Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations"

Transcript

1 J. Mah. Anal. Appl. 321 (2006) Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of Mahemaical Sciences Compuing echnology, Cenral Souh Universiy, Changsha, Hunan , PR China b Deparmen of Mahemaics, Huaihua Universiy, Huaihua, Hunan , PR China Received 17 March 2005 Available online 19 Sepember 2005 Submied by William F. Ames Absrac In his paper, we prove ha every soluion of he firs order nonlinear neural differenial equaion ] m x() px( τ) + q() x( σj ) βj sign x( σ 1 ) ] = 0,, oscillaes if only if ( m ) ] q(s)exp τ 1 ln p β j 1 s ds =, when ( m β j 1) ln p<0, q(s)ds =, when ( m β j 1) ln p>0, where p, τ>0, β j > 0, σ j 0, j = 1, 2,...,m, q C(, ), 0, )) Published by Elsevier Inc. his work is parially suppored by he NNSF (No ) of China. * Corresponding auhor. addresses: angxh@mail.csu.edu.cn (X.H. ang), xiaoyanlin98@homail.com (X. Lin) X/$ see fron maer 2005 Published by Elsevier Inc. doi: /j.jmaa

2 554 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) Keywords: Firs order neural differenial equaion; Superlinear; Sublinear; Oscillaion 1. Inroducion Consider he firs nonlinear neural delay differenial equaion ] m x() px( τ) + q() x( σj ) βj sign x( σ 1 ) ] = 0,, (1.1) where p,τ > 0, β j > 0, σ j 0, j = 1, 2,...,m, q C(, )), 0, )). When m β j = 1, he oscillaory behavior of soluions of Eq. (1.1) is similar o he linear neural delay differenial equaion, which has been sudied by many auhors, see 1,2,5,7,8] he references cied herein. When m β j 1, we only find hree papers 3,4,6] which deal wih he oscillaory behavior of soluions of some special forms of Eq. (1.1). he resuls obained here are he following. heorem ] Assume ha p = 0 m β j > 1. hen he following conclusions hold: (i) If here exiss λ>0 such ha m β j e λσ j < 1, (1.2) lim inf q()exp( e λ ) ] > 0, (1.3) hen every soluion of Eq. (1.1) oscillaes. (ii) If, for large, q(s) 0, s, + σ ], (1.4) where σ = max{σ 1,σ 2,...,σ m }, ha exiss μ>0 such ha m β j e μσ j > 1, (1.5) lim sup q()exp( e μ ) ] <, (1.6) hen Eq. (1.1) has an evenually posiive soluion. heorem ] Assume ha p = 1 m β j < 1. hen every soluion of Eq. (1.1) oscillaes if only if s β q(s)ds =, where β = m β j. (1.7)

3 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) heorem ] Assume ha p = 1 m β j > 1. hen every soluion of Eq. (1.1) oscillaes if only if sq(s)ds =. (1.8) heorem 1.4. (6], see also 1, heorem 3.4.6]) Assume ha p<1 m β j < 1. hen every soluion of Eq. (1.1) oscillaes if only if q(s)ds =. Besides he several cases menioned in he above four heorems, we find no resuls in he lieraure on he oscillaion of soluions of Eq. (1.1) in he following wo cases: (i) p (0, 1) (1, ) m β j > 1; (ii) p (1, ) m β j < 1. In his paper, we shall esablish some necessary sufficien condiions for oscillaion of soluions of Eq. (1.1) in he above case (i) case (ii), respecively. As is cusomary, a soluion x() of Eq. (1.1) is said o be oscillaory if i has arbirarily large zeros. Oherwise, i is said o be nonoscillaory. hroughou of his paper, we denoe β = m β j. 2. he superlinear case m β j > 1 heorem 2.1. Assume ha <p<1 m β j > 1. hen every soluion of Eq. (1.1) oscillaes if only if ( m ) ] q(s)exp τ 1 ln p β j 1 s ds =. (2.1) Proof. Sufficiency. Lex() be a nonoscillaory soluion of Eq. (1.1). We may wihou loss of generaliy assume ha x() > 0for 1 for some 1. Se z() = x() px( τ). (2.2) hen i follows from (1.1), (2.1) (2.2) ha m z () = q() x( σj ) βj 0 ( 0), 2 = 1 + ρ, (2.3) here in he sequel, ρ = max{τ,σ 1,...,σ m }. his shows ha z() is nonincreasing on 2, ). Hence, z() > 0, 2, (see 1, Lemma 5.1.4]), from (2.2) (2.3), we have n x() = p i z( iτ) + p n+1 x( nτ τ) i=0 (1.9)

4 556 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) = 1 τ n p i z( iτ) 1 τ i=0 +ρ (n+1)τ+ρ n iτ+ρ i=0 (i+1)τ+ρ p (+ρ s)/τ z(s) ds 1 τ 2 + nτ 2 + (n + 1)τ, n = 1, 2,..., which yields x( σ j ) 1 τ 1 τ +ρ σ j 2 +ρ 3 p (+ρ s)/τ z(s) ds +ρ 2 +ρ p (+ρ σ j s)/τ z(s) ds 1 τ p (+ρ s)/τ z(s) ds, p (+ρ s)/τ z(s) ds, 2 +ρ p (+ρ s)/τ z(s) ds 3 := 2 + 2ρ, j = 1, 2,...,m. (2.4) Subsiuing (2.4) ino (2.3), we obain z 1 ] β () q() p (+ρ s)/τ z(s) ds, τ 3. (2.5) 3 Se y() = z(s) ds, 3. (2.6) 3 hen i follows from (2.5) ha z () τ β p β(+ρ)/τ q() y() ] β, 3, (2.7) so z(s) τ β Subsiuing his ino (2.6), we have s y() τ β 3 τ β 3 p β(u+ρ)/τ q(u) y(u) ] β du, s 3. s p β(u+ρ)/τ q(u) y(u) ] β duds u p β(u+ρ)/τ ] β q(u) y(u) dsdu 3 = τ β+1 p β(s+ρ)/τ( p 3/τ ) ] β q(s) y(s) ds, ln p 3. (2.8) 3

5 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) Se w() = p β(+ρ)/τ( p /τ p 3/τ ) q() y() ] β, 3. (2.9) hen (2.8) yields ( ) β ( τ β+1 ) β w() w(s)ds p β(+ρ)/τ( p /τ p 3/τ ) q(), ln p 3. (2.10) 3 Choose a 1 > 3 such ha 1 3 w(s)ds > 0. hen from (2.10), we have ( τ β+1 ln p 1 I follows ha ) β w() 1 ( 3 p β(+ρ)/τ( p /τ p 3/τ ) q()d 3 w(s)ds ) β ( d = 1 1 β 1 ( 1 1 ) 1 β w(s)ds, > 1. β 1 3 w(s)ds ) 1 β ( 3 w(s)ds ) 1 β ] 1 p β(+ρ)/τ( p /τ p 3/τ ) q()d <. (2.11) Noe ha p /τ p 3/τ p /τ 1 p ( 1 3 )/τ ], 1. hen (2.11) implies ha 1 p (β 1)s/τ q(s)ds <, (2.12) which conradics o (2.1) so he sufficiency is proved. Necessiy. We only need o prove ha he condiion q(s)exp τ 1 ln p(β 1)s ] ds < (2.13) implies ha Eq. (1.1) has an evenually posiive soluion. Noe ha s = τ ln p p βu/τ q(u)duds p βu/τ ( q(u) p u/τ p /τ ) du

6 (p /τ y () ) = τ β p β( ρ τ)/τ q() y() ] β 0,. (2.20) 558 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) τ p (β 1)s/τ τ q(s)ds = ln p ln p Hence, from (2.13), we have Choose > + ρ such ha ( ) 2 β p βρ/τ τ s q(s)exp τ 1 ln p(β 1)s ] ds. p βu/τ q(u)duds <. (2.14) Define he sequence of funcions {y n ()} as follows: y 0 () = 2,, y n+1 () = 1 + τ β p βρ/τ s p β(u τ)/τ q(u)duds < 1. (2.15) s p β(u τ)/τ q(u) y n (u) ] β duds, (2.16), n= 1, 2,.... (2.17) By (2.15) (2.17) by inducion, i is easy o verify ha 1 y n+1 () y n () y 0 () = 2,, n= 1, 2,.... hen he limi lim n y n () = y() exiss for, ) 1 y() 2for, ). Applying Lebesgue s monoone convergence heorem o (2.17), we obain y() = 1 + τ β p βρ/τ I follows ha p /τ y () = τ β p βρ/τ s p β(u τ)/τ q(u) y(u) ] β duds,. (2.18) p β(s τ)/τ q(s) y(s) ] β ds,, (2.19) I follows from (2.15) ha here exiss a 1 > + τ such ha τ β p βρ/τ p 1/τ 1 p β(s τ)/τ ] β q(s) y(s) ds < τ 1. (2.21) If q() 0forlarge, hen x() = e ln p/τ is an evenually posiive soluion of Eq. (1.1). So, in he sequel, we only consider he case when q() 0 evenually, so p β(s τ)/τ q(s) y(s) ] β ds > 0,. (2.22)

7 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) u(s) ds + y( 1 ), 1. (2.25) Se u() = p /τ y (),. (2.23) hen from (2.19) (2.23), we have 0 <u()<τ 1 p 1/τ, u () 0, 1, (2.24) y() = 1 Define a funcion v() as follows: τ 1 u( 1 + τ)( 1 ), τ, v() = p v( + τ) u( + τ)], < 1, (2.26) u() + pv( τ), 1 + iτ < 1 + (i + 1)τ, i = 1, 2,... I is easy o see ha v() coninues on, ) v() > 0for> 1 v() = u() + pv( τ), 1 + τ. (2.27) From (2.24) (2.26), we have v() u( 1 + τ) u( 1 )<τ 1 p 1/τ, τ. (2.28) hen from (2.24), (2.25), (2.27) (2.28) by using he fac y() 1for,wehave n 1 n 1 v() = p i u( iτ) + p n v( nτ) p i u( iτ) + p n τ 1 p 1/τ 1 τ = 1 τ i=0 n 1 iτ i=0 (i+1)τ nτ i=0 p ( τ s)/τ u(s) ds + τ 1 p n+ 1/τ p ( τ s)/τ u(s) ds + τ 1 p n+ 1/τ 1 p ( τ s)/τ u(s) ds + τ 1 p ( τ)/τ 1 = τ τ p( τ)/τ u(s) ds ] 1 τ p( τ)/τ u(s) ds + y( 1 ) = 1 τ p( τ)/τ y(), nτ 1 + (n + 1)τ, n = 1, 2,.... Noe ha y () 0for, i follows from he above ha v( σ j ) 1 τ p( τ σ j )/τ y( σ j ) 1 τ p( τ σ j )/τ y(), 1 + 2ρ, j = 1, 2,...,m. (2.29) ]

8 560 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) By (2.19), (2.23), (2.27) (2.29), we obain v() = pv( τ)+ u() = pv( τ)+ τ β p βρ/τ pv( τ)+ τ β p βρ/τ pv( τ)+ his shows ha he inequaliy v() pv( τ)+ q(s) q(s) p β(s τ)/τ q(s) p β(s τ)/τ q(s) y(s) ] β ds m τp ( s+τ+σ j )/τ v(s σ j ) ] β j ds m v(s σj ) ] β j ds, 1 + 2ρ. m v(s σ j ) βj sign v(s σ 1 ) ] ds, 1 + 2ρ, (2.30) has a posiive soluion v() on 1 + 2ρ, ). Similar o he proof of 1, Lemma 5.1.5], we can prove ha he corresponding equaion x() = px( τ)+ q(s) m x(s σ j ) βj sign x(s σ 1 ) ] ds, 1 + 2ρ, (2.31) has also a posiive soluion x() on 1 + 2ρ, ). Obviously, x() is also he evenually posiive soluion of Eq. (1.1), so he necessiy is proved. he proof is complee. heorem 2.2. Assume ha p>1 m β j > 1. hen every soluion of Eq. (1.1) oscillaes if only if q(s)ds =. (2.32) Proof. Sufficiency. Lex() be a nonoscillaory soluion of Eq. (1.1). We may wihou loss of generaliy assume ha x() > 0for 1 for some 1. Se z() as in (2.2). hen i follows from p>1 (2.32) ha z() < 0 z () 0for 2 for some 2 > 1, see 1, heorem 3.2.9]. Choose a posiive ineger n such ha nτ ρ. hen from (2.2), we have so x() > 1 p n z( + nτ), 2, (2.33) x( σ j )> 1 p n z( + nτ σ j ) 1 p n z(), 2 + ρ, j = 1, 2,...,m. Subsiuing his ino (2.3), we have ( z () q() 1 ) β p n z(), 2 + ρ. I follows ha

9 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) ρ q(s)ds p nβ 2 +ρ ( z(s) ) βz (s) ds = p nβ (β 1) 1( z( 2 + ρ) ) 1 β ( z() ) 1 β ] <p nβ (β 1) 1 z( 2 + ρ) ] 1 β, 2 + ρ, so 2 +ρ q(s)ds <, which conradics o (2.32) so he sufficiency is proved. Necessiy. We only need o prove ha he condiion q(s)ds < (2.34) implies ha Eq. (1.1) has an evenually posiive soluion. By (2.34), we can choose > +τ +σ such ha q(s)ds p 1. 2 (2.35) Define he sequence of funcions {x n ()} as follows: x 0 () = 1,, p 1 { p x n ( + τ) x n+1 () = + +τ q(s) m x n (s σ j )] β j ds},, x n+1 ( ), <. (2.36) (2.37) n = 1, 2,... By (2.35) (2.37) by inducion, i is easy o verify ha p 1 2p x n+1() x n () x 0 () = 1,, n= 1, 2,.... hen he limi lim n x n () = x() exiss for, ) (p 1)/2p x() 1for, ). Applying Lebesgue s monoone convergence heorem o (2.37), we obain { +τ x() = p 1 p 1 + x( + τ)+ q(s) 2 m x(s σj ) ] } β j ds,. (2.38) I is easy o see ha x() is also he evenually posiive soluion of Eq. (1.1), so he necessiy is proved. he proof is complee.

10 562 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) he sublinear case m β j < 1 heorem 3.1. Assume ha p>1 m β j < 1. hen every soluion of Eq. (1.1) oscillaes if only if ( m ) ] q(s)exp τ 1 ln p β j 1 s ds =. (3.1) Proof. Sufficiency. Lex() be a nonoscillaory soluion of Eq. (1.1). We may wihou loss of generaliy assume ha x() > 0 for all 1. Se z() = px( τ) x(). hen i follows from (1.1) (3.1) ha m z () = q() x( σ j ) βj 0 ( 0), 2 = 1 + ρ. (3.3) his shows ha z() is nondecreasing on 2, ). Hence, z() > 0, 2, (see 1, heorem 3.2.9]), from (3.2) (3.3), we have x() = 1 τ which yields p i z( + iτ) 1 τ i=1 i=1 p i +iτ +(i 1)τ p (s+τ )/τ z(s) ds = 1 τ p( τ)/τ x( σ j ) 1 τ p( τ σ j )/τ σ j z(s) ds z(s) ds 1 τ +iτ i=1 +(i 1)τ z(s) ds, 2, 1 τ p( τ ρ)/τ (3.2) p (s+τ )/τ z(s) ds z(s) ds, 2 + ρ, j = 1, 2,...,m. (3.4) Subsiuing (3.4) ino (3.3), we obain z 1 β () q() τ p( τ ρ)/τ z(s) ds], 3 = 2 + ρ. (3.5) Se y() = hen i follows from (3.5) ha z(s) ds, 3. (3.6) z () τ β p β( τ ρ)/τ q() y() ] β, 3, (3.7)

11 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) so s z(s) τ β 3 Subsiuing his ino (3.6), we have p β(u τ ρ)/τ ] β q(u) y(u) du, s 3. Se y() τ β τ β s 3 p β(u τ ρ)/τ ] β q(u) y(u) duds p β(u τ ρ)/τ q(u) y(u) ] β = τ β+1 p β(τ+ρ)/τ ln p u dsdu p (β 1)s/τ q(s) y(s) ] β ds, 3. (3.8) w() = p (β 1)/τ q() y() ] β, 3. (3.9) hen (3.8) yields w() ( β ( τ w(s)ds) β+1 p β(τ+ρ)/τ ) β p (β 1)/τ q(), 3. (3.10) ln p Inegraing (3.10) from 3 o,wehave ( τ β+1 p β(τ+ρ)/τ I follows ha ln p ) β 3 p (β 1)/τ q()d 3 w() = 1 1 β ( ( 3 w(s)ds) β d w(s)ds ) 1 β. 3 p (β 1)/τ q()d <, (3.11) which conradics o (3.1) so he sufficiency is proved. Necessiy. We only need o prove ha he condiion q(s)exp τ 1 ln p(β 1)s ] ds < (3.12) implies ha Eq. (1.1) has an evenually posiive soluion. Noe ha

12 564 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) s p βu/τ q(u)duds = Hence, from (3.12), we have s τ ln p = τ ln p p (β 1)s/τ q(s)ds q(s)exp τ 1 ln p(β 1)s ] ds. p βu/τ q(u)duds <. (3.13) Choose > + ρ such ha ( ) 2 β s p β(u+ρ)/τ q(u)duds < 1. (3.14) τ If q() 0for, hen x() = e ln p/τ is an evenually posiive soluion of Eq. (1.1). So, in he sequel, we only consider he case when q() 0for. Define he sequence of funcions {y n ()} as follows: y 0 () = 2,, y n+1 () = 1 + τ β, n= 1, 2,.... s p β(u+ρ)/τ q(u) y n (u) ] β duds, By (3.14) (3.16) by inducion, i is easy o verify ha 1 y n+1 () y n () y 0 () = 2,, n= 1, 2,.... (3.15) (3.16) hen he limi lim n y n () = y() exiss for, ) 1 y() 2for, ). Applying Lebesgue s monoone convergence heorem o (3.16), we obain y() = 1 + τ β s p β(u+ρ)/τ q(u) y(u) ] β duds,. (3.17) I follows ha p /τ y () = τ β p β(s+ρ)/τ q(s) y(s) ] β ds,, (3.18) Se ( p /τ y ()) = τ β p β(+ρ)/τ q() y() ] β 0,. (3.19) u() = p /τ y (),. (3.20)

13 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) hen from (3.17), (3.18), (3.19) (3.20), we have u() 0, u () 0,, (3.21) y() = u(s) ds + 1, 1. (3.22) From (3.21) (3.22), we find p i u( + iτ) 1 τ i=1 = 1 τ +ρ+iτ i=1 +ρ+(i 1)τ +ρ = 1 τ p(+ρ)/τ p (+ρ s)/τ u(s) ds +ρ 1 τ p(+ρ)/τ p (+ρ s)/τ u(s) ds u(s) ds +ρ u(s) ds + 1 = 1 τ p(+ρ)/τ y( + ρ),. (3.23) Noe ha q() 0for, so we can choose 1 > + ρ such ha u( 1 ) = τ β 1 I follows from (3.21) ha p β(s+ρ)/τ q(s) y(s) ] β ds > 0. (3.24) u() > 0, u () 0, 1. (3.25) Define a funcion v() as follows: v() = p i u( + iτ),. (3.26) i=1 By (3.23) (3.25), i is easy o see ha v() coninues on, ) v() > 0for, v() = 1 p u( + τ)+ v( + τ) ],, (3.27) v() 1 τ p(+ρ)/τ y( + ρ),. (3.28) I follows from (3.26) he fac ha y () 0for ha ]

14 566 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) v( σ j ) 1 τ p(+ρ σ j )/τ y( + ρ σ j ) 1 τ p(+ρ σ j )/τ y(), 1,j= 1, 2,...,m. (3.29) hen, by (3.18), (3.20), (3.24), (3.27) (3.29), we obain v() = 1 ] v( + τ)+ u( + τ) p = 1 +τ v( + τ)+ τ β p β(s+ρ)/τ q(s) y(s) ] ] β ds p = 1 u( 1 ) + v( + τ)+ τ β p +τ 1 +τ 1 u( 1 ) + v( + τ)+ τ β p 1 u( 1 ) + v( + τ)+ p his shows ha he inequaliy { v() 1 u( 1 ) + v( + τ)+ p +τ 1 +τ 1 1 q(s) q(s) ] p β(s+ρ)/τ ] β q(s) y(s) ds p β(s+ρ)/τ q(s) m τp ( s ρ+σ j )/τ v(s σ j ) ] ] β j ds m v(s σj ) ] ] β j ds, 1. m v(s σj ) βj sign v(s σ 1 ) ] } ds, 1, (3.30) has a posiive soluion v() on 1, ). Similar o he proof 1, Lemma 5.1.5], we can prove ha he corresponding equaion { x() = 1 +τ m u( 1 ) + x( + τ)+ q(s) x(s σj ) βj sign x(s σ 1 ) ] } ds, p 1 1, (3.31) has also a posiive soluion x() on 1, ). Obviously, x() is also he evenually posiive soluion of Eq. (1.1), so he necessiy is proved. he proof is complee. 4. Remarks Combining heorems 1.4, 2.1, , we have he following corollaries. Corollary 4.1. Assume ha ( m β j 1) ln p<0. hen every soluion of Eq. (1.1) oscillaes if only if ( m ) ] q(s)exp τ 1 ln p β j 1 s ds =. (4.1)

15 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) Corollary 4.2. Assume ha ( m β j 1) ln p>0. hen every soluion of Eq. (1.1) oscillaes if only if q(s)ds =. (4.2) Now we consider he firs nonlinear neural delay differenial equaion ] m x() p()x( τ) + q() x( σj ) βj sign x( σ 1 ) ] = 0,, (4.3) where p C(, ), 0, )), τ, β j > 0 q() are he same as in Eq. (1.1). In view of he proof of heorems , we have he following heorems. heorem 4.1. Assume ha m β j > 1. hen he following conclusions hold: (i) If here exiss a p 1 (0, 1) such ha p 1 p() 1,, (4.4) ( m ) ] q(s)exp τ 1 ln p 1 β j 1 s ds =, (4.5) hen every soluion of Eq. (4.3) oscillaes; (ii) If here exiss a p 2 (0, 1) such ha 0 p() p 2,, (4.6) ( m ) ] q(s)exp τ 1 ln p 2 β j 1 s ds <, (4.7) hen Eq. (4.3) has an evenually posiive soluion; (iii) If here exis p 3,p 4 (1, ) such ha p 3 p() p 4,, (4.8) hen every soluion of Eq. (4.3) oscillaes if only if q(s)ds =. (4.9) heorem 4.2. Assume ha m β j < 1. hen he following conclusions hold: (i) If here exiss p 1 (0, 1) such ha 0 p() p 1,, (4.10)

16 568 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) hen every soluion of Eq. (4.3) oscillaes if only if q(s)ds = ; (4.11) (ii) If here exiss a p 2 (1, ) such ha 1 p() p 2,, (4.12) ( m ) ] q(s)exp τ 1 ln p 2 β j 1 s ds =, (4.13) hen every soluion of Eq. (4.3) oscillaes; (iii) If here exiss a p 3 (1, ) such ha p() p 3,, (4.14) ( m ) ] q(s)exp τ 1 ln p 3 β j 1 s ds <, (4.15) hen Eq. (4.3) has an evenually posiive soluion. References 1] L.H. Erbe, Q. Kong, B.G. Zhang, Oscillaion heory for Funcional Differenial Equaions, Dekker, New York, ] I. Gyori, G. Ladas, Oscillaion heory of Delay Differenial Equaions wih Applicaions, Clarendon Press, Oxford, ] X.H. ang, Oscillaion for firs order nonlinear delay differenial equaions, J. Mah. Anal. Appl. 264 (2001) ] X.H. ang, X.Q. Li, Necessary sufficien condiions for oscillaion of nonlinear neural differenial equaions, Hunan Ann. Mah. 17 (1997) (in Chinese). 5] X.H. ang, J.S. Yu, Firs order nonlinear differenial inequaliies wih deviaing argumens, Appl. Mah. J. Chinese Univ. Ser. B 15 (2000) ] L.W. Wang, Oscillaion of firs order nonlinear neural differenial equaions, Aca Mah. Appl. Sinica 14 (1991) ] J.S. Yu, Firs order nonlinear differenial inequaliies wih deviaing argumens, Aca Mah. Sinica 33 (1990) ] B.G. Zhang, J.S. Yu, Oscillaion nonoscillaion for neural differenial equaions, J. Mah. Anal. Appl. 172 (1993)

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary

Διαβάστε περισσότερα

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4, Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary

Διαβάστε περισσότερα

Linear singular perturbations of hyperbolic-parabolic type

Linear singular perturbations of hyperbolic-parabolic type BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions

Διαβάστε περισσότερα

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Multiple positive periodic solutions of nonlinear functional differential system with feedback control

Multiple positive periodic solutions of nonlinear functional differential system with feedback control J. Mah. Anal. Appl. 288 (23) 819 832 www.elsevier.com/locae/jmaa Muliple posiive periodic soluions of nonlinear funcional differenial sysem wih feedback conrol Ping Liu and Yongkun Li Deparmen of Mahemaics,

Διαβάστε περισσότερα

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016 4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems

Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems INSTITUTE OF PHYSICS PUBLISHING Nonlineariy 9 (2006) 253 273 NONLINEARITY doi:0.088/095-775/9/6/003 Exisence of ravelling wave soluions in delayed reacion diffusion sysems wih applicaions o diffusion compeiion

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

A Simple Version of the Lucas Model

A Simple Version of the Lucas Model Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

On Strong Product of Two Fuzzy Graphs

On Strong Product of Two Fuzzy Graphs Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of

Διαβάστε περισσότερα

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity ES Web of Confeences 7, 68 (8) hps://doiog/5/esconf/8768 ICEIS 8 nalsis of opimal havesing of a pe-pedao fishe model wih he limied souces of pe and pesence of oici Suimin,, Sii Khabibah, and Dia nies Munawwaoh

Διαβάστε περισσότερα

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM DIFFERENIAL EQUAIONS AND CONROL PROCESSES 4, 8 Elecroic Joural, reg. P375 a 7.3.97 ISSN 87-7 hp://www.ewa.ru/joural hp://www.mah.spbu.ru/user/diffjoural e-mail: jodiff@mail.ru Oscillaio, Secod order, Half-liear

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes

On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes Available online a www.sciencedirec.com ScienceDirec Sochasic Processes and heir Applicaions 15 (15) 3851 3878 www.elsevier.com/locae/spa On shif Harnack inequaliies for subordinae semigroups and momen

Διαβάστε περισσότερα

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion

Διαβάστε περισσότερα

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface ANNALE POLONICI MAHEMAICI LIX.2 (1994 On local moion of a general compressible viscous hea conducing fluid bounded by a free surface by Ewa Zadrzyńska ( Lódź and Wojciech M. Zaja czkowski (Warszawa Absrac.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

arxiv: v1 [math.ap] 10 Apr 2017

arxiv: v1 [math.ap] 10 Apr 2017 C 1,θ -Esimaes on he disance of Inerial Manifolds José M. Arriea and Esperanza Sanamaría arxiv:1704.03017v1 [mah.ap] 10 Apr 2017 Absrac: In his paper we obain C 1,θ -esimaes on he disance of inerial manifolds

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

The third moment for the parabolic Anderson model

The third moment for the parabolic Anderson model The hird momen for he parabolic Anderson model Le Chen Universiy of Kansas Thursday nd Augus, 8 arxiv:69.5v mah.pr] 5 Sep 6 Absrac In his paper, we sudy he parabolic Anderson model saring from he Dirac

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

FRACTIONAL INTEGRATION OF THE PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND. Abstract

FRACTIONAL INTEGRATION OF THE PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND. Abstract FRACTIONAL INTEGRATION OF THE PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND Anaoly A. Kilbas,1, Nicy Sebasian Dedicaed o 75h birhday of Prof. A.M. Mahai Absrac Two inegral ransforms involving he Gauss-hypergeomeric

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Cubic Γ-n normed linear spaces

Cubic Γ-n normed linear spaces Malaya Journal of Maemaik, Vol. 6, No. 3, 643-647, 18 hps://doi.org/1.6637/mjm63/8 Cubic Γ-n normed linear spaces P. R. Kavyasree1 * and B. Surender Reddy Absrac This paper is aimed o propose he noion

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

is the home less foreign interest rate differential (expressed as it

is the home less foreign interest rate differential (expressed as it The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ON LOCAL MOTION OF A COMPRESSIBLE BAROTROPIC VISCOUS FLUID WITH THE BOUNDARY SLIP CONDITION. Marek Burnat Wojciech M. ZajĄczkowski. 1.

ON LOCAL MOTION OF A COMPRESSIBLE BAROTROPIC VISCOUS FLUID WITH THE BOUNDARY SLIP CONDITION. Marek Burnat Wojciech M. ZajĄczkowski. 1. opological Mehods in Nonlinear Analysis Journal of he Juliusz Schauder Cener Volume 1, 1997, 195 223 ON LOCAL MOION OF A COMPRESSIBLE BAROROPIC VISCOUS FLUID WIH HE BOUNDARY SLIP CONDIION Marek Burna Wojciech

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Oscillation of nonlinear second-order neutral delay differential equations

Oscillation of nonlinear second-order neutral delay differential equations Available online at wwwisr-publicationscom/jnsa J Nonlinear Sci Appl, 0 07, 77 734 Research Article Journal Homepage: wwwtjnsacom - wwwisr-publicationscom/jnsa Oscillation of nonlinear second-order neutral

Διαβάστε περισσότερα

Almost all short intervals containing prime numbers

Almost all short intervals containing prime numbers ACTA ARITHMETICA LXXVI (6 Almos all shor inervals conaining prime nmbers by Chaoha Jia (Beijing Inrocion In 37, Cramér [] conjecred ha every inerval (n, n f(n log 2 n conains a prime for some f(n as n

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

TRM +4!52# 6!#!-!2&'!5$27!842//22&'9&2:1*;832< TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα