1=45. β) Να υπολογίσετε τη γωνία φ.
|
|
- Γάννη Καλαμογδάρτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1. Στο σχήµα που ακολουθεί, η Αx είναι εφαπτοµένη του κύκλου (Ο, ρ) σε σηµείο του Α και επιπλέον ισχύουν ΓΑ x =85 0 και BA =40 0. α) Να αποδείξετε ότι ˆΒ 1=45. β) Να υπολογίσετε τη γωνία φ. 2. Στο ακόλουθο σχήµα, η εφαπτοµένη του κύκλου στην κορυφή Α του τριγώνου ΑΒΓ σχηµατίζει γωνία φ=30 ο µε την πλευρά ΑΒ. Αν το µέτρο του τόξου Β Γ είναι 160 ο, α) να υπολογίσετε τις γωνίες του τριγώνου ΑΒΓ. β) να βρείτε το µέτρο του τόξου ΑΕΓ. 3. Σε ηµικύκλιο διαµέτρου ΑΒ προεκτείνουµε την ΒΑ προς το µέρος του Α και παίρνουµε ένα σηµείο Γ. Θεωρούµε Ε ένα σηµείο του ηµικυκλίου και έστω το σηµείο τοµής του τµήµατος ΓΕ µε το ηµικύκλιο. Αν το τµήµα Γ ισούται µε το ΟΒ και η γωνία ΒΟΕ =45 ο, να υπολογίσετε τη γωνία ΓΟ= x. 4. Στο ακόλουθο σχήµα η επίκεντρη γωνία ΒΟ είναι 120 ο και η γωνία ΓΒΑ είναι 15 ο. α) Να υπολογίσετε τη γωνία ΒΓ. β) Να αποδείξετε ότι η γωνία ω είναι 45 ο.
2 5. Σε κύκλο κέντρου Ο δίνονται οι χορδές ΑΒ και Α τέτοιες ώστε η γωνία ΒΑ να είναι 44 ο. Θεωρούµε τυχαίο σηµείο Γ του κύκλου και σχηµατίζουµε το τετράπλευρο ΒΓ Ο. α) Να υπολογίσετε τη γωνία x. β) Να αποδείξετε ότι η γωνία y είναι 136 ο. 6. Σε κύκλο κέντρου Ο θεωρούµε τρεις διαδοχικές ίσες γωνίες ΑΟΒ, ΒΟΓ και ΓΟΑ. α) Να αποδείξετε ότι η προέκταση της ακτίνας ΑΟ διχοτοµεί τη γωνία ΒΟΓ. β) Να βρείτε το είδος του τριγώνου ΑΒΓ ως προς τις πλευρές του. γ) Αν µε κέντρο Ο και ακτίνα ΟΚ όπου Κ το µέσο της ακτίνας ΟΑ, γράψουµε έναν άλλο κύκλο που θα τέµνει τις ακτίνες ΟΒ και ΟΓ στα σηµεία Λ και Μ αντίστοιχα, τότε τα τόξα ΚΜ και ΑΒ είναι ίσα; ικαιολογήστε την απάντησή σας. 7. Θεωρούµε κύκλο διαµέτρου ΒΓ. Φέρουµε την εφαπτοµένη του κύκλου σε σηµείο του Α ώστε να σχηµατίζει µε τη χορδή ΑΓ γωνία 45 ο. Φέρουµε επίσης µια παράλληλη ευθεία στη ΒΓ που τέµνει την ΑΒ στο και την ΑΓ στο Ε. α) Να υπολογίσετε τις γωνίες του τριγώνου ΒΑΓ. β) Να αποδείξετε ότι το τετράπλευρο ΒΓΕ είναι ισοσκελές τραπέζιο και να υπολογίσετε τις γωνίες του. 8. ίνονται δυο ίσοι κύκλοι (Ο,ρ) και (Κ,ρ) µε ΟΚ=ρ, οι οποίοι τέµνονται στα σηµεία Α και. α. Να αποδείξετε ότι το τρίγωνο ΟΑΚ είναι ισόπλευρο. β. Να υπολογίσετε τις γωνίες του τριγώνου ΒΑΚ.
3 9. Στο παρακάτω σχήµα η ευθεία ε εφάπτεται του κύκλου (O,ρ) στο σηµείο Γ. α) Να υπολογίσετε τις γωνίες x, y και ω δικαιολογώντας σε κάθε περίπτωση την απάντηση σας. β) Να βρείτε το είδος του τριγώνου ΟΑΓ ως προς τις πλευρές. 10. Έστω κύκλος κέντρου Κ, µια διάµετρος του ΒΓ και σηµείο Α του κύκλου τέτοιο ώστε ΒΑ=ΚΓ. Αν τυχαίο σηµείο του κύκλου διαφορετικό των Β και Γ. α) να αποδείξετε ότι το τρίγωνο ΒΚΑ είναι ισόπλευρο. β) να υπολογίσετε την γωνία Β Α. γ) να υπολογίσετε τις γωνίες του τριγώνου ΑΒΓ. 11. Έστω κύκλος κέντρου Ο και διαµέτρου ΒΓ. Θεωρούµε τα σηµεία Α και του κύκλου εκατέρωθεν της ΒΓ, τέτοια ώστε το τόξο Β να είναι διπλάσιο του τόξου Γ. Να υπολογίσετε: α) το µέτρο x του τόξου Γ. β) τη γωνία ΒΟ. γ) τη γωνία ΒΑ. 12. ίνεται κύκλος µε κέντρο Ο, και έστω ΑΒ µια διάµετρος του, Γ το µέσο του ενός ηµικυκλίου του και τυχαίο σηµείο του άλλου. Στην προέκταση της Β (προς το Β). θεωρούµε σηµείο Ε ώστε ΒΕ=Α. α) Να αποδείξετε ότι: i. Τα τρίγωνα Α Γ και ΒΕΓ είναι ίσα. ii. Η Γ είναι κάθετη στην ΓΕ. β) Να αιτιολογήσετε γιατί, στην περίπτωση που το σηµείο είναι το αντιδιαµετρικό του Γ, η ΓΕ είναι εφαπτοµένη του κύκλου.
4 13. ύο κύκλοι (Κ,ρ), (Λ,R) τέµνονται σε δύο σηµεία Α, Β. Αν Γ και είναι τα αντιδιαµετρικά σηµεία του Α στους δύο κύκλους, τότε να αποδείξετε ότι: α) ΑΒΓ =90 o. β) τα σηµεία Γ, Β, είναι συνευθειακά. γ) το τετράπλευρο µε κορυφές τα σηµεία Κ, Λ, Γ, είναι τραπέζιο. 14. ίνεται το ισόπλευρο τρίγωνο ΑΒΓ που είναι εγγεγραµµένο στον κύκλο µε κέντρο Ο και ακτίνα ρ. Τα τµήµατα ΓΖ και ΒΖ είναι τα εφαπτόµενα τµήµατα του κύκλου στα σηµεία Γ και Β αντίστοιχα. Αν το τµήµα ΘΗ είναι κάθετο στο τµήµα ΑΖ στο Ζ, να αποδείξετε ότι: α) Το τρίγωνο ΖΒΓ είναι ισόπλευρο. β) Το τετράπλευρο ΑΓΖΒ είναι ρόµβος. γ) Το τετράπλευρο ΒΓΗΘ είναι τραπέζιο, µε ΒΘ=ΒΖ και ΘΗ=2 ΒΓ. 15. Σε κύκλο κέντρου Ο θεωρούµε τα ίσα τόξα ΑΒ και ΑΓ, το καθένα ίσο µε 120 ο. Έστω και Ε τα µέσα των τόξων ΑΒ και ΑΓ αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΒΓ είναι ισόπλευρο. β) Τα τρίγωνα ΑΖ και ΑΗΕ είναι ίσα και να υπολογίσετε τις γωνίες τους. γ) Η χορδή Ε τριχοτοµείται από τις χορδές ΑΒ και ΑΓ. 16. ίνεται κύκλος (Ο,R) µε διάµετρο ΑΒ και δυο ευθείες ε 1, ε 2 εφαπτόµενες του κύκλου στα άκρα της διαµέτρου ΑΒ. Έστω ότι, µια τρίτη ευθεία ε εφάπτεται του κύκλου σε ένα σηµείο του Ε και τέµνει τις ε 1 και ε 2 στα και Γ αντίστοιχα. α) Αν το σηµείο Ε δεν είναι το µέσο του τόξου ΑΒ, να αποδείξετε ότι: i. Το τετράπλευρο ΑΒΓ είναι τραπέζιο. ii. Γ =Α +ΒΓ. β) Αν το σηµείο Ε βρίσκεται στο µέσον του τόξου ΑΒ, να αποδείξετε ότι το τετράπλευρο Α ΓΒ είναι ορθογώνιο. Στην περίπτωση αυτή να εκφράσετε την περίµετρο του ορθογωνίου Α ΓΒ ως συνάρτηση της ακτίνας R του κύκλου.
