 ii. οι γωνίες ΟΑΓ και ΟΒ είναι ίσες και κάθε μια ίση με β. Αν Μ το μέσον του ευθυγράμμου τμήματος ΑΒ, να αποδείξετε ότι 2ΟΜ=ΟΑ Σε τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) είναι ΓΔ= 2ΑΒ. Επίσης τα Ζ, Η, Ε είναι τα μέσα των ΑΔ, ΒΓ και ΔΓ αντίστοιχα. Ακόμη η ΖΗ τέμνει τις ΑΕ, ΒΕ στα σημεία Θ, Ι αντίστοιχα. α. Να δείξετε ότι, το τετράπλευρο ΑΒΓΕ είναι παραλληλόγραμμο. Μονάδες 1 β. Να δείξετε ότι, τα σημεία Θ, Ι είναι μέσα των ΑΕ, ΒΕ αντίστοιχα. γ. Να δείξετε ότι 3 ZH = ΑΒ. 2 Μονάδες 5 Μονάδες Δίνεται κύκλος με κέντρο Ο, και έστω ΑΒ μια διάμετρος του, Γ το μέσο του ενός ημικυκλίου του και Δ τυχαίο σημείο του άλλου. Στην προέκταση της ΔΒ (προς το Β) θεωρούμε σημείο Ε ώστε ΒΕ=ΑΔ.

81 85 α. i. Τα τρίγωνα ΑΔΓ και ΒΕΓ είναι ίσα. ii. Η ΓΔ είναι κάθετη στην ΓΕ. β. Να αιτιολογήσετε γιατί, στην περίπτωση που το σημείο Δ είναι το αντιδιαμετρικό του Γ, η ΓΕ είναι εφαπτομένη του κύκλου Σε τρίγωνο ΑΒΓ ισχύει Α+ Γ = 2Β και έστω ΑΔ ύψος και ΒΕ διχοτόμος του τριγώνου που τέμνονται στο Ζ. α. i. ii. Β= 6 και ΑΖ=ΒΖ. 3 Α = ΒΖ 2 Μονάδες 1

82 86 β. Αν είναι γνωστό ότι το τρίγωνο ΑΖΕ είναι ισόπλευρο, να υπολογίσετε τις άλλες γωνίες του τριγώνου ΑΒΓ Στην παρακάτω εικόνα φαίνεται μια κρεμάστρα τοίχου η οποία αποτελείται από έξι ίσα ευθύγραμμα κομμάτια ξύλου (ΑΔ, ΒΓ, ΓΖ, ΔΗ, ΖΚ, ΗΛ) που είναι στερεωμένα με έντεκα καρφιά (Α, Β, Γ, Δ, Θ, Ε, Μ, Η, Κ, Λ, Ζ). Αν το σημείο Θ, είναι μέσο των τμημάτων ΑΔ και ΒΓ ενώ το σημείο Ε είναι μέσο των τμημάτων ΓΖ και ΔΗ, α. Το τετράπλευρο ΓΗΖΔ είναι ορθογώνιο. β. Τα σημεία Β, Δ, Ζ είναι συνευθειακά. γ. Το τετράπλευρο ΑΓΖΔ είναι παραλληλόγραμμο. Μονάδες 1 Μονάδες Δίνεται ευθεία (ε) και δυο σημεία Α, Β εκτός αυτής έτσι ώστε η ευθεία ΑΒ να μην είναι κάθετη στην (ε). Φέρουμε ΑΔ, ΒΓ κάθετες στην (ε) και Μ, Ν μέσα των ΑΒ και ΓΔ αντίστοιχα. α. Αν τα Α, Β είναι στο ίδιο ημιεπίπεδο σε σχέση με την (ε) i. να εξετάσετε αν το τετράπλευρο ΑΒΓΔ είναι, παραλληλόγραμμο, τραπέζιο ή ορθογώνιο σε καθεμία από τις παρακάτω περιπτώσεις, αιτιολογώντας την απάντησή σας: 1. ΑΔ < ΒΓ Μονάδες 4 2. ΑΔ = ΒΓ. Μονάδες 4 ii. να εκφράσετε το τμήμα ΜΝ σε σχέση με τα τμήματα ΑΔ, ΒΓ στις δυο προηγούμενες περιπτώσεις. Μονάδες 6

83 87 β. Αν η ευθεία (ε) τέμνει το τμήμα ΑΒ στο μέσο του Μ να βρείτε το είδος του τετραπλεύρου ΑΓΒΔ (παραλληλόγραμμο, τραπέζιο, ορθογώνιο) και να δείξετε ότι τα Μ, Ν ταυτίζονται. Να αιτιολογήσετε την απάντησή σας Στο παρακάτω σχήμα δίνεται τρίγωνο ΑΒΓ, τα ύψη του ΒΔ και ΓΕ που τέμνονται στο σημείο Η και το μέσο Μ της πλευράς ΒΓ. α. Να αποδείξετε ότι i. ΜΔ=ΜΕ Μονάδες 1 ii. Η ευθεία ΑΗ τέμνει κάθετα τη ΒΓ και ότι ΑΗ =Γ, όπου Γ η γωνία του τριγώνου ΑΒΓ. Μονάδες 5 γ. Να βρείτε το ορθόκεντρο του τριγώνου ΑΒΗ. Μονάδες Δύο κύκλοι (Κ,ρ), (Λ,R) τέμνονται σε δύο σημεία Α, Β. Αν Γ και Δ είναι τα αντιδιαμετρικά σημεία του Α στους δύο κύκλους, τότε να αποδείξετε ότι: α. ΑΒΓ = 9 Μονάδες 5

84 88 β. τα σημεία Γ, Β, Δ είναι συνευθειακά. Μονάδες 1 γ. το τετράπλευρο με κορυφές τα σημεία Κ,Λ,Γ,Δ είναι τραπέζιο. Μονάδες Θεωρούμε παραλληλόγραμμο ΑΒΓΔ και τις προβολές Α, Β, Γ, Δ των κορυφών του Α, Β, Γ, Δ αντίστοιχα, σε μια ευθεία ε. α. Αν η ευθεία ε αφήνει τις κορυφές του παραλληλογράμμου στο ίδιο ημιεπίπεδο και είναι ΑΑ =3, ΒΒ =2, ΓΓ =5, τότε: i. Να αποδείξετε ότι η απόσταση του κέντρου του παραλληλογράμμου από την ε είναι ίση με 4. ii. Να βρείτε την απόσταση ΔΔ. β. Αν η ευθεία ε διέρχεται από το κέντρο του παραλληλογράμμου και είναι παράλληλη προς δύο απέναντι πλευρές του, τι παρατηρείτε για τις αποστάσεις ΑΑ, ΒΒ, ΓΓ, ΔΔ ; Να αιτιολογήσετε την απάντησή σας

85 Δίνεται ισόπλευρο τρίγωνο ΑΒΓ και τα ύψη του ΒΚ και ΓΛ, τα οποία τέμνονται στο Ι. Αν τα σημεία Μ και Ν είναι τα μέσα των ΒΙ και ΓΙ αντίστοιχα, να αποδείξετε ότι: α. Το τρίγωνο ΒΙΓ είναι ισοσκελές Μονάδες 5 β. Τα τρίγωνα ΒΙΛ και ΓΙΚ είναι ίσα Μονάδες 5 γ. Το ΑΙ προεκτεινόμενο διέρχεται από το μέσο της πλευράς ΒΓ. Μονάδες 5 δ. Το τετράπλευρο ΜΛΚΝ είναι ορθογώνιο παραλληλόγραμμο. Μονάδες Δίνεται το ισόπλευρο τρίγωνο ΑΒΓ που είναι εγγεγραμμένο στον κύκλο με κέντρο Ο και ακτίνα ρ. Τα τμήματα ΓΖ και ΒΖ είναι τα εφαπτόμενα τμήματα του κύκλου στα σημεία Γ και Β αντίστοιχα. Αν το τμήμα ΘΗ είναι κάθετο στο τμήμα ΑΖ στο Ζ,

86 9 α. Το τρίγωνο ΖΒΓ είναι ισόπλευρο. β. Το τετράπλευρο ΑΓΖΒ είναι ρόμβος. γ. Το τετράπλευρο ΒΓΗΘ είναι τραπέζιο, με ΒΘ = ΒΖ και ΘΗ = 2ΒΓ. Μονάδες Οι κύκλοι (Κ, ρ) και (Λ, 3ρ) εφάπτονται εξωτερικά στο σημείο Α. Μία ευθεία ε εφάπτεται εξωτερικά και στους δυο κύκλους στα σημεία Β και Γ αντίστοιχα και τέμνει την προέκταση της διακέντρου ΚΛ στο σημείο Ε. Φέρουμε από το σημείο Κ παράλληλο τμήμα στην ε που τέμνει το τμήμα ΛΓ στο Δ. α. Να αποδείξετε ότι το τετράπλευρο ΒΓΔΚ είναι ορθογώνιο. β. Να αποδείξετε ότι η γωνία ΔΚΛ είναι 3. γ. Να αποδείξετε ότι το τμήμα ΕΛ=6ρ, όπου ρ η ακτίνα του κύκλου (Κ, ρ) Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α= 9 ) και η διχοτόμος του ΒΔ. Από το Δ φέρουμε και ονομάζουμε Ζ το σημείο στο οποίο η ευθεία ΕΔ τέμνει την προέκταση της ΒΑ. α. Το τρίγωνο ΑΒΕ είναι ισοσκελές. Μονάδες 6

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) Να αποδείξετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

Λύκειο Μεταμόρφωσης -Τράπεζα θεμάτων Γεωμετρίας Α Λυκείου-Κεφ. Τρίγωνα

Λύκειο Μεταμόρφωσης -Τράπεζα θεμάτων Γεωμετρίας Α Λυκείου-Κεφ. Τρίγωνα 1.Από εξωτερικό σημείο Σ κύκλου (Κ,ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του κύκλου αντίστοιχα. α) Να αποδείξετε

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

1=45. β) Να υπολογίσετε τη γωνία φ.

1=45. β) Να υπολογίσετε τη γωνία φ. 1. Στο σχήµα που ακολουθεί, η Αx είναι εφαπτοµένη του κύκλου (Ο, ρ) σε σηµείο του Α και επιπλέον ισχύουν ΓΑ x =85 0 και BA =40 0. α) Να αποδείξετε ότι ˆΒ 1=45. β) Να υπολογίσετε τη γωνία φ. 2. Στο ακόλουθο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ. 1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β

Διαβάστε περισσότερα

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ. 1. Θεωρούµε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο µέσο της πλευράς ΑΒ φέρουµε κάθετη ευθεία που τέµνει την ΑΓ στο Ε. Από το Ε φέρουµε ευθεία παράλληλη στη βάση ΒΓ που τέµνει την ΑΒ στο Ζ. α) Να αποδείξετε

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130 ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

Λύκειο Μεταμόρφωσης -Τράπεζα θεμάτων Γεωμετρίας Α Λυκείου-Κεφ. Παράλληλες ευθείες

Λύκειο Μεταμόρφωσης -Τράπεζα θεμάτων Γεωμετρίας Α Λυκείου-Κεφ. Παράλληλες ευθείες 1. Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι Â =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ. α) Να υπολογίσετε τις

Διαβάστε περισσότερα

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ. α) Να υπολογίσετε

Διαβάστε περισσότερα

Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης

Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ ο ΘΕΜΑ 84. Δίνεται ισοσκελές τρίγωνο ΑΒΓ B EH B και Z B, να αποδείξετε ότι: α) Τα τρίγωνα ΒΓΔ και ΓΒΕ

Διαβάστε περισσότερα

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές.

Διαβάστε περισσότερα

Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. 7η έκδοση

Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. 7η έκδοση Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 7η έκδοση Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ ο ΘΕΜΑ 84. Δίνεται ισοσκελές τρίγωνο ΑΒΓ B EH B και Z B, να α) Τα τρίγωνα ΒΓΔ και ΓΒΕ είναι

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

Γεωµετρία Α Γενικού Λυκείου

Γεωµετρία Α Γενικού Λυκείου Γεωµετρία Α Γενικού Λυκείου Απαντήσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή απαντήσεων: Αθανάσιος Τσιούµας Χρησιμοποιήστε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΛΛΗΛΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΛΛΗΛΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΛΛΗΛΕΣ 1 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΒΖ είναι παραλληλόγραµµο.

Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΒΖ είναι παραλληλόγραµµο. 1. ίνεται παραλληλόγραµµο ΑΒΓ µε ΑΒ=2ΒΓ. Προεκτείνουµε την πλευρά Α κατά τµήµα Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΓΒ είναι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΝΑΛΟΓΙΕΣ Α. ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ Ο 1. Δίνεται τρίγωνο ABΓ με AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει τις AB,AΓ στα Δ,E αντίστοιχα. α) Να αποδείξετε ότι AΔ = AB

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ ) ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ.3-4-5-6.) 1. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Στην προέκταση της ΑΓ προς το Γ παίρνουμε τμήμα ΓΔ=ΑΓ. Έστω Ε τυχαίο σημείο της πλευράς ΒΓ και Ζ σημείο της προέκτασης της ΓΒ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1. ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ. ΕΝΟΤΗΤΑ 1 Η : Τα βασικά γεωμετρικά σχήματα 1

ΕΝΟΤΗΤΑ 1. ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ. ΕΝΟΤΗΤΑ 1 Η : Τα βασικά γεωμετρικά σχήματα 1 ΕΝΟΤΗΤΑ Η : Τα βασικά γεωμετρικά σχήματα ΕΝΟΤΗΤΑ. ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ Όταν ήμουν χρονών άρχισα να διαβάζω τα Στοιχεία του Ευκλείδη Αυτό ήταν ένα από τα μεγάλα γεγονότα στη ζωή μου, τόσο εκτυφλωτικό

Διαβάστε περισσότερα

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΩΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Θεωρούμε το ισόπλευρο τρίγωνο ΑΒΓ και έστω ένα σημείο της πλευράς ΑΓ. Κατασκευάζουμε το παραλληλόγραμμο ΒΓΕ και έστω Ζ η τομή της Ε με την ΑB. Ονομάζουμε

Διαβάστε περισσότερα

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr 9--0 Θεώρημα Θαλή.897. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

Ασκήσεις - Πυθαγόρειο Θεώρηµα

Ασκήσεις - Πυθαγόρειο Θεώρηµα Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ 1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ α). Να αποδείξετε ότι : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα ισούται με το γινόμενο των προβολών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (14) -- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος -- Τράπεζα θεμάτων Μαθηματικών

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι ΓΕΩΜΕΤΡΙΑ 90 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Ερωτήσεις πολλαπλής επιλογής 1. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ έχει Α = 90, β = 9 cm, γ = 1 cm και την ΑΜ διάµεσο. Το µήκος του ΑΜ ισούται µε: Α. 9. 9 Ε. 1 15 Β. 6 Γ..

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ. 2ο ΘΕΜΑ

ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ. 2ο ΘΕΜΑ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ ο ΘΕΜΑ 8. Δίνεται παραλληλόγραμμο ΑΒΓΔ με AB B. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα E A και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο Η. α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΔΕΓΒ είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ. α) Να υπολογίσετε τις γωνίες

Διαβάστε περισσότερα

Εφαρμογές της αναλυτικοσυνθετικής μεθόδου. Δέκα Στοιχειώδεις Κατασκευές:

Εφαρμογές της αναλυτικοσυνθετικής μεθόδου. Δέκα Στοιχειώδεις Κατασκευές: Δέκα Στοιχειώδεις Κατασκευές: Κ 1 : Κατασκευή ευθείας διερχόμενης από δύο σημεία. Κ 2 : Κατασκευή κύκλου με δοθέν κέντρο και δοθείσα ακτίνα. Κ 3 : Κατασκευή ισοπλεύρου τριγώνου Κ 4 : Κατασκευή ευθυγράμμου

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ.3414. Βεϊζη Αρίων Α.Μ.3551. Μουτζιάνου Γεώργιος Α.Μ. 3405. Παντελάκη Άννα Α.Μ.3341

Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ.3414. Βεϊζη Αρίων Α.Μ.3551. Μουτζιάνου Γεώργιος Α.Μ. 3405. Παντελάκη Άννα Α.Μ.3341 Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ.3414 Βεϊζη Αρίων Α.Μ.3551 Μουτζιάνου Γεώργιος Α.Μ. 3405 Παντελάκη Άννα Α.Μ.3341 Παπουτσάκης Κώστας Α.Μ.3249 Χριστοφάκη Μαρία Α.Μ.3277 1 Ορισμοί 1. Σημείο είναι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ Α Α. Να αποδείξετε ότι ισχύει α + β α + β, για κάθε α, β R. Α. Τι ονομάζουμε νιοστή ρίζα ενός μη αρνητικού αριθμού α; Α. Να χαρακτηρίσεις

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων ASKISOPOLIS Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης, Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία, Μάκος Σπύρος Μαρωνίτη Ειρήνη, Μαρωνίτης Λάμπρος

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1

ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1 ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1 ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 2 ΠΕΡΙΕΧΕΙ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΤΡΙΓΩΝΑ ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ ΤΡΑΠΕΖΙΑ ΕΓΓΕΓΡΑΜΜΕΝΑ ΣΧΗΜΑΤΑ ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 3 ΦΡΟΝΤΙΣΤΗΡΙΑ

Διαβάστε περισσότερα

. Ασκήσεις για εξάσκηση

. Ασκήσεις για εξάσκηση . Ασκήσεις για εξάσκηση Βασικές ασκήσεις Εφαρµογές 1.76 ίνεται ένα τρίγωνο ΑΒΓ µε AB= 8 και AΓ= 1. Ένας κύκλος διέρχεται από τα σηµεία Β και Γ και τέµνει τις πλευρές ΑΒ και ΑΓ στα σηµεία και Ε αντίστοιχα.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΗ. 1 Να υπολογίσετε την περίμετρο και το εμβαδόν του παρακάτω τρίγωνο ΑΒΓ που έχει ΑΒ = 17cm, ΑΓ = 25cm και ΑΔ = 15cm. ΑΣΚΗΣΗ. 2 Στο ορθογώνιο τραπέζιο είναι ΑΒ= 9cm,

Διαβάστε περισσότερα

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το 1. ίνεται ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ, Â =36o και η διχοτόµος του Β. α) Να αποδείξετε ότι: i) Τα τρίγωνα Β Γ και ΑΒΓ είναι όµοια. ii) A 2 =ΑΓ Γ β) Αν θεωρήσουµε το ΑΓ ως µοναδιαίο τµήµα (ΑΓ=1), να υπολογίσετε

Διαβάστε περισσότερα

ΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες.

ΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες. ΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες. Στο ισοσκελές τρίγωνο ΑΒΓ φέρνουµε διχοτόµο ΑΔ Σύγκριση Τριγώνων ΑΒΔ και ΑΓΔ: -ΑΒ=ΑΓ (δεδοµένο) -ΒΑΔ=ΓΑΔ (αφού ΑΔ διχοτόµος) -ΑΔ

Διαβάστε περισσότερα

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1. (απ.: Ε ΕΒΓΔΗΖ = 44 cm 2 ) (απ.: ΒΗ = 8 cm, (BHΝ) = 12 cm 2 )

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1. (απ.: Ε ΕΒΓΔΗΖ = 44 cm 2 ) (απ.: ΒΗ = 8 cm, (BHΝ) = 12 cm 2 ) Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1 1) Στο διπλανό ορθογώνιο ΑΒΓΔ, να υπολογίσετε το εμβαδόν του σκιασμένου χωρίου ΕΒΓΔΗΖ, όταν ΓΔ = 10 cm, ΒΓ = 6 cm, ΗΔ = 2 cm, ενώ ΗΖ

Διαβάστε περισσότερα

β. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση.

β. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση. 1 Τρίγωνα 11 Στοιχεία και είδη τριγώνων 111 Κύρια στοιχεία τριγώνου Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου Συγκρίνοντας τις πλευρές του τριγώνου μεταξύ τους προκύπτουν

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Καρδαμίτσης Σπύρος «Τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον

Διαβάστε περισσότερα

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ  ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691 1.. 2.. 1.,. ( ) ( ) (2 ).. ( ) (5 ),,. ; ; 2.,,. 3.,.,,. (,,,, ). : ), ) ),, ),...1 16692 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 4. 5.. 6. (,, ). 1.,

Διαβάστε περισσότερα

14ο Λύκειο Περιστερίου Κριτήριο αξιολόγησης στα κριτήρια ισότητας τριγώνων Ομάδα:Α. Όνομα:..Επώνυμο:.ημ/νία:

14ο Λύκειο Περιστερίου Κριτήριο αξιολόγησης στα κριτήρια ισότητας τριγώνων Ομάδα:Α. Όνομα:..Επώνυμο:.ημ/νία: Κριτήριο αξιολόγησης στα κριτήρια ισότητας τριγώνων Ομάδα:Α Όνομα:..Επώνυμο:.ημ/νία: ΘΕΜΑ Α μ 4χ3 Να χαρακτηρίσετε τις παρακάτω προτάσεις με το γράμμα Σ αν είναι σωστές ή με το Λ αν τις θεωρείται λανθασμένες.

Διαβάστε περισσότερα

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης Τομέας Παιδαγωγικής Ιστορίας, και Φιλοσοφίας των Μαθηματικών «Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης 0-0-06 ΘΕΜΑ α [] Σε τυχαίο ορθογώνιο τρίγωνο ΑΒΓ ( Α=90 Ο ) η διχοτόμος

Διαβάστε περισσότερα

1 Εγγεγραµµένα σχήµατα

1 Εγγεγραµµένα σχήµατα Εγγεγραµµένα σχήµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σκοπός του µαθήµατος είναι να δώσει στους µαθητές συνοπτικά τις απαραίτητες γνώσεις από τη διδακτέα ύλη της Α λυκείου που δεν διδάχθηκε ή διδάχθηκε περιληπτικά.

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της. 5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων Λύσεις Διαγωνισμάτων Λύσεις 1 ου Διαγωνίσματος Θέμα 1 ο α) Από μία κορυφή, π.χ. την Α, φέρουμε ευθεία xy ΒΓ. Τότε ω = Β και φ = Γ, ως εντός εναλλάξ των παραλλήλων xy και ΒΓ με τέμνουσες ΑΒ και ΑΓ αντίστοιχα.

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα