ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»"

Transcript

1 ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι: i. Ορθογώνιο με ορθή γωνία την Β ii. Ορθογώνιο με ορθή γωνία την Α ii. Ορθογώνιο με ορθή γωνία την. * ια το ορθογώνιο τρίγωνο ΑΒ του σχήματος ισχύει: i. ΑΒ = Β Β ii. Α = ΑΒ Α iii. Α = Β iv. Α = Β Β v. ΑΒ = Β vi. Α = Β 3. * ια το ορθογώνιο τρίγωνο ΑΒ του σχήματος, στο οποίο η Α είναι ύψος και η ΑΜ διάμεσος, ισχύει: i. ΑΒ = Β Β Μ ii. ΑΒ = ΑΜ + Β - Α iii. ΑΒ = ΑΜ + ΒΜ iv. ΑΒ = Β - Α v. ΑΒ = Β + Α vi. ΑΒ Β = 4 + ΒΜ 4. * Το τρίγωνο ΑΒ είναι αμβλυγώνιο. Ισχύει α > β + γ. 5. * Αν γ η μεγαλύτερη πλευρά τριγώνου ΑΒ με πλευρές α, β, γ και γ > α + β, τότε αυτό είναι αμβλυγώνιο. 6. * Το τρίγωνο ΑΒ είναι ορθογώνιο στο Α. Ισχύει β < α + γ. 7. * Αν σε τρίγωνο ΑΒ με πλευρές α, β, γ ισχύει β < α + γ, τότε το τρίγωνο είναι πάντοτε οξυγώνιο. 8. * ια τυχαίο τρίγωνο ΑΒ με ύψος Α, ισχύει ΑΒ = Β Β. 9. * ε τρίγωνο ΑΒ με < 90 ισχύει Β < ΑΒ + Α. 10. * Αν σε τρίγωνο ΑΒ με πλευρές α, β, γ ισχύουν ταυτόχρονα: α < β + γ, β < α + γ, γ < α + β, τότε το τρίγωνο είναι οξυγώνιο. 11. * Υπάρχει τρίγωνο ΑΒ με πλευρές α, β, γ για το οποίο να ισχύουν ταυτόχρονα: α > β + γ, β < α + γ, γ > α + β. 1

2 1. * Αν γνωρίζουμε τις τρεις πλευρές τριγώνου ΑΒ α, β, γ, τότε συγκρίνοντας το τετράγωνο μιας οποιασδήποτε πλευράς του με το άθροισμα των τετραγώνων των δύο άλλων πλευρών, μπορούμε να διαπιστώσουμε αν το τρίγωνο είναι ορθογώνιο, οξυγώνιο ή αμβλυγώνιο. 13. * Το τρίγωνο που έχει μήκη πλευρών 5, 7, 9 είναι οξυγώνιο. 14. * το τρίγωνο ΑΒ που έχει διάμεσο την ΑΜ και ύψος το Α ισχύει: - ΑΒ = Β Μ. 15. * το διπλανό σχήμα, αν το Α είναι ύψος, ισχύει Α = ΑΒ + Β - Β. 16. * Αν Α η προβολή της πλευράς γ πάνω στην πλευρά β τριγώνου ΑΒ με πλευρές α, β, γ και ισχύουν ταυτόχρονα: α = β + γ - βα και α = β + γ + βα, τότε το ΑΒ είναι ορθογώνιο στο Α. 17. * το τρίγωνο ΑΒ είναι ΑΒ = 6 cm, Α = 8 cm και Β = 7 cm. Η ΑΜ είναι διάμεσος και το Α είναι ύψος. Το Μ ισούται με cm. 18. * το τρίγωνο ΑΒ η μ α είναι διάμεσός του. Ισχύει β + γ = μ α + α. 19. * το τρίγωνο ΑΒ η ΑΜ είναι διάμεσος και το Α είναι ύψος. Ισχύει: ΑΒ + Α = ΑΜ + Μ. 0. * Αν γνωρίζουμε τις διαμέσους ενός τριγώνου, μπορούμε να υπολογίσουμε τις πλευρές του. 1. * Η απόδειξη των θεωρημάτων της διαμέσου, μπορεί να γίνει με τη βοήθεια της γενίκευσης του Πυθαγορείου Θεωρήματος.. * Το G είναι το βαρύκεντρο τριγώνου ΑΒ. Ισχύει = G G.

3 3. * Το ευθύγραμμο τμήμα α διαιρείται σε μέσο και άκρο λόγο από το σημείο Μ όπως φαίνεται στο σχήμα. Ο λόγος φ = α x = εκφράζει το λόγο της χρυσής τομής. 4. * το διπλανό σχήμα Ο είναι το κέντρο του κύκλου και Ο = δ, ΟΑ = R. Ισχύει Α ΑΒ = δ - R. 5. * Το σημείο Ρ είναι εσωτερικό του κύκλου (Ο, R) και ΟΡ = δ < R. Αν μια ευθεία διέρχεται από το Ρ και τέμνει τον κύκλο στα Α, Β, τότε ΡΑ.ΡΒ = R - δ. 6. * Η δύναμη σημείου ως προς κύκλο και η απόσταση του σημείου από το κέντρο είναι ποσά ανάλογα. 7. * ίνονται δύο ομόκεντροι κύκλοι. ημείο Ρ κινείται στον εξωτερικό κύκλο. Η δύναμη του σημείου Ρ ως προς τον εσωτερικό κύκλο είναι σταθερή. 8. * το διπλανό σχήμα είναι Ο = 4 cm, Ο = 3 cm και ΟΒ = O 3 = x. Η τιμή του x είναι cm. 9. * Τα ευθύγραμμα τμήματα ΑΒ και τέμνονται στο σημείο Ο και είναι ΟΑ = 3 cm, ΟΒ = 6 cm, Ο = cm και Ο = 8 cm. Τα σημεία Α, Β,, είναι ομοκυκλικά. Ερωτήσεις πολλαπλής επιλογής 1. * Οι παρακάτω σχέσεις αναφέρονται στο ορθογώνιο τρίγωνο ΑΒ του σχήματος. ανθασμένη είναι η σχέση: i. Α = Β ii. ΑΒ = Β Β iii. Α = Β iv. ΑΒ + Α = Β v. ΑΒ Α = Β 3