5 17. Έστω ότι ο κύκλος (Ο, ρ) εφάπτεται των πλευρών του τριγώνου ΡΓΕ στα Α, και Β. α) Να αποδείξετε ότι: i. ΡΓ=Γ +ΑΡ. ii. ΡΓ Γ =ΡΕ Ε. β) Αν ΑΓ=ΒΕ, να αποδείξετε ότι i. Το τρίγωνο ΡΓΕ είναι ισοσκελές. ii. Τα σηµεία Ρ, Ο και είναι συνευθειακά. 18. Θεωρούµε κύκλο κέντρου Ο και εξωτερικό σηµείο του Ρ. Από το Ρ φέρνουµε τα εφαπτόµενα τµήµα ΡΑ και ΡΒ. Η διακεντρική ευθεία ΡΟ τέµνει τον κύκλο στο σηµείο Λ. Η εφαπτόµενη του κύκλου στο Λ τέµνει τα ΡΑ και ΡΒ στα σηµεία Γ και αντίστοιχα. Να αποδείξετε ότι: α) το τρίγωνο ΡΓ είναι ισοσκελές. β) ΓΑ= Β. γ) η περίµετρος του τριγώνου ΡΓ είναι ίση µε ΡΑ+ΡΒ. 19. Από σηµείο Μ εξωτερικό κύκλου (Ο,ρ) φέρνουµε τις εφαπτόµενες ΜΑ και ΜΒ του κύκλου. Αν Γ είναι το συµµετρικό σηµείο του κέντρου Ο ως προς την ΜΒ, να αποδείξετε ότι: α) ΜΑ=ΜΒ=ΜΓ β) AM Γ= 3ΒΜΓ γ) το τετράπλευρο ΑΜΒΟ είναι εγγράψιµο σε κύκλο και να προσδιορίσετε το κέντρο του κύκλου. 20. ίνεται κύκλος (Ο, R) και µια επίκεντρη γωνία του ΑΟΒ =120 ο. Οι εφαπτόµενες του κύκλου στα σηµεία Α και Β τέµνονται στο σηµείο Ρ. Θεωρούµε σηµείο Μ του τόξου ΑΒ και φέρουµε τις χορδές ΑΜ και ΒΜ, οι οποίες προεκτεινόµενες τέµνουν τις ΡΒ και ΡΑ και στα σηµεία και Ε αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΡΒ είναι ισόπλευρο. β) ΜΑΒ+ΜΒΑ =60 ο. γ) Τα τρίγωνα ΑΒ και ΡΕB είναι ίσα. 21. ίνεται ηµικύκλιο διαµέτρου ΑΒ και δύο χορδές του ΑΓ και Β, οι οποίες τέµνονται στο σηµείο Ε. Φέρουµε. EZ AB. Να αποδείξετε ότι: α) Οι γωνίες ΑΓ και ΒΓ είναι ίσες. β) Τα τετράπλευρα Α ΕΖ και ΕΖΒΓ είναι εγγράψιµα. γ) Η ΕΖ είναι διχοτόµος της γωνίας ΖΓ.
6 22. ύο κύκλοι (Ο,ρ 1 ), (Κ,ρ 2 ) εφάπτονται εξωτερικά στο Ν. Μια ευθεία (ε) εφάπτεται στους δυο κύκλους στα σηµεία Α, Β αντίστοιχα. Η κοινή εφαπτοµένη των κύκλων στο Ν τέµνει την (ε) στο Μ. Να αποδείξετε ότι: α) Το Μ είναι µέσον του ΑΒ. β) ΟΜΚ =90 ο. γ) ΑΝΒ =90 ο. 23. Έστω κύκλος (Ο, ρ) και Ε το µέσον του τόξου του ΒΓ. Μια ευθεία (ε) εφάπτεται στο κύκλο στο Ε. Οι προεκτάσεις των ΟΒ, ΟΓ τέµνουν την ευθεία (ε) στα σηµεία Ζ και Η αντίστοιχα. Να αποδείξετε ότι : α) ΒΓ//ΖΗ β) ΟΖ=ΟΗ γ) Αν Β είναι το µέσον της ΟΖ: i. να αποδείξετε ότι ΖΟΗ ΒΕΖ=. 4 ii. να υπολογίσετε τις γωνίες του τριγώνου ΖΟΗ. 24. Έστω Α, Β, Γ συνευθειακά σηµεία µε ΑΒ=2ΒΓ. Θεωρούµε το µέσο Μ της ΑΒ. Προς το ίδιο ηµιεπίπεδο κατασκευάζουµε τα ισόπλευρα τρίγωνα Α Β, ΒΕΓ. Να αποδείξετε ότι: α) Το τετράπλευρο Α ΕΒ είναι τραπέζιο (Α //ΒΕ). β) Τα τρίγωνα ΜΒ, ΕΒ είναι ίσα. γ) Το τετράπλευρο ΜΒΕ είναι εγγράψιµο. 25. ίνεται οξυγώνιο τρίγωνο ΑΒΓ. Κατασκευάζουµε εξωτερικά του τριγώνου τα ισόπλευρα τρίγωνα ΑΕΒ, ΑΓ. Ονοµάζουµε Ζ το σηµείο τοµής των ευθυγράµµων τµηµάτων Β, ΓΕ. Να αποδείξετε ότι: α) Τα τρίγωνα ΑΕΓ και ΑΒ είναι ίσα και να γράψετε τα ζεύγη των ίσων γωνιών β) Τα τετράπλευρα ΑΖΓ, ΑΖΒΕ είναι εγγράψιµα. γ) Η γωνία ΒΖΓ είναι 120 ο.
7 26. ίνεται ορθή γωνία xoy =90 ο και Α, Β σηµεία των ηµιευθειών Οy, Ox, µε ΟΑ=ΟΒ. Η (ε) είναι ευθεία που διέρχεται από την κορυφή Ο και αφήνει τις ηµιευθείες Ox, Oy στο ίδιο ηµιεπίπεδο. Η κάθετος από το σηµείο Α στην (ε) την τέµνει στο και η κάθετος από το σηµείο Β στην (ε) την τέµνει στο Ε. Να αποδείξετε ότι: α) Τα τρίγωνα ΟΑ και ΟΕΒ είναι ίσα. β) Α +ΒΕ= Ε. Ε γ) ΜΝ=, όπου ΜΝ είναι το ευθύγραµµο 2 τµήµα που ενώνει τα µέσα των Ε και ΑΒ. δ) Το τρίγωνο ΜΕ είναι ορθογώνιο ισοσκελές. 27. Θεωρούµε ισόπλευρο τρίγωνο ΑΒΓ και τα σηµεία και Ε των πλευρών ΑΒ και ΑΓ αντίστοιχα, ώστε να είναι Α =ΓΕ. Έστω Ο το σηµείο τοµής των Γ και ΒΕ. α) Να αποδείξτε ότι: i. ΒΕΓ=Γ Α. ii. ΒΟΓ =120 ο. β) Να εξετάσετε αν το τετράπλευρο ΑΕΟ είναι εγγράψιµο. Να αιτιολογήσετε την απάντηση σας. 28. ίνεται ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ και Α, ΒΕ τα ύψη του. Να αποδείξετε ότι: α) ΒΓ=2Ε. β) Α ΒΕ = ˆ. 2 γ) Το τετράπλευρο ΑΕ Β είναι εγγράψιµο. δ) ΑΒΕ=Α Ε. 29. ίνονται ορθογώνια τρίγωνα ΑΒΓ και ΒΓ µε Â = ˆ =90 ο και Μ, Ν τα µέσα των ΒΓ και Α αντίστοιχα. Να αποδείξετε ότι: α) ΑΜ=Μ. β) Η ΜΝ είναι κάθετη στην Α. γ) ΓΒ =ΓΑ.
8 30. ίνεται κύκλος µε κέντρο Ο και ακτίνα ρ. Έστω σηµείο Α εξωτερικό του κύκλου και τα εφαπτόµενα τµήµατα ΑΒ και ΑΓ ώστε να ισχύει ΒΑΓ =60 ο. Έστω ότι η εφαπτοµένη του κύκλου στο τέµνει τις ΑΒ και ΑΓ στα Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: α) Το τετράπλευρο ΑΒΟΓ είναι εγγράψιµο µε ΟΑ=2ΟΒ. β) Το τρίγωνο ΑΕΖ είναι ισόπλευρο. γ) 2ΖΒ=ΑΖ. δ) Το τετράπλευρο ΕΖΒΓ είναι ισοσκελές τραπέζιο. 31. ίνεται κύκλος (Ο, ρ) και ΑΓ µια διάµετρος του. Θεωρούµε τις χορδές Α =ΒΓ. Έστω Κ και Λ τα µέσα των χορδών Γ και ΒΓ αντίστοιχα. Να αποδείξετε ότι: α) Οι χορδές ΑΒ και Γ είναι παράλληλες. β) Το τετράπλευρο ΑΒΓ είναι ορθογώνιο παραλληλόγραµµο. γ) Η Β είναι διάµετρος του κύκλου. δ) Το τετράπλευρο ΟΛΓΚ είναι ορθογώνιο παραλληλόγραµµο. 32. Στις πλευρές Αx' και Ax γωνίας x'ax θεωρούµε σηµεία Β και Γ ώστε ΑΒ=ΑΓ. Οι κάθετες στις Αx' και Αx στα σηµεία Β και Γ αντίστοιχα, τέµνονται στο. Αν οι ηµιευθείες Ay και Az χωρίζουν τη γωνία x'ax σε τρεις ίσες γωνίες και τέµνουν τις Β και Γ στα σηµεία Ε και Ζ αντίστοιχα, να αποδείξετε ότι: α) Το τρίγωνο EAZ είναι ισοσκελές. β) Το ανήκει στη διχοτόµο της γωνίας x'ax. γ) Οι γωνίες ΓΒ και ΓΑ είναι ίσες. 33. ίνεται τετράπλευρο ΑΒΓ και ο περιγεγραµµένος κύκλος (Ο,ρ) ώστε η διαγώνιος του Β να είναι διάµετρος του κύκλου. Η γωνία Β είναι διπλάσια της γωνίας και οι πλευρές ΑΒ και ΒΓ είναι ίσες. Φέρουµε κάθετη στη Β στο Ο, η οποία τέµνει τις πλευρές Α και Γ στα Ε και Ζ αντίστοιχα. α) Να υπολογίσετε τις γωνίες του τετράπλευρου ΑΒΓ. β) Να συγκρίνετε τα τρίγωνα ΑΒ και ΓΒ. γ) Να αποδείξετε ότι το τετράπλευρο ΑΒΓΟ είναι ρόµβος. δ) Να αποδείξετε ότι το τετράπλευρο ΑΒΟΕ είναι εγγράψιµο σε κύκλο.
9 34. ίνονται τα ορθογώνια τρίγωνα ΑΒΓ ( ˆΑ =90 o ) και ΒΓ ( ˆ =90 ο ) (όπου Α και εκατέρωθεν της ΒΓ) και το µέσο Μ της ΒΓ. Να αποδείξετε ότι: α) το τρίγωνο ΑΜ είναι ισοσκελές. β) ΑΜ = 2ΑΓ. γ) ΓΒ =ΓΑ. 35. Σε ορθογώνιο τρίγωνο ΑΒΓ ( ˆΑ =90 ο ) φέρουµε τη διχοτόµο του Α. Έστω Κ και Ρ οι προβολές του στις ΑΒ και ΑΓ αντίστοιχα. Η κάθετη της ΒΓ στο σηµείο τέµνει την πλευρά ΑΓ στο Ε και την προέκταση της πλευράς ΑΒ (προς το Β) στο σηµείο Ζ. α) Να αποδείξετε ότι: i. ˆΒ= ΕΓ. ii. Ε= Β β) Να υπολογίσετε τη γωνία ΓΖ. 36. Σε ορθογώνιο τρίγωνο ΑΒΓ ( ˆΑ =90 ο ) έχουµε ότι ˆΒ =30 ο. Φέρουµε το ύψος ΑΗ και τη διάµεσο ΑΜ του τριγώνου ΑΒΓ. Από την κορυφή Β φέρνουµε κάθετη στη διάµεσο ΑΜ, η οποία την τέµνει στο σηµείο Ε όπως φαίνεται στο παρακάτω σχήµα. Να αποδείξετε ότι: ΑΒ α) ΒΕ=. 2 β) ΑΗ=ΒΕ. γ) το τετράπλευρο ΑΗΕΒ είναι εγγράψιµο δ) ΕΗ//ΑΒ. 37. ίνεται οξυγώνιο τρίγωνο ΑΒΓ εγγεγραµµένο σε κύκλο (Ο,R). Έστω σηµείο του τόξου ΑΒ τέτοιο ώστε Β ΒΓ. α) Να αποδείξετε ότι Α ΑΓ. β) Έστω Η το ορθόκεντρο του τριγώνου ΑΒΓ. Να αποδείξετε ότι το τετράπλευρο Α ΒΗ είναι παραλληλόγραµµο. ΑΗ γ) Αν Μ το µέσον της ΒΓ, να αποδείξετε ότι ΟΜ=. 2
10 38. ίνεται τρίγωνο ΑΒΓ. Φέρουµε τα ύψη ΑΚ και ΓΛ. Αν Ε το µέσο της πλευράς ΑΓ τότε: α) Να αποδείξετε ότι το τρίγωνο ΚΕΛ είναι ισοσκελές. β) Αν η γωνία Β είναι 80 ο, να αποδείξετε ότι η ΚΛ είναι διχοτόµος της γωνίας ΒΚΕ. 39. Έστω κύκλος κέντρου Ο και διαµέτρου ΒΓ. Θεωρούµε τα σηµεία Α και του κύκλου εκατέρωθεν της ΒΓ, τέτοια ώστε το τόξο Β να είναι διπλάσιο του τόξου Γ. Να υπολογίσετε: α) το µέτρο x του τόξου Γ, β) τη γωνία ΒΟ, γ) τη γωνία ΒΑ.
6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.
1. Θεωρούµε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο µέσο της πλευράς ΑΒ φέρουµε κάθετη ευθεία που τέµνει την ΑΓ στο Ε. Από το Ε φέρουµε ευθεία παράλληλη στη βάση ΒΓ που τέµνει την ΑΒ στο Ζ. α) Να αποδείξετε
Διαβάστε περισσότερα2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.
1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα
Διαβάστε περισσότερα2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα.
1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) Να αποδείξετε
Διαβάστε περισσότερα1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Διαβάστε περισσότεραΑσκήσεις - Πυθαγόρειο Θεώρηµα
Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο
Διαβάστε περισσότεραα) Να υπολογίσετε τις γωνίες των τριγώνων Β Ε γ) Να υπολογίσετε τη γωνία ΕΖ.
1. Σε ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ είναι Â =80. Παίρνουµε τυχαίο σηµείο Ε στην πλευρά ΒΓ και κατόπιν τα σηµεία και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε Β =ΒΕ και ΓΕ=ΓΖ. α) Να υπολογίσετε τις
Διαβάστε περισσότερα. Ασκήσεις για εξάσκηση
. Ασκήσεις για εξάσκηση Βασικές ασκήσεις Εφαρµογές 1.76 ίνεται ένα τρίγωνο ΑΒΓ µε AB= 8 και AΓ= 1. Ένας κύκλος διέρχεται από τα σηµεία Β και Γ και τέµνει τις πλευρές ΑΒ και ΑΓ στα σηµεία και Ε αντίστοιχα.
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ
ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)
Διαβάστε περισσότεραΕρωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
Διαβάστε περισσότερα2ηέκδοση 20Ιανουαρίου2015
ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην
Διαβάστε περισσότεραΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το
1. ίνεται ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ, Â =36o και η διχοτόµος του Β. α) Να αποδείξετε ότι: i) Τα τρίγωνα Β Γ και ΑΒΓ είναι όµοια. ii) A 2 =ΑΓ Γ β) Αν θεωρήσουµε το ΑΓ ως µοναδιαίο τµήµα (ΑΓ=1), να υπολογίσετε
Διαβάστε περισσότεραΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 34 1ο ΣΧΕ ΙΟ ιδακτική ενότητα: Πυθαγόρειο Θεώρηµα ΘΕΜΑ 1ο Α. (1,5 µονάδες) Αν στο διπλανό σχήµα το Α είναι ύψος του τυχαίου τριγώνου ΑΒΓ και Ε ΑΒ,
Διαβάστε περισσότεραΟµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ
Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο
Διαβάστε περισσότεραΑπαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες
Διαβάστε περισσότεραΕ=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΒΖ είναι παραλληλόγραµµο.
1. ίνεται παραλληλόγραµµο ΑΒΓ µε ΑΒ=2ΒΓ. Προεκτείνουµε την πλευρά Α κατά τµήµα Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΓΒ είναι
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται
Διαβάστε περισσότερα4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ
4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο
Διαβάστε περισσότερα1 Εγγεγραµµένα σχήµατα
Εγγεγραµµένα σχήµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σκοπός του µαθήµατος είναι να δώσει στους µαθητές συνοπτικά τις απαραίτητες γνώσεις από τη διδακτέα ύλη της Α λυκείου που δεν διδάχθηκε ή διδάχθηκε περιληπτικά.
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
Διαβάστε περισσότεραΑσκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
Διαβάστε περισσότερα5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Διαβάστε περισσότεραA λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )
A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,
Διαβάστε περισσότεραΤράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29
Διαβάστε περισσότερα2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB
2ο ΘΕΜΑ 2845. Σε ισοσκελές τρίγωνο ΑΒΓ AB A φέρουμε τη ΑΔ και μια ευθεία (ε) παράλληλη προς τη ΒΓ, που τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΕΖ είναι
Διαβάστε περισσότεραΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
Διαβάστε περισσότεραµ =. µονάδες 12+13=25
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β 1 ΓΕΝΙΚΗ ΑΣΚΗΣΗ 1. ίνεται τρίγωνο ΑΒΓ µε α=7, β=5, γ=4. Να βρείτε: 1. το είδος του τριγώνου. την προβολή της β πάνω στη γ 3. το µήκος της διαµέσου ΒΜ 4. την προβολή
Διαβάστε περισσότεραΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΩΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Θεωρούμε το ισόπλευρο τρίγωνο ΑΒΓ και έστω ένα σημείο της πλευράς ΑΓ. Κατασκευάζουμε το παραλληλόγραμμο ΒΓΕ και έστω Ζ η τομή της Ε με την ΑB. Ονομάζουμε
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότεραΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ
ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
Διαβάστε περισσότεραΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130
ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην
Διαβάστε περισσότερα2 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό
Διαβάστε περισσότεραΚαλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
Διαβάστε περισσότεραΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ 06-7 Επειδή το ζητήσατε κορίτσια μου: Α. ΘΕΩΡΙΑ Τα κεφάλαια: ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου 9 ο Μετρικές σχέσεις, 0 ο Εμβαδά, ο Μέτρηση Κύκλου, την διδαχθείσα ύλη Β.
Διαβάστε περισσότεραΚύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.
ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο
ΕΚΕΜΒΡΙΟΣ 2011 ΘΕΜΑ 1 ο (α) Να αποδειχθεί ότι στον ίδιο ή σε ίσους κύκλους, ίσα αποστήµατα αντιστοιχούν σε ίσες χορδές. (β) Να αποδειχθεί ότι κάθε σηµείο της µεσοκαθέτου ενός ευθύγραµµου τµήµατος ισαπέχει
Διαβάστε περισσότεραΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ
ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήµα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν Α ΒΓ, Ε ΑΒ τότε το τρίγωνο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ
5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Θ ΕΜΑ Β 2814 1. Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι Α= 8. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα
Διαβάστε περισσότεραΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι
ΓΕΩΜΕΤΡΙΑ 90 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Ερωτήσεις πολλαπλής επιλογής 1. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ έχει Α = 90, β = 9 cm, γ = 1 cm και την ΑΜ διάµεσο. Το µήκος του ΑΜ ισούται µε: Α. 9. 9 Ε. 1 15 Β. 6 Γ..
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10
ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012
ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:... ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012 ΘΕΜΑ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ
1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου
Διαβάστε περισσότεραΘεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε
Θεώρημα Θαλή.8975. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και 5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. α) Να αποδείξετε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ (Τελευταία ενηµέρωση: Νοέµβριος 2016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Αναλογίες 2 1.1 Το ϑεώρηµα του Θαλή.......................... 2 1.2 Τα ϑεωρήµατα των διχοτόµων......................
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2013 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΤΑΞΗ Α ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ B Κ 1.1 ΕΝΟΤΗΤΑ : Βασικές Γεωμετρικές ένοιες Τάξη : A Γυμνασίου. Καθ. Χρήστος Μουρατίδης
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) Α1. Να αποδείξετε ότι,
Διαβάστε περισσότερακαι των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1
ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 1 ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 2 ΠΕΡΙΕΧΕΙ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΤΡΙΓΩΝΑ ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ ΤΡΑΠΕΖΙΑ ΕΓΓΕΓΡΑΜΜΕΝΑ ΣΧΗΜΑΤΑ ΦΡΟΝΤΙΣΤΗΡΙΑ 2001-ΟΡΟΣΗΜΟ 3 ΦΡΟΝΤΙΣΤΗΡΙΑ
Διαβάστε περισσότεραγεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες Β ευθεία (2 ) οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 )
γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες µη κυρτή ευθεία ( ) πλήρης (4 ) κυρτή, οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 ) συµπληρωµατικές παραπληρωµατικές φ ω ω
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ
ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ
Διαβάστε περισσότεραΕρωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **
Ερωτήσεις ανάπτυξης 1. ** ίνονται επίπεδο p και τρία µη συνευθειακά σηµεία του Α, Β και Γ καθώς και ένα σηµείο Μ, που δεν συµπίπτει µε το Α. Αν η ευθεία ΑΜ τέµνει την ευθεία ΒΓ, να δείξετε ότι το Μ είναι
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ
ΑΝΑΛΟΓΙΕΣ Α. ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ Ο 1. Δίνεται τρίγωνο ABΓ με AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει τις AB,AΓ στα Δ,E αντίστοιχα. α) Να αποδείξετε ότι AΔ = AB
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότερα3o ΚΕΦΑΛΑΙΟ : Τρίγωνα
3o ΚΕΦΑΛΑΙΟ : Τρίγωνα 4 η διδακτική ενότητα : Ισότητα τριγώνων Ερωτήσεις κατανόησης 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις : α) Υπάρχουν σημεία του επιπέδου που
Διαβάστε περισσότεραΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )
ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ.3-4-5-6.) 1. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Στην προέκταση της ΑΓ προς το Γ παίρνουμε τμήμα ΓΔ=ΑΓ. Έστω Ε τυχαίο σημείο της πλευράς ΒΓ και Ζ σημείο της προέκτασης της ΓΒ
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;
1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ
ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και
Διαβάστε περισσότεραΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του
Διαβάστε περισσότεραΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ
Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές.
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;
Διαβάστε περισσότεραΦΥΛΛΑΔΙΟ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μέρος Α. 6 Σημαντικά θεωρήματα Μέρος Β. 50 Άλυτες ασκήσεις με σχήματα
ΦΥΛΛΑΔΙΟ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μέρος Α. 6 Σημαντικά θεωρήματα Μέρος Β. 5 Άλυτες ασκήσεις με σχήματα ΓΕΝΑΡΗΣ 216 ΜΑΝΩΛΗΣ ΨΑΡΡΑΣ Σελίδα 1 6 Σημαντικά θεωρήματα της Γεωμετρίας 1. Ευθεία Euler
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ
ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο
Διαβάστε περισσότερα2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
Διαβάστε περισσότεραΟρισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου.
6.5 6.6 ΘΩΡΙ. Ορισµοί Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. Ένα τετράπλευρο λέγεται εγγράψιµο σε κύκλο, όταν µπορεί να γραφεί κύκλος που να διέρχεται
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr 9--0 Θεώρημα Θαλή.897. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότερα1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688
1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»
1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016
εν είναι δυνατή η προβολή αυτής της εικόνας αυτή τη στιγµή. ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:...
Διαβάστε περισσότερα4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =
Διαβάστε περισσότερα4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι
Διαβάστε περισσότερα6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών
6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ 1 Σε τρίγωνο με > και ορθόκεντρο Η να δείξετε ότι: Δίνεται τρίγωνο στο οποίο ισχύει: α β γ βγ Να δείξετε ότι: A 10 Δίνεται τρίγωνο με πλευρές α, β, γ και διάμεσο μα ν ισχύει η
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:
Διαβάστε περισσότεραΓεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις
Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 7 : ΑΝΑΛΟΓΙΕΣ. Δίνεται τρίγωνο ΑΒΓ (ΑΒ>ΑΓ) και ΑΔ, ΑΕ η εσωτερική και η εξωτερική διχοτόμος του αντίστοιχα. Αν είναι ΑΒ=6, ΔΒ=, ΒΓ=5 και ΒΕ=5, να αποδείξετε ότι: α) ΑΓ
Διαβάστε περισσότεραΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες
Διαβάστε περισσότεραΑ. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ
4 Βασικοί γεωµετρικοί τόποι Ανισοτικές σχέσεις Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Βασικοί γεωµετρικοί τόποι Γεωµετρικός τόπος είναι ένα σύνολο σηµείων του επιπέδου τα οποία έχουν µια κοινή ιδιότητα.τρείς από
Διαβάστε περισσότερα