4 4 cm. * το διπλανό σχήμα η Β σε cm ισούται με: i. 3 ii. 4 iii. 5 iv. 6 v. 7 x cm 3. * το διπλανό σχήμα η σε cm ισούται με: i. ii. 3 iii., iv. 3, v. 3,5 3 cm 6 cm x cm 4. * το διπλανό σχήμα η σε cm ισούται με: i. 5,5 ii. 8 iii. 4 iv. 5 v. 4,5 4 cm 10 cm 5. * Αν το μήκος της υποτείνουσας ορθογωνίου τριγώνου είναι 5 α, τότε τα μήκη των καθέτων πλευρών του είναι: i. 3α, α ii. α, α iii. α, α iv. α, 5 α v. 3 α, α 6. * Αν το μήκος της υποτείνουσας ορθογωνίου τριγώνου είναι α, τότε τα μήκη των καθέτων πλευρών του είναι: 1 i. α 1, α ii. α, 1 α iii. 1 1 α, α iv. α 3 4 1, α 4 v. α, α 6 cm x cm 7. * Η διαγώνιος τετραγώνου είναι 4 cm. Το μήκος της πλευράς του σε cm ισούται με: i. ii. 5 iii. 5, iv. 3 v. 8. * Το ευθύγραμμο τμήμα που είναι μέση ανάλογος των ευθυγράμμων τμημάτων με μήκη cm και 4 cm έχει μήκος σε cm: i. 8 ii. 3 iii. 6, iv. v. 3 ΑΒ 9. * το ορθογώνιο τρίγωνο του σχήματος ισχύει =. Α Β Ο λόγος ισούται με: i. 3 ii. 4 iii. iv. 1 v. 5 4

5 10. * το διπλανό σχήμα είναι ΑΒ = 4 cm, Β = 5 cm και το Α ύψος και η γωνία ΒΑ = 30. Το μήκος της πλευράς Α σε cm ισούται με: i. 3 ii. 41 iii. 10 iv. 1 v * το διπλανό σχήμα ισχύει: i. γ = β + α + αγ ii. γ = β - α - αβ iii. β = α + γ + αγ iv. β = α + γ - αγ v. β = γ + 1. * ε τρίγωνο ΑΒ με < 90 φέρνουμε τα ύψη Β και Ε. Από τις παρακάτω ισότητες λανθασμένη είναι: i. α = β + γ - βα ii. α = β + γ - γαε iii. α = Β + iv. α = β + γ + βα v. α = ΕΒ + Ε 13. * ε τρίγωνο ΑΒ με πλευρές α, β, γ ισχύει α = β + γ + βγ. Αν Α είναι η προβολή της πλευράς γ = ΑΒ στην Α τότε η γωνία ΑΒ είναι: i. 45 ii. 30 iii. 60 iv. 75 v * το τρίγωνο ΑΒ είναι = 90, β > γ, το Α ύψος και η ΑΜ = μ α διάμεσος. Από τις παρακάτω σχέσεις λανθασμένη είναι: i. β + γ = 4ΑΜ ii. β - γ = αμ iii. β = μ α + Μ + αμ iv. β + γ = μ α + α v. γ + μ α = Α + M 15. * το ορθογώνιο τρίγωνο ΑΒ ( = 90 ) είναι: i. β + γ = μ α ii. β + γ = μ α iii. β + γ = 3μ α iv. β + γ = 4μ α v. β + γ = 5μ α 16. * Το τρίγωνο ΑΒ έχει ΑΒ < Α, την ΑΜ διάμεσο και το Α ύψος. Ισχύει: i. Α - ΑΒ = Β. ii. ΑΒ - Α = Β.Μ iii. ΑΒ + Α = Β.Μ iv. Α + ΑΒ = ΑΜ.Μ v. κανένα από τα προηγούμενα 5

6 17. * ε τρίγωνο ΑΒ με πλευρές α, β, γ ισχύει: α = β + γ - βα, όπου Α η προβολή της γ πάνω στη β. Αν έχουμε β < Α, τότε: i. < 90 ii. > 90 iii. = 90 iv. > 90 v. Β > * Αν α = 10 cm, β = 9 cm και γ = 7 cm είναι τα μήκη πλευρών τριγώνου ΑΒ τότε η προβολή Α της πλευράς γ πάνω στη β σε cm είναι: i. 5 3 ii. 8 iii. 9 iv. 17 v * το διπλανό τρίγωνο είναι ΑΒ = 5 cm, Α = 7 cm και Β = 6 cm. Η ΑΜ είναι διάμεσος και το Α είναι ύψος. Το Μ έχει μήκος: i. 1 ii. iii.,5 iv. 3 v * το διπλανό σχήμα είναι Α = cm, Β = 9 cm, = 6 cm. ια να είναι ομοκυκλικά τα σημεία Α,, Β και, το πρέπει να ισούται με: i. 6 ii iii.. 6 iv * το διπλανό σχήμα η σωστή σχέση είναι: i. ΡΑ Ρ = Ρ ΡΒ ii. ΡΑ ΡΒ = Ρ Ρ iii. ΡΑ ΑΒ = Ρ iv. ΡΑ Ρ = Ρ ΡΒ v. ΡΑ = Ρ ΑΒ v * το διπλανό σχήμα η σωστή σχέση είναι: i. ΡΑ ΑΒ = Ρ ii. ΡΑ ΡΒ = Ρ Ρ iii. ΡΑ Ρ = Ρ ΡΒ iv. ΡΑ = Ρ ΑΒ v. ΡΑ Ρ = ΑΒ 3. * ε κύκλο (Ο, R) θεωρούμε τη χορδή ΑΒ. ημείο Ρ μετακινείται πάνω στη χορδή. Η δύναμη του σημείου Ρ ως προς τον κύκλο γίνεται μέγιστη όταν: i. το Ρ είναι ένα από τα άκρα Α και Β ii. το Ρ είναι μέσο της ΑΒ iii. οποιοδήποτε σημείο της ΑΒ iv. το Ρ διαιρεί το ΑΒ σε μέσο και άκρο λόγο v. κανένα από τα παραπάνω 4. * Το πρόβλημα της χρυσής τομής είναι: i. η διαίρεση ευθύγραμμου τμήματος σε μέσο και άκρο λόγο ii. η διαίρεση ευθύγραμμου τμήματος στο μέσο iii. η διαίρεση κύκλου σε δύο τόξα που το ένα είναι διπλάσιο του άλλου iv. η διαίρεση γωνίας σε τρεις ίσες γωνίες v. κανένα από τα παραπάνω 6

7 Ερωτήσεις αντιστοίχησης 1. * τη στήλη Α του παρακάτω πίνακα αναφέρονται τα μήκη των πλευρών τεσσάρων τετραγώνων. Αντιστοιχίστε κάθε στοιχείο της στήλης Α με το στοιχείο της στήλης Β που αντιστοιχεί στο μήκος της διαγωνίου του. στήλη Α στήλη Β Μήκος πλευράς τετραγώνου Μήκος διαγωνίου τετραγώνου 1. 4α. 7 α 3. 4 α 4. 5 α Α. 10 α Β. 6α. 8α. 4 α Ε. 1α Τ. 6 α. * τη στήλη Α έχουμε είδη μιας γωνίας τριγώνου ΑΒ και στη στήλη Β σχέσεις μεταξύ των πλευρών του. Να αντιστοιχήσετε σε κάθε γωνία της στήλης Α την αντίστοιχη σχέση από τη στήλη Β. στήλη Α στήλη Β 1. Α = 90 Α. β = α - γ Β. α < β + γ. Α < 90. α > β + γ 3. Β = 90. α + γ = β Ε. γ - β > α 4. Β < 90 Ζ. β < γ + α Η. γ = α + β 7

8 3. * Από κάθε σχήμα της στήλης Α προκύπτει μια σχέση της στήλης Β. Να αντιστοιχήσετε κάθε σχήμα της στήλης Α με την αντίστοιχη σχέση της στήλης Β. στήλη Α στήλη Β 1. Α. = Α.Β + ΑΒ.Β Β. Α + Β = ΑΕ + ΕΒ. ΑΒ = Α + Β + Β.Α.. Α - Β = Α - Β Ε. ΑΒ = Β + Α + Β. 3. Ζ. Α + = ΑΕ + Ε 4. * το επίπεδο του κύκλου (Ο, R) παίρνουμε σημείο που απέχει απόσταση δ από το κέντρο Ο του κύκλου. Φέρνουμε από το σημείο ευθεία που τέμνει τον κύκλο στα σημεία Α και Β. Να αντιστοιχήσετε κάθε θέση του σημείου που περιγράφεται στη στήλη Α με την αντίστοιχη τιμή του γινομένου Α Β που βρίσκεται στη στήλη Β. στήλη Α στήλη Β Το σημείο είναι: Τιμή του γινομένου Α Β 1. εσωτερικό του κύκλου. εξωτερικό του κύκλου 3. πάνω στο κέντρο 4. πάνω στον κύκλο Α. δ - R Β. R - δ. 0. δ Ε. R Ζ. R + δ 8

9 Ερωτήσεις συμπλήρωσης 1. * Με βάση το διπλανό σχήμα, όπου ΑΗ ύψος και ΑΜ διάμεσος του τριγώνου ΑΒ, να συμπληρωθούν οι ισότητες: i. Α = ΑΜ + Μ + Μ... ii. ΑΜ = ΑΗ + iii. Α - ΑΒ = iv. ΑΜ = Α + ΑΒ... H M. * ια το ορθογώνιο τρίγωνο ΑΒ του σχήματος να συμπληρωθεί ο πίνακας: ΑΒ 3 Α 4 Β Β Α 3. * ια το ορθογώνιο τρίγωνο ΑΒ του σχήματος να συμπληρωθεί ο πίνακας: 4 Α 8 Β ΑΒ Β Α 4. * Να συμπληρωθούν οι παρακάτω ισότητες σύμφωνα με το διπλανό σχήμα: i. ΑΒ = Β ii. Α = Β iii. Α = iv. Α ΑΒ = v. Β = ( ) + ( ) 9

10 5. * Να συμπληρωθούν οι παρακάτω ισότητες σύμφωνα με το Μ διπλανό σχήμα: i. ΑΒ + Α = ΑΜ + ii. Α = + iii. Α = iv. Α = Β v. Α = Α - vi. ΑΜ = Α + vii. ΑΜ = ΑΒ + Α - Ερωτήσεις ανάπτυξης 1. ** ε ισοσκελές τρίγωνο ΑΒ με κορυφή το Α, έχουμε Β = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii)το ύψος ΒΚ. ** ε ένα τετράγωνο ΑΒ ισχύει ΑΒ + Α = +. Να υπολογίσετε: i. Την πλευρά ΑΒ ii)τη διαγώνιο Α 3. ** Ορθογώνιο τρίγωνο ΑΒ ( = 90 ) είναι περιγεγραμμένο σε κύκλο (Ο, r). Αν η πλευρά ΑΒ = 16 cm και η ακτίνα r = 4 cm, να υπολογίσετε: i. Την πλευρά Β του τριγώνου ii)την πλευρά Α του τριγώνου 4. ** Ισόπλευρο τρίγωνο ΑΒ έχει ύψος ΑΗ. Αν ισχύει Β - ΑΗ = 1 cm, να υπολογίσετε: i. Την πλευρά του ii)το ύψος του υ 5. ** Αν σε τρίγωνο ΑΒ ισχύει α = β + γ, να δείξετε ότι το τρίγωνο με πλευρές 5α, 5β, 5γ είναι τρίγωνο ορθογώνιο. 6. ** Η διαφορά των τετραγώνων των δύο πλευρών τριγώνου ισούται με τη διαφορά των τετραγώνων των προβολών τους πάνω στην τρίτη πλευρά. 7. * το διπλανό σχήμα η ΑΒ είναι διάμετρος του κύκλου και η Α τυχαία χορδή του. Να δείξετε ότι η Α είναι μέση ανάλογος της διαμέτρου ΑΒ και της προβολής της πάνω στη διάμετρο ΑΒ. 8. ** ε ισοσκελές τρίγωνο ΑΒ φέρνουμε το ύψος Β. Να δείξετε ότι: (ΑΒ) + (Β) + (Α) = () + (Α) + 3 (Β). 10

11 9. ** ύο κύκλοι με ακτίνες α και 4α εφάπτονται εξωτερικά, όπως στο σχήμα. Αν ΑΒ είναι η κοινή εφαπτομένη των δύο κύκλων: i. Να δείξετε ότι το τετράπλευρο ΑΚΒ είναι τραπέζιο. ii)να υπολογίσετε το μήκος ΑΒ συναρτήσει του α. Κ α Β 4α 10. ** ίνεται ένα ισόπλευρο τρίγωνο πλευράς α. Να υπολογίσετε συναρτήσει του α: i. Tο ύψος του υ ii)tο ύψος υ του ισόπλευρου τριγώνου, που η πλευρά του είναι ίση με το ύψος υ του πρώτου τριγώνου. 11. ** Η περίμετρος ενός ρόμβου είναι 84 m. Να υπολογιστούν οι διαγώνιοί του, αν 3 γνωρίζουμε ότι η μία είναι τα της άλλης ** το τραπέζιο ΑΒ του διπλανού σχήματος Μ και Ν είναι τα μέσα των διαγωνίων του Α και Β αντίστοιχα. Να αποδείξετε ότι: E i. ΜΝ = ii. Β - Α = 4ΜΝ. Ν Μ Ε 13. ** το ισοσκελές τραπέζιο ΚΜΝ να δείξετε: i. ΖΝ = ΗΜ ii) ΚΜ - ΚΝ = Κ ΜΝ Κ Ν Ζ Η Μ 14. ** ε ορθογώνιο τρίγωνο ΑΒ ( = 90 ) η ΑΒ = 4 3 Α. Αν Α είναι το ύψος του τριγώνου, να δείξετε ότι Β = ** Έστω τυχαίο σημείο στην υποτείνουσα ορθογωνίου τριγώνου ΑΒ του διπλανού σχήματος. Η κάθετη στο τέμνει την ΑΒ στο Ε και την προέκτασή της Α στο Ζ. Αν Κ σημείο Κ Ζ της Ζ τέτοιο ώστε Β K = 90, να δείξετε: Ε i. K = ii)k = Z E 11

12 16. ** ένα ισοσκελές τρίγωνο ΑΒ η βάση του Β και το ύψος του Α έχουν το ίδιο μήκος 8 cm. Να υπολογιστεί η ακτίνα R του περιγεγραμμένου του κύκλου. O 17. ** ε ορθογώνιο τρίγωνο ΑΒ με Β =, να δείξετε ότι = ** την προέκταση της πλευράς ΑΒ ισοσκελούς τριγώνου ΑΒ παίρνουμε ΑΒ Β = ΑΒ. Φέρνουμε το ύψος Ε. Αν ισχύει ΑΒ = 4ΒΕ, να δείξετε ότι = Β + 3 Α. Κ 19. ** Να υπολογίσετε την απόσταση Κ της τσιμεντένιας σκάλας, αν το πλάτος κάθε σκαλοπατιού είναι 40 cm και το ύψος του 30 cm. Μ Α x Β 0. ** Να υπολογίσετε (σε ίντσες) την πλευρά τετράγωνης οθόνης τηλεόρασης 4 ιντσών. x 4 ίντσες ημείωση: Με την έκφραση «τηλεόραση α ιντσών» εννοούμε ότι η διαγώνιος της οθόνης είναι α ίντσες. 1. ** Να βρείτε το είδος του τριγώνου ΑΒ (ως προς τις γωνίες του) του οποίου οι πλευρές γ, β, α, είναι ανάλογες προς τους αριθμούς 4, 5 και 6 αντιστοίχως. Αν Α είναι η προβολή α + β + γ της πλευράς γ πάνω στη β, να δείξετε ότι Α =. 30. ** Ένα τρίγωνο έχει πλευρές με μήκη, 1 + 3, 6. Να δείξετε ότι η γωνία που βρίσκεται απέναντι από την πλευρά με μήκος 6 είναι ** Ενός τριγώνου ΑΒ τα μήκη των πλευρών του είναι 5 cm, 3 cm και 7 cm. i. Να προσδιοριστεί το είδος του ως προς τις γωνίες του. ii) Να υπολογιστεί σε μοίρες η γωνία του τριγώνου που βρίσκεται απέναντι από τη μεγαλύτερη πλευρά του. 4. ** τη βάση Β ισοσκελούς τριγώνου ΑΒ με ΑΒ = Α = 11 παίρνουμε σημείο, τέτοιο ώστε να είναι Β = 3 και = 7. Να υπολογίσετε το Α. 5. ** Να βρείτε το είδος του τριγώνου αν έχει διαμέσους με μήκη 3, 4, 5. 1

13 6. ** ε τρίγωνο ΑΒ με Α > ΑΒ και ορθόκεντρο Η να δείξετε ότι: Η - ΗΒ = Α - ΑΒ. 7. ** Αν κ, λ, κ + λ - κλ είναι τα μήκη των πλευρών ενός τριγώνου, να υπολογιστεί σε μοίρες η γωνία που βρίσκεται απέναντι από την πλευρά που έχει μήκος 8. ** ε τρίγωνο ΑΒ να αποδείξετε ότι αν μ β < μ γ, τότε β > γ. κ + λ - κλ. 9. ** ε τρίγωνο ΑΒ είναι = 10. Αν Β είναι το ύψος του, τότε να δείξετε ότι: i. Α = γ ii) α =β + γ + βγ 30 ** Οι πλευρές ενός τριγώνου ΑΒ είναι: ΑΒ = 3 cm, Β = 5 cm, Α = 7 cm. i. Να δείξετε ότι η γωνία Β είναι αμβλεία. ii. Να υπολογίσετε την προβολή Β της πλευράς ΑΒ πάνω στη Β. iii. Να υπολογίσετε τη γωνία Β. 30. ** ια τις βάσεις ΑΒ και τραπεζίου ΑΒ έχουμε = ΑΒ. Να δείξετε ότι Α + Β = Β + + Α. 31. ** ε κύκλο (Κ, R) παίρνουμε σημείο Μ μιας χορδής ΑΒ. Να δείξετε ότι ΚΜ + ΜΑ ΜΒ = R. 3. Με εφαρμογή του θεωρήματος των διαμέσων στο ορθογώνιο τρίγωνο ΑΒ ( = 90 ) να αποδείξετε ότι: μ α = α. 33. ** Με εφαρμογή του θεωρήματος των διαμέσων στο ισόπλευρο τρίγωνο πλευράς α να αποδείξετε ότι το ύψος του ισούται με α ** Θεωρούμε το τρίγωνο ΑΒ και τη διάμεσό του ΑΜ. Παίρνουμε το μέσο του ΒΜ και το μέσο Ν του Μ. Αν είναι ΑΒ = γ, Α = β, Β = α, Α = ν και ΑΝ = λ, να αποδείξετε ότι: β + γ = ν + λ + 3α ** Να αποδείξετε ότι το άθροισμα των τετραγώνων των πλευρών ενός τετραπλεύρου είναι μεγαλύτερο ή ίσο από το άθροισμα των τετραγώνων των διαγωνίων του. 36. ** ε τρίγωνο ΑΒ παίρνουμε πάνω στη βάση του Β τα σημεία και Ε ώστε Β = Ε = Ε. Να δείξετε ότι: ΑΒ + Α = 3ΑΕ + 6Ε. 37. ** ε ορθογώνιο τρίγωνο ( = 90 ) να δειχθεί ότι: i. α + β + γ = 8μ α ii. μ β + μ γ = 5μ α 39. ** Αν σε τρίγωνο ΑΒ οι διάμεσοι μ β και μ γ τέμνονται κάθετα, να δείξετε ότι: β + γ = 5α. 40. ** Το τρίγωνο ΑΒ είναι ορθογώνιο με = 90 και το G είναι το κέντρο βάρους του. Να αποδείξετε ότι: i. μ α + μ β + μ γ = 3 α ii. G + G + G = 3 α 13

14 41. ** Αν μ β + μ γ = 5μ α, να αποδείξετε ότι το τρίγωνο με διαμέσους μ α, μ β, μ γ είναι ορθογώνιο. 4. ** Αν α, β, γ, δ είναι διαδοχικές πλευρές του τετραπλεύρου ΑΒ με α > β, γ > δ, να αποδείξετε ότι η διαφορά (α + γ ) - (β + δ ) ισούται με το διπλάσιο της μιας διαγωνίου επί την προβολή της άλλης πάνω σ αυτήν. 43. ** ια κάθε τρίγωνο ΑΒ να αποδείξετε ότι: 16 ( μ α μ β + μ β μ γ + μ α μ γ ) = 9 (α β + β γ + γ α ) 44. ** ίνεται το τρίγωνο ΑΒ με ΑΒ = Α. Προεκτείνουμε την πλευρά Β κατά ευθύγραμμο τμήμα = Β. Να αποδείξετε ότι: Α = Α + Β. 45. ** ίνεται το τρίγωνο ΑΒ με ΑΒ = Α και τη γωνία του Α αμβλεία. Να αποδείξετε ότι: Β = Α, όπου η προβολή του Β πάνω στην Α. 46. ** ίνεται ορθογώνιο τρίγωνο ΑΒ ( = 90 ). Φέρνουμε τη διάμεσο ΑΜ και προς την ΑΜ στο σημείο Μ κάθετη ευθεία που τέμνει την Α στο. Να αποδείξετε ότι: Β + = Α. 47. ** ίνεται τρίγωνο ΑΒ και η διάμεσός του ΑΜ. την προέκταση της Β παίρνουμε σημείο Ε, ώστε Ε = α. Να αποδείξετε ότι: ΑΕ = 3β + γ - 3 μ α. 48. ** Θεωρούμε κύκλο (Ο, R), μια διάμετρό του ΑΒ και τα σημεία και της ΑΒ ώστε Ο = Ο = δ. Αν Ρ είναι τυχαίο σημείο του κύκλου (Ο, R) και Ε, Ζ οι τομές των Ρ και Ρ αντιστοίχως με τον κύκλο, να αποδείξετε ότι: i. Ζ = R - δ Ρ και Ε = R - δ Ρ (δ < R) ii. Ρ Ε + Ρ Ζ = σταθερό. 49. ** ίνεται ορθογώνιο τρίγωνο ΑΒ ( = 90 ). Προεκτείνουμε την πλευρά ΑΒ κατά ευθύγραμμο τμήμα Β = Β. Να αποδείξετε ότι: = Β Α. 50. ** ε κύκλο (Ο, R) είναι εγγεγραμμένο ισοσκελές τρίγωνο ΑΒ (ΑΒ = Α). Από το Α φέρνουμε τυχούσα ευθεία η οποία τέμνει την Β στο και τον κύκλο στο Ε. Να δείξετε ότι: i.αβ = Α ΑΕ ii.ο κύκλος που διέρχεται από τα σημεία Β,, Ε εφάπτεται στην ΑΒ. 51. ** ε κύκλο ακτίνας R = 15 cm παίρνουμε σημείο που απέχει από το κέντρο 10 cm. Μια χορδή ΑΒ διέρχεται από το και είναι Α = 3Β. Να βρεθεί το μήκος της χορδής. 5. ** Από σημείο Ρ εκτός κύκλου φέρνουμε την εφαπτόμενη ΡΑ και την τέμνουσα ΡΒ του κύκλου. Να δειχθεί ότι: i. Το τρίγωνο ΡΑΒ είναι όμοιο με το τρίγωνο ΡΑ. ii. Α = P Α P 53. ** ε οξυγώνιο τρίγωνο ΑΒ φέρνουμε τα ύψη Α, ΒΕ που τέμνονται στο Η. i.να δείξετε ότι το τετράπλευρο ΑΕΒ είναι εγγράψιμο σε κύκλο. ii.να δείξετε ότι ΑΒ = ΒΗ ΒΕ + ΑΗ Α. 14

15 54. ** Με πλευρά τη χορδή ΑΒ = α κύκλου (Ο, R) κατασκευάζουμε τετράγωνο ΑΒ που η πλευρά του Β δεν έχει σημείο εσωτερικό του κύκλου. Αν το εφαπτόμενο τμήμα Ε του κύκλου είναι Ε = α, να βρείτε το R. 55. ** Κυρτό τετράπλευρο ΑΒ είναι εγγεγραμμένο σε κύκλο. Αν τα ΑΒ και τέμνονται στο Ρ και ΡΑ = 9 cm, ΡΒ = 10 cm, Ρ = 15 cm, να υπολογιστεί η πλευρά και η εφαπτόμενη Ρ του κύκλου. 56. ** υο κύκλοι λέγονται ορθογώνιοι ή ότι τέμνονται κάθετα, όταν η γωνία των εφαπτομένων τους σ ένα από τα σημεία τομής τους είναι ορθή. Να αποδείξετε ότι: i.αναγκαία και ικανή συνθήκη για να τέμνονται δύο κύκλοι κάθετα είναι το τετράγωνο της διακέντρου τους να είναι ίσο με το άθροισμα των τετραγώνων των ακτίνων τους. iiαναγκαία και ικανή συνθήκη για να είναι δύο κύκλοι (Ο 1, R 1 ) και (Ο, R ) ορθογώνιοι είναι: η δύναμη του κέντρου του Ο 1 ως προς τον κύκλο Ο να 1 ισούται με το τετράγωνο της ακτίνας του Ο 1, δηλαδή: (Ο, R ) = R ** Θεωρούμε κύκλο (Ο, R), μια σταθερή διάμετρό του ΑΒ και μια σταθερή ευθεία ε ΑΒ. Αν η ευθεία ε τέμνει τυχαία χορδή Α του κύκλου στο σημείο, να αποδείξετε ότι: Α Α = σταθερό. 58. ** Θεωρούμε κύκλο (Ο, R), μια διάμετρο αυτού ΑΒ και ένα σημείο Ρ στην προέκταση της ΒΑ. Φέρνουμε την εφαπτομένη Ρ και την κάθετη στο Ρ προς την ΑΒ που τέμνει τη Β στο. Να αποδείξετε ότι: ΡΒ = Ρ + Β Β. 59. ** Να αποδείξετε ότι τα σημεία που ισαπέχουν απ το κέντρο του κύκλου, έχουν την ίδια δύναμη ως προς τον κύκλο αυτό. 60. ** Θεωρούμε κύκλο (Ο, R) και μια διάμετρό του ΑΒ. ράφουμε μια χορδή του κύκλου που τέμνει την ΑΒ στο σημείο Ε έτσι ώστε Α E = 45. Να αποδείξετε ότι: ΑΕ ΕΒ + ΟΖ = R, όπου Ζ η προβολή του Ο στην. 61. ** υο κύκλοι (Ο, R) και (Ο, R ) τέμνονται στα σημεία Α και Β. Να αποδείξετε ότι τα εφαπτόμενα τμήματα, που γράφονται από τυχαίο σημείο της προέκτασης του ΑΒ προς τους δύο κύκλους είναι ίσα. 6. ** Θεωρούμε τρίγωνο ΑΒ και τον περιγεγραμμένο του κύκλο. Η διάμεσος του τριγώνου ΑΜ προεκτεινόμενη τέμνει τον κύκλο στο σημείο Ε. i. Να υπολογίσετε το γινόμενο ΑΜ ΜΕ συναρτήσει του α. iiνα υπολογίσετε το γινόμενο ΑΜ ΜΕ συναρτήσει των β, γ και του μ α. 63. ** ίνεται κύκλος με κέντρο Κ και ακτίνα R. Μέσα στον κύκλο παίρνουμε σταθερό σημείο Α και κατασκευάζουμε ορθογώνιο τρίγωνο ΑΒ με υποτείνουσα τη χορδή Β. Αν Μ είναι το μέσο της μεταβλητής της υποτείνουσας Β και το μέσο του ευθυγράμμου τμήματος ΚΑ, να δείξετε ότι: i.αμ + ΚΜ = R ii.μ = σταθερό 64. ** Επί ενός κύκλου λαμβάνουμε τα σημεία Α, Β, και. Τα ευθύγραμμα τμήματα ή οι φορείς που ορίζουν τα τέσσερα αυτά σημεία τέμνονται το πολύ σε τρία σημεία. Να γράψετε όλες τις σχέσεις, που συνδέουν τις αποστάσεις των σημείων τομής από τα σημεία Α, Β,,. Ο 65. ** Με κέντρο το σημείο τομής των διαγωνίων παραλληλογράμμου ΑΒ γράφουμε κύκλο τυχαίας ακτίνας. Αν Ρ σημείο του κύκλου, να δείξετε ότι: ΡΑ + ΡΒ + Ρ + Ρ = σταθερό. 15

16 1ο χέδιο Κριτηρίου Αξιολόγησης του Μαθητή ιδακτική ενότητα: Μετρικές χέσεις ΘΕΜΑ 1ο Α. ια το ορθογώνιο τρίγωνο ΑΒ του σχήματος, στο οποίο η Α είναι ύψος και η ΑΜ διάμεσος, ισχύει: Μ i. ΑΒ = Β Β ii. ΑΒ = ΑΜ Β + - Α iii. ΑΒ = ΑΜ + ΒΜ iv. ΑΒ = Β - Α v. ΑΒ = Β + Α vi.αβ = Β + ΒΜ 4 Β. Να αποδείξετε μία σωστή σχέση από τις παραπάνω. ΘΕΜΑ ο ίνεται το τρίγωνο ΑΒ με ΑΒ = Α και τη γωνία του Α αμβλεία. Αν είναι η προβολή του Β πάνω στην Α, να αποδείξετε ότι Β = Α. ο χέδιο Κριτηρίου Αξιολόγησης του Μαθητή ιδακτική ενότητα: ΘΕΜΑ 1ο Μετρικές χέσεις Α. Να συμπληρωθούν οι παρακάτω ισότητες σύμφωνα με το διπλανό σχήμα: Μ i. + = M + ii. = D + iii. Α = iv. Α = Β v. Α = Α - vi. ΑΜ = Α + vii. ΑΜ = ΑΒ + Α - Β. Να αποδείξετε την πρώτη σχέση από τις παραπάνω. ΘΕΜΑ ο Κυρτό τετράπλευρο ΑΒ είναι εγγεγραμμένο σε κύκλο. Αν τα ΑΒ και τέμνονται στο Ρ και ΡΑ = 9 cm, P = 10 cm, Ρ = 15 cm, να υπολογιστούν: i. η πλευρά ii. η εφαπτομένη Ρ του κύκλου. 16

17 3ο χέδιο Κριτηρίου Αξιολόγησης του Μαθητή ιδακτική ενότητα: Μετρικές χέσεις ΘΕΜΑ 1ο Α. ίνεται κύκλος ακτίνας ΟΑ = 6 cm, εφαπτόμενο τμήμα του ΡΑ = 8 cm και μεταβλητή τέμνουσα ΡΒ. Να βρείτε ποιο από τα παρακάτω ζεύγη δεν ταιριάζει: i. x = 6 και y = 3 3 ii. x = και y = 3 iii. x = 4 και y = 16 iv. x = 5 και y = 1,8 v. x = 7 και y = το ορθογώνιο τρίγωνο ΑΒ ( = 90 ) είναι: i. β + γ = μ α ii. β + γ = μ α γ μ α α iii. β + γ = 3μ α iv. β + γ = 4μ α β v. β + γ = 5μ α ΘΕΜΑ ο Από τη διασταύρωση δύο δρόμων ξεκινούν 4 άτομα με κατευθύνσεις τα σημεία Α, Β,, και αντίστοιχες ταχύτητες, 9, 3 και 6 km/h. Μετά από μία ώρα (1 h) σταματούν στις θέσεις Α 1, Β 1, 1, 1 αντίστοιχα. i. Να δείξετε ότι υπάρχει σημείο του επιπέδου από το οποίο τα 4 άτομα ισαπέχουν. ii.να προσδιορίσετε το σημείο αυτό. iii.να δείξετε ότι μετά από ν ώρες (ν h) για τις θέσεις Α ν, Β ν, ν, ν υπάρχει άλλο σημείο από το οποίο ισαπέχουν. iv.αν είναι η θέση του σημείου από το οποίο ισαπέχουν μετά από ν ώρες (ν h) και R η κοινή απόσταση, τότε = R - 18ν. (ίνεται: ιανυόμενο διάστημα = ταχύτητα. χρόνος) 17

18 4ο χέδιο Κριτηρίου Αξιολόγησης του Μαθητή ιδακτική ενότητα: Μετρικές χέσεις ΘΕΜΑ 1ο Α. Να αποδείξετε το παρακάτω θεώρημα: «Η διαφορά των τετραγώνων δύο πλευρών τριγώνου, είναι ίση με το διπλάσιο γινόμενο της τρίτης πλευράς επί την προβολή της αντίστοιχης διαμέσου πάνω σ αυτήν». Β. Ενός τριγώνου ΑΒ τα μήκη των πλευρών του είναι: ΑΒ = λ, Α = λ, Β = λ 3. Να βρεθούν συναρτήσει του λ: i. το μήκος της προβολής της διαμέσου ΑΜ στη Β ii.το μήκος της προβολής της διαμέσου ΒΝ στην Α ΘΕΜΑ ο Κάθε είδος τριγώνου της στήλης Α έχει για πλευρές μια τριάδα που τα μήκη τους είναι στη στήλη Β. Να συνδέσετε με μια γραμμή κάθε είδος τριγώνου με την αντίστοιχη τριάδα. στήλη Α στήλη Β Είδος τριγώνου Μήκη ευθυγράμμων τμημάτων οξυγώνιο, 3, 4 ορθογώνιο, 3, 5 6, 8, 10 αμβλυγώνιο 3, 6, 10 16, 10, 14 18

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της. 5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

. Ασκήσεις για εξάσκηση

. Ασκήσεις για εξάσκηση . Ασκήσεις για εξάσκηση Βασικές ασκήσεις Εφαρµογές 1.76 ίνεται ένα τρίγωνο ΑΒΓ µε AB= 8 και AΓ= 1. Ένας κύκλος διέρχεται από τα σηµεία Β και Γ και τέµνει τις πλευρές ΑΒ και ΑΓ στα σηµεία και Ε αντίστοιχα.

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

1 Εγγεγραµµένα σχήµατα

1 Εγγεγραµµένα σχήµατα Εγγεγραµµένα σχήµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σκοπός του µαθήµατος είναι να δώσει στους µαθητές συνοπτικά τις απαραίτητες γνώσεις από τη διδακτέα ύλη της Α λυκείου που δεν διδάχθηκε ή διδάχθηκε περιληπτικά.

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1 Έστω ΑΒΓ ένα τρίγωνο με πλευρές α, β και γ. Συμβολίζουμε με τα την ημιπερίμετρο α + β + γ του ΑΒΓ, δηλαδή: τ =. 2 Το εμβαδόν Ε του

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές.

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ. Κανονικά Πολύγωνα. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες.

ΚΕΦΑΛΑΙΟ 11ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ. Κανονικά Πολύγωνα. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες. ΚΕΦΛΙΟ ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ Κανονικά Πολύγωνα. Να δοθεί ο ορισμός του κανονικού πολυγώνου. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες.. Να βρεθεί η γωνία

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 6. Εγγεγραμμένα Σχήματα Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 1 Επίκεντρη γωνία Μια γωνία λέγεται επίκεντρη γωνία ενός κύκλου αν η κορυφή της είναι το κέντρο του κύκλου. Το τόξο ΑΓΒ που

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ 4 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑ : ΓΕΩΜΕΤΡΙΑ

Διαβάστε περισσότερα

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 B Γυμνασίου 3. Έστω x = 3 4 :4+ 5 και y = 45 4 3 + 73. (α) Να βρεθούν οι αριθμοί

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ: 011-01 ΝΟΜΟΣ ΔΩΔΕΚΑΝΗΣΟΥ ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ-ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΡΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΣ 01 Θέματα προαγωγικών και απολυτηρίων εξετάσεων

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη Γ

Γυμνάσιο Μαθηματικά Τάξη Γ 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Α και Β Γενικού Λυκείου ε 3 Γ ε 2 Κ Ε ε 1 Ι Ο Θ Η Ζ Α μ α Ψ ε 4 Β Β ( Σελ. 63 120 ) Τόμος 2ος ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου 70 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου Σχέσεις µεταξύ τριγωνοµετρικών αριθµών 71 Εφαρµογές 72 73 74 75 76 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ 5.

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ και ΝΙΚΟΥ ΛΥΚΙΟΥ ΥΚΛΙΙ ΩΤΡΙ ΛΥΣΙΣ ΤΩΝ ΣΚΗΣΩΝ ΥΠΟΥΡΙΟ ΠΙΙΣ ΚΙ ΘΡΗΣΚΥΤΩΝ Κωδικός βιβλίου: 0--007 ΠΟΛΙΤΙΣΟΥ ΚΙ ΘΛΗΤΙΣΟΥ ΥΚΛΙΙ ΩΤΡΙ ΛΥΣΙΣ ΤΩΝ ΣΚΗΣΩΝ ε Κ ε Ψ Ζ Ο Ι Θ ε Η μα ε4 και ΝΙΚΟΥ ΛΥΚΙΟΥ ISBN 978-960-06--6

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΩΝ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΩΝ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ: 011-01 ΝΟΜΟΣ: ΔΩΔΕΚΑΝΗΣΟΥ ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ Β. ΙΩΑΝΝΗΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΠΕ03 ΡΟΔΟΣ, ΣΕΠΤΕΒΡΙΟΣ 01 Θέματα προαγωγικών και απολυτηρίων

Διαβάστε περισσότερα

Σειρά: Τράπεζα Θεμάτων Γυμνασίου

Σειρά: Τράπεζα Θεμάτων Γυμνασίου Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου

Διαβάστε περισσότερα

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο 1 11.1 11. ρισµός ιδιότητες εγγραφή κα. πολυγώω σε κύκλο ΘΩΡΙ 1. Έα πολύγωο λέγεται καοικό, ότα έχει όλες τις πλευρές του ίσες και όλες τις γωίες του ίσες.. ύο καοικά πολύγωα µε το ίδιο αριθµό πλευρώ είαι

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ 1 Σωτήρης Ε. Λουρίδας 1. ΓΕΝΙΚΑ: 1.1 Θεωρούμε ότι κάθε Μαθηματικό πρόβλημα είναι της μορφής «αν p τότε q», συμβολικά p q. 1.2. Λύση ενός Μαθηματικού προβλήματος

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΛΥΚΕΙΑ 6 η Δοκιμασία ο Θέμα Στις ερωτήσεις έως και 4 να επιλέξτε τη σωστή απάντηση αιτιολογώντας την απάντησή σας. Ερώτηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ 1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Κώστας Μαλλιάκας, Καθηγητής Δ.Ε., 1 ο ΓΕΛ Ρόδου, kmath@otenet.gr

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΚΥΚΛΟΣ

ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΚΥΚΛΟΣ [7] ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΚΥΚΛΟΣ ΟΡΙΣΜΟΣ Κύκλος µε κέντρο Κ και ακτίνα ρ λέγεται ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν από το Κ απόσταση ίση µε ρ. ΕΞΙΣΩΣΗ ΚΥΚΛΟΥ Αν ο κύκλος έχει κέντρο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr . ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών, Φθιώτιδας και Ευρυτανίας www.pe03.gr ΠΡΟΛΟΓΟΣ Ο οδηγός αυτός απευθύνεται στους εκπαιδευτικούς

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

Από το επίπεδο στο χώρο (Στερεομετρία)

Από το επίπεδο στο χώρο (Στερεομετρία) Από το επίπεδο στο χώρο (Στερεομετρία) (Διεπιστημονική προσέγγιση αριθμητικού και οπτικού γραμματισμού) Εκπαιδευτικοί: Αθανασοπούλου Ζαφειρία (οπτικός γραμματισμός) Σαρακινίδου Σοφία (αριθμητικός γραμματισμός)

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται:

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται: Το διανυσματικό άθροισμα f Μ γράφεται: f Μ = x ΜΑ+ x ΜΑ+ΑΒ + x ΜΑ+ΑΓ = ΜΑ + ΜΑ + ΜΑ + ΑΒ + ΑΓ ( x) ( x) ( x ) ( x) ( x ) = ( x + x + x ) ΜΑ + ( x) ΑΒ + ( x ) ΑΓ = ( x 4x+ ) ΜΑ+ ( x) ΑΒ+ ( x ) Α Γ f Μ είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. (α + β) 2 = α 2 + 2αβ + β 2. αx 2 + βx + γ = 0, α 0. x = Γ ΓΥΜΝΑΣΙΟΥ

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. (α + β) 2 = α 2 + 2αβ + β 2. αx 2 + βx + γ = 0, α 0. x = Γ ΓΥΜΝΑΣΙΟΥ ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ (α + β) = α + αβ + β α + β + γ = 0, α 0 = β ± β 4αγ α Γ ΓΥΜΝΑΣΙΟΥ Πράξεις με Πραγματικούς αριθμούς. Μονώνυμα - Πράξεις με μονώνυμα Πολυώνυμα - Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

, y 1. y y y y = x ( )

, y 1. y y y y = x ( ) ΚΕΦΑΛΑΙΟ Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕ Ο ΠΑΡΑΓΡΑΦΟΣ. ΕΞΙΣΩΣΗ ΓΡΑΜΜΗΣ Μία εξίσωση µε αγνώστους x, y λέγεται εξίσωση µίας γραµµής C, όταν οι συντεταγµένες των σηµείων της C και µόνο αυτές την επαληθεύουν. Αν έχουµε

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Q k = ec5 ΚΟΛ. e-c.o 0 apex

Q k = ec5 ΚΟΛ. e-c.o 0 apex ΘΕΜΑ 2 Θεωρούμε ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) με Γ = Δ = 60, ΑΔ=12 και ΓΔ=20. Φέρουμε τα ύψη του ΑΕ και ΒΖ. α) Να αποδείξετε ότι ΔΕ=ΓΖ και ΑΒ=ΕΖ. (Μονάδες 12) β) Να υπολογίσετε την περίμετρο του τραπεζίου.

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα