A Note on Intuitionistic Fuzzy. Equivalence Relation

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A Note on Intuitionistic Fuzzy. Equivalence Relation"

Transcript

1 International Mathematical Forum, 5, 2010, no. 67, A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar , Assam, India N. K. Sarma Dept. of Mathematics, Assam University Silchar , Assam, India. Abstract In this paper, some interesting properties of Intuitionistic fuzzy equivalence relation have been discussed. Also Intuitionistic fuzzy equivalence classes have been characterized with the help of (α, β)-cut of Intuitionistic fuzzy relations and finally for any Intuitionistic fuzzy equivalence relation on a finite set, we have given an upper bound of the number of values that the degree of membership and nonmembership can assume. Keywords: Intuitionistic Fuzzy Set, Intuitionistic Fuzzy Relation, Intuitionistic Fuzzy Equivalence Relation, (α, β)-cut of Intuitionistic Fuzzy Sets 1. Introduction The concept of Fuzzy relation on a set was defined by Zadeh [6]. Buhaescu[4] and Bustince[5] discussed some beautiful properties of Intuitionistic fuzzy relation. Banerjee and Basnet [3, 2] introduced and discussed the (α, β)-cut of Intuitionistic Fuzzy Sets and Ideals of a ring. 2. Preliminaries Definition 2.1. Let E be a nonempty set. An Intuitionistic Fuzzy Set (IFS) A of E is an object of the form A = {< x, μ A (x), ν A (x) > x E}, where μ A : E [0, 1] and

2 3302 D. K. Basnet and N. K. Sarma ν A : E [0, 1] define the degree of membership and degree of nonmembership of the element x E respectively and for every x E, 0 μ A (x) + ν A (x) 1. Definition 2.2 If A = {< x, μ A (x), ν A (x) > x E} and B = {< x, μ B (x), ν B (x) > x E} be any two IFS of a set E then A B if and only if for all x E, μ A (x) μ B (x) and ν A (x) ν B (x) A = B if and only if for all x E, μ A (x) = μ B (x) and ν A (x) = ν B (x) A B = {< x, (μ A μ B )(x), (ν A ν B )(x) > x E}, where (μ A μ B )(x) = min { μ A (x), μ B (x)} and (ν A ν B )(x) = max { ν A (x), ν B (x)} A B = {< x, (μ A μ B )(x), (ν A ν B )(x) > x E}, where (μ A μ B )(x) = max{ μ A (x), μ B (x)} and (ν A ν B )(x) = min { ν A (x), ν B (x)} Also we see that a fuzzy set has the form {< x, μ A (x), μ c A(x) > x E}, where μ c A(x) = 1 - μ A (x) 3. Intuitionistic Fuzzy Relation Definition 3.1. Let A be a nonempty set. Then an Intuitionistic fuzzy relation (IF relation) on A is an Intuitionistic fuzzy set {<(x, y), μ A (x, y), ν A (x, y) > (x, y) A A}, where μ A : A A [0, 1] and ν A : A A [0, 1]. Definition 3.2. An IF relation R = {<(x, y), μ A (x, y), ν A (x, y) > (x, y) A A} is said to be reflexive if μ A (x, x) = 1 and ν A (x, x) = 0 for all x A. Also R is said to be symmetric if μ A (x, y) = μ A (y, x) and ν A (x, y) = ν A (y, x) for all x, y A. Definition 3.3. If R 1 = {<(x, y), μ 1 (x, y), ν 1 (x, y) > (x, y) A A} and R 2 = {<(x, y), μ 2 (x, y), ν 2 (x, y) > (x, y) A A} be two IF relations on A then J-composition denoted be R 1 οr 2 is defined by R 1 οr 2 = {<(x, y), (μ 1 ομ 2 )(x, y), (ν 1 ον 2 )(x, y) > (x, y) A A}, where (μ 1 ομ 2 )(x, y)=sup{min{μ 1 (x, z), μ 2 (z, y)}} z A and (ν 1 ον 2 )(x, y)=inf{max{ν 1 (x, z), ν 2 (z, y)}} z A Definition 3.4. An IF relation R on A is called transitive if RοR R. Definition 3.5. An IF relation R on A is called an Intuitionistic fuzzy equivalence relation if R is reflexive, symmetric and transitive. Definition 3.6. For any Intuitionistic fuzzy set A = {< x, μ A (x), ν A (x) > x X} of a set X, we define a (α,β)-cut of A as the crisp subset {x X μ A (x) α, ν A (x) β} of X and it is denoted by C α, β (A). Theorem 3.7. Let R = {<(x, y), μ A (x, y), ν A (x, y) > (x, y) X X} be a relation on a set X. Then A is an IF equivalence relation on X if and only if C α, β (R) is an equivalence relation on X, with 0 α, β 1 and α + β 1 Proof. We have C α, β (R) = {(x, y) X X μ R (x, y) α, ν R (x, y) β}. Since R is an IF equivalence relation so μ A (x, x) = 1 α and ν A (x, x) = 0 β, for all x X and so (x, x) C α, β (R) i.e., C α, β (R) is reflexive.

3 A note on intuitionistic fuzzy equivalence relation 3303 Next let (x, y) C α, β (R), then μ R (x, y) α, ν R (x, y) β. But R is IF equivalence so μ R (y, x) = μ R (x, y) α and ν R (y, x) = ν R (x, y) β and hence (y, x) C α, β (R). Therefore C α, β (R) is symmetric. Finally let (x, y) C α, β (R) and (y, z) C α, β (R), then μ R (x, y) α, ν R (x, y) β and μ R (y, z) α, ν R (y, z) β min {μ R (x, y), μ R (y, z)} α and max{ν R (x, y), ν R (y, z)} β max{ min {μ R (x, y), μ R (y, z)}} α and min{max{ν R (x, y), ν R (y, z)}} β y y (μ R ομ R )(x, z) α and (ν R ον R )(x, z) β But R is IF equivalence relation so μ R (x, z) (μ R ομ R )(x, z) α and ν R (x, z) (ν R ον R )(x, z) β (x, z) C α, β (R), which shows that C α, β (R) is transitive. Conversely suppose that C α, β (R) is an equivalence relation on X. Taking α = 1 and β = 0 we get C 1, 0 (R) is equivalence and so a reflexive relation and so (x, x) C 1, 0 (R), for all x X. Thus μ R (x, x) 1, ν R (x, x) 0 and consequently μ R (x, x) = 1 and ν R (x, x) = 0. Therefore the IF relation R is reflexive. For any x, y X, let μ R (x, y) = α and ν R (x, y) = β. Then α + β 1 and so by hypothesis C α, β (R) is an equivalence and hence symmetric relation on X. Also (x, y) C α, β (R), so by symmetry (y, x) C α, β (R). Therefore μ R (y, x) α = μ R (x, y) and ν R (y, x) β = ν R (x, y). Similarly if μ R (y, x) = δ and ν R (y, x) = σ then (x, y) C δ, σ (R) and similarly as above we get μ R (x, y) δ = μ R (y, x) and ν R (x, y) σ = ν R (y, x) and hence μ R (x, y) = μ R (y, x) and ν R (x, y) = ν R (y, x). So the IF relation R is symmetric. Finally let x, y, z X and min{μ R (x, z), μ R (z, y)} = α and max{ ν R (x, z), ν R (z, y)} = β, then0 α, β 1 and α + β 1. Therefore C α, β (R) is an equivalence relation on X. Since μ R (x, y) α, μ R (z, y) α and ν R (x, z) β, ν R (z, y) β, so (x, z) C α, β (R) and (z, y) C α, β (R). As C α, β (R) is equivalence relation so by transitivity (x, y) C α, β (R).Therefore μ R (x, y) α and ν R (x, y) β μ R (x, y) α = min{μ R (x, z), μ R (z, y)} and ν R (x, y) β = max{ν R (x, z), ν R (z, y)}, z μ R (x, y) Sup{ min{μ R (x, z), μ R (z, y)}} z and ν R (x, y) Inf{max{ ν R (x, z), ν R (z, y)}} z μ R (x, y) (μ R ομ R )(x, y) and ν R (x, y) (ν R ον R )(x, y) μ R μ R ομ R and ν R ν R ον R, Which shows that the IF relation R is transitive and hence it is an IF equivalence relation. Definition 3.8. Let R = {<(x, y), μ R (x, y), ν R (x, y) > (x, y) X X} be an IF equivalence on a set X. Let a be any element of X. Then the IFS defined by ar = {< x, (aμ R )(x), (aν R )(x) > x X}, where (aμ R )(x) = μ R (a, x), (aν R )(x) = ν R (a, x) x X, is called an IF equivalence class of a with respect to R. Theorem 3.9. Let R = {<(x, y), μ R (x, y), ν R (x, y) > (x, y) X X} be an IF

4 3304 D. K. Basnet and N. K. Sarma equivalence relation on a set X. Let a be any element of X. Then for 0 α, β 1 and α + β 1, C α, β (ar) = [a], the equivalence class of a with respect to the equivalence relation C α, β (R) in X. Proof. We have [a] = {x X (a, x) C α, β (R)} = {x X μ R (a, x) α and ν R (a, x) β} = {x X (aμ R )(x) α and (aν R )(x) β} = C α, β (ar). With the help of this result we are now giving an alternative proof of a well known result of equivalence relation as follows. Theorem Let R = {<(x, y), μ R (x, y), ν R (x, y) > (x, y) X X} be an IF equivalence relation on a set X. Then [a] = [b] if and only if (a, b) C α, β (R), where [a], [b] are equivalence classes of a and b with respect to the equivalence relation C α, β (R) in X for 0 α, β 1 and α + β 1 Proof. Let [a] = [b] then by theorem 3.9, C α, β (ar) = C α, β (br) {x X (aμ R )(x) α, (aν R )(x) β} = {x X (bμ R )(x) α, (bν R )(x) β} As the two sets on both sides of the equality are nonempty let x C α, β (ar) = C α, β (br) (aμ R )(x) α, (aν R )(x) β and (bμ R )(x) α, (bν R )(x) β μ R (a, x) α, ν R (a, x) β and μ R (b, x) α, ν R (b, x) β min{μ R (a, x), μ R (x, b)} α and max{ν R (a, x), ν R (x, b)} β sup{ min{μ R (a, x), μ R (x, b)}} α and inf{max{ν R (a, x), ν R (x, b)}} β x x (μ R ομ R )(a, b) α and (ν R ον R )(a, b) β μ R (a, b) (μ R ομ R )(a, b) α and ν R (a, b) (ν R ον R )(a, b) β (a, b) C α, β (R) Conversely let (a, b) C α, β (R) μ R (a, b) α and ν R (a, b) β... (i) Let x C α, β (ar), then (aμ R )(x) α, (aν R )(x) β μ R (a, x) α, ν R (a, x) β min{μ R (b, a), μ R (a, x)} α and max{ν R (b, a), ν R (a, x)} β, using (i) sup{min{μ R (b, a), μ R (a, x)}} α and inf{max{ν R (b, a), ν R (a, x)}} β a a (μ R ομ R )(b, x) α and (ν R ον R )(b, x) β μ R (b, x) (μ R ομ R )(b, x) α and ν R (b, x) (ν R ον R )(b, x) β (bμ R )(x) α and (bν R )(x) β x C α, β (br) C α, β (ar) C α, β (br) Similarly we can show that C α, β (br) C α, β (ar) Hence C α, β (ar) = C α, β (br) i.e., [a] = [b] and this completes the proof. Theorem The intersection of two IF equivalence relations on a set is again an IF equivalence relation on the set. Proof. Let A = {<(x, y), μ A (x, y), ν A (x, y) > (x, y) X X} and B = {<(x, y), μ B (x, y), ν B (x, y) > (x, y) X X} be two IF equivalence relations on a set X. Now for any 0 α, β 1 and α + β 1. We have C α, β (A B) = C α, β (A)

5 A note on intuitionistic fuzzy equivalence relation 3305 C α, β (B) (by theorem 3.6 of [3] ). By theorem 3.7, C α, β (A) and C α, β (B) are equivalence relations on X and so being intersection of two equivalence relations C α, β (A B) is also an equivalence relation on X and again by theorem 3.7, A B is an IF equivalence relation on X. Note However the union of two IF equivalence relation on a set is not necessarily an IF equivalence relation on the set as shown by the following example: Let x = {a, b, c} and A = {<(x, y), μ A (x, y), ν A (x, y) > (x, y) X X} and B = {<(x, y), μ B (x, y), ν B (x, y) > (x, y) X X} be two IFS on X, where μ A (a, a) = μ A (b, b) = μ A (c, c) = 1, μ A (a, b) = μ A (b, a) = μ A (a, c) = μ A (c, a) = 0.2 μ A (b, c) = μ A (c, b) = 0.7, ν A (a, a) = ν A (b, b) = ν A (c, c) = 0, ν A (a, b) = ν A (b, a) = ν A (a, c) = ν A (c, a) = 0.6 ν A (b, c) = ν A (c, b) = 0.1 and μ B (a, a) = μ B (b, b) = μ B (c, c) = 1, μ B (a, b) = μ B (b, a) = μ B (b, c) = μ B (c, b) = 0.4 μ B (a, c) = μ B (c, a) = 0.6, ν B (a, a) = ν B (b, b) = ν B (c, c) = 0, ν B (a, b) = ν B (b, a) = ν B (b, c) = ν B (c, b) = 0.5 ν B (a, c) = ν B (c, a) = 0.3 Then it is easy to check that A and B are IF equivalence relation on X. Now A B = {<(x, y), (μ A μ B ) (x, y), (ν A ν B )(x, y) > (x, y) X X} and it is not transitive as shown below: {(μ A μ B ) ο (μ A μ B )}(a, b) = Sup{ min{(μ A μ B )(a, a), (μ A μ B )(a, b)}, min{(μ A μ B )(a, b), (μ A μ B )(b, b)}, min{(μ A μ B )(a, c), (μ A μ B )(c, b)}} = Sup{ min{1, 0.4}, min{0.4, 1}, min{0.6, 0.7}} = = max{μ A (a, b), μ B (a, b)} = (μ A μ B )(a, b) This shows that A B is not an IF equivalence relation on X. Before proceeding further we observe the followings: Let A = {<(x, y), μ A (x, y), ν A (x, y) > (x, y) X X} be an IF equivalence relation on a set X = {a, b, c}. So μ A (a, a) = μ A (b, b) = μ A (c, c) = 1, μ A (a, b) = μ A (b, a), μ A (a, c) = μ A (c, a) and μ A (b, c) = μ A (c, b). Without loss of generality let μ A (a, b) μ A (b, c) μ A (c, a). By symmetry and transitivity we have μ A (a, b) (μ A ομ A )(a, b) = Sup{ min{μ A (a, a), μ A (a, b)}, min{μ A (a, b), μ A (b, b)}, min{μ A (a, c), μ A (c, b)}} min{μ A (a, c), μ A (c, b)} = μ A (c, b) = μ A (b, c) Similarly μ A (b, c) (μ A ομ A )(b, c) = Sup{min{μ A (b, a), μ A (a, c)}, min{μ A (b, b), μ A (b, c)}, min{μ A (b, c), μ A (c, c)}} min{μ A (b, a), μ A (a, c)} = μ A (b, a) = μ A (a, b) Therefore μ A (a, b) = μ A (b, c). This shows that #(Imμ A ) 3. Similarly we can show #(Imν A ) 3. Next let X = {a, b, c, d} and A = {<(x, y), μ A (x, y), ν A (x, y)> (x, y) X X} be an IF equivalence relation on X. We have μ A (a, a)=μ A (b, b) = μ A (c, c) = μ A (d, d) = 1, μ A (a, b) = μ A (b, a), μ A (a, c) = μ A (c, a), μ A (a, d) = μ A (d, a), μ A (b, c) = μ A (c, b), μ A (b, d) = μ A (d, b), μ A (c, d) = μ A (d, c). Without loss of generality let μ A (a, b) μ A (a, c) μ A (a, d) μ A (b, c) μ A (b, d) μ A (c, d).

6 3306 D. K. Basnet and N. K. Sarma Now by transitivity min{μ A (a, c), μ A (c, b)} μ A (a, b) μ A (a, c) μ A (a, b), which gives μ A (a, b) = μ A (a, c). Similarly we can show that μ A (a, b) = μ A (a, d), μ A (b, c) = μ A (b, d). Therefore #(Imμ A ) 4. Similarly we can show that #(Imν A ) 4. The above observations actually lead to the following theorem. Theorem Let X = {a 1, a 2, a 3,..., a n } be a set having n elements and A = {<(x, y), μ A (x, y), ν A (x, y)> (x, y) X X} be an IF equivalence relation on X. Then #(Imμ A ) n and #(Imν A ) n. Proof. We shall prove the first result only and the second will follow similarly. We prove the result by induction on n. For n = 1 the result is trivial [for n = 3 and n = 4 the result is true by the above observations]. Suppose the result is true for any set with n 1 elements. Now X ={a 1, a 2, a 3,..., a n-1 } {a n }. When restricted to Y = {a 1, a 2, a 3,..., a n-1 }, A is also an IF equivalence relation on this set. By induction hypothesis #(Imμ A ) n 1 for the set Y with n 1 elements. For the IF equivalence relation A in X, in addition to these elements in Imμ A there can be only the following elements: μ A (a 1, a n ), μ A (a 2, a n ), μ A (a 3, a n ),..., μ A (a n-1, a n ) and μ A (a n, a n ). Out of these, μ A (a n, a n ) = 1 = μ A (a 1, a 1 ) = μ A (a 2, a 2 ) =... = μ A (a n-1, a n-1 ). Without loss of generality let μ A (a 1, a n ) μ A (a 2, a n ) μ A (a 3, a n )... μ A (a n-1, a n ). By transitivity min{μ A (a 1, a n ), μ A (a n, a 2 )} μ A (a 1, a 2 ) μ A (a 1, a n ) μ A (a 1, a 2 ) Also min{μ A (a 1, a 2 ), μ A (a 2, a n )} μ A (a 1, a n ) μ A (a 1, a 2 ) μ A (a 1, a n ) [as μ A (a 1, a n ) μ A (a 2, a n )] Therefore μ A (a 1, a n ) = μ A (a 1, a 2 ). Similarly, min{μ A (a 2, a n ), μ A (a n, a 3 )} μ A (a 2, a 3 ) μ A (a 2, a n ) μ A (a 2, a 3 ) Also min{μ A (a 2, a 3 ), μ A (a 3, a n )} μ A (a 2, a n ) μ A (a 2, a 3 ) μ A (a 2, a n ) [as μ A (a 2, a n ) μ A (a 3, a n )] Therefore μ A (a 2, a n ) = μ A (a 2, a 3 ). Proceeding in this way we can show that μ A (a 3, a n ) = μ A (a 3, a 4 ), μ A (a 4, a n ) = μ A (a 4, a 5 ),..., μ A (a n-2, a n ) = μ A (a n-2, a n-1 ) Thus out of the n elements μ A (a 1, a n ), μ A (a 2, a n ), μ A (a 3, a n ),..., μ A (a n-1, a n ) and μ A (a n, a n ) all the elements except μ A (a n-1, a n ) coincide with some of the n 1 elements of Imμ A restricted to Y = {a 1, a 2, a 3,..., a n-1 }. Hence Imμ A on X can have a maximum of n elements. This completes the proof. References [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, [2] B. Banerjee and D. K. Basnet, Intuitionistic Fuzzy Subrings and Ideals, J. of Fuzzy Mathematics, Vol. 11, No. 1, 2003, [3] D. K. Basnet, (α, β)-cut of Intuitionistic fuzzy ideals (submitted)

7 A note on intuitionistic fuzzy equivalence relation 3307 [4] T. T. Buhaescu, Some observationson Intuitionistic fuzzy relations, Itimerat Seminar on Functional Equations, [5] H. Bustince, Conjuntos Intuicionistas e Intervalo valorados Difusos: Propiedades y Construccion Relatciones Intuicionistas Fuzzy. Thesis, Univerrsidad Publica de Navarra,(1994). [6] L. A. Zadeh, Similarity relations and fuzzy orderings, Information Sci. 3 (1971), Received: July, 2010

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Chapter 2. Ordinals, well-founded relations.

Chapter 2. Ordinals, well-founded relations. Chapter 2. Ordinals, well-founded relations. 2.1. Well-founded Relations. We start with some definitions and rapidly reach the notion of a well-ordered set. Definition. For any X and any binary relation

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S. Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

Intuitionistic Supra Gradation of Openness

Intuitionistic Supra Gradation of Openness Applied Mathematics & Information Sciences 2(3) (2008), 291-307 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. Intuitionistic Supra Gradation of Openness A. M. Zahran 1, S. E.

Διαβάστε περισσότερα

On Annihilator of Fuzzy Subsets of Modules

On Annihilator of Fuzzy Subsets of Modules International Journal of Algebra, Vol. 3, 2009, no. 10, 483-488 On Annihilator of Fuzzy Subsets of Modules Helen K. Saikia 1 and Mrinal C. Kalita 2 1 Department of Mathematics, Gauhati university, Guwahati-781014,

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13 ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Cardinals. Y = n Y n. Define h: X Y by f(x) if x X n X n+1 and n is even h(x) = g

Cardinals. Y = n Y n. Define h: X Y by f(x) if x X n X n+1 and n is even h(x) = g Cardinals 1. Introduction to Cardinals We work in the base theory ZF. The definitions and many (but not all) of the basic theorems do not require AC; we will indicate explicitly when we are using choice.

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

Appendix to Technology Transfer and Spillovers in International Joint Ventures

Appendix to Technology Transfer and Spillovers in International Joint Ventures Appendix to Technology Transfer and Spillovers in International Joint Ventures Thomas Müller Monika Schnitzer Published in Journal of International Economics, 2006, Volume 68, 456-468 Bundestanstalt für

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

On a Subclass of k-uniformly Convex Functions with Negative Coefficients International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600

Διαβάστε περισσότερα

arxiv: v1 [math.ra] 19 Dec 2017

arxiv: v1 [math.ra] 19 Dec 2017 TWO-DIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &

Διαβάστε περισσότερα

Lecture Notes Introduction to Cluster Algebra

Lecture Notes Introduction to Cluster Algebra Lecture Notes Introduction to Cluster Algebra Ivan C.H. Ip Update: May 29, 2017 7.2 Properties of Exchangeable roots The notion of exchangeable is explained as follows Proposition 7.20. If C and C = C

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Green s Relations and Partial Orders on Semigroups of Partial Linear Transformations with Restricted Range

Green s Relations and Partial Orders on Semigroups of Partial Linear Transformations with Restricted Range Thai Journal of Mathematics Volume 12 2014 Number 1 : 81 93 http://thaijmathincmuacth ISSN 1686-0209 Green s Relations and Partial Orders on Semigroups of Partial Linear Transformations with Restricted

Διαβάστε περισσότερα

Semigroups of Linear Transformations with Invariant Subspaces

Semigroups of Linear Transformations with Invariant Subspaces International Journal of Algebra, Vol 6, 2012, no 8, 375-386 Semigroups of Linear Transformations with Invariant Subspaces Preeyanuch Honyam Department of Mathematics, Faculty of Science Chiang Mai University,

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS

THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS STEFAN BOLD, BENEDIKT LÖWE In [BoLö ] we gave a survey of measure analyses under AD, discussed the general theory of order

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 342 Βάσεις εδοµένων ιδάσκων: Γ. Σαµάρας 5η σειρά ασκήσεων: Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση. Λύσεις Μέρος Α. Συναρτησιακές Εξαρτήσεις 1. Αποδείξτε

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Μετασχηματισμοί έντασης και χωρικό φιλτράρισμα Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

The Properties of Fuzzy Relations

The Properties of Fuzzy Relations International Mathematical Forum, 5, 2010, no. 8, 373-381 The Properties of Fuzzy Relations Yong Chan Kim Department of Mathematics, Gangneung-Wonju National University Gangneung, Gangwondo 210-702, Korea

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Relative order and type of entire functions represented by Banach valued Dirichlet series in two variables

Relative order and type of entire functions represented by Banach valued Dirichlet series in two variables Int J Nonlinear Anal Appl 7 (2016) No 1, 1-14 ISSN: 2008-6822 (electronic) http://dxdoig/1022075/ijnaa2016288 Relative der type of entire functions represented by Banach valued Dirichlet series in two

Διαβάστε περισσότερα

MATRICES

MATRICES MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Σχέσεις, Ιδιότητες, Κλειστότητες

Σχέσεις, Ιδιότητες, Κλειστότητες Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από

Διαβάστε περισσότερα

EQUATIONS OF DEGREE 3 AND 4.

EQUATIONS OF DEGREE 3 AND 4. EQUATIONS OF DEGREE AND 4. IAN KIMING Consider the equation. Equations of degree. x + ax 2 + bx + c = 0, with a, b, c R. Substituting y := x + a, we find for y an equation of the form: ( ) y + py + 2q

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

Differential forms and the de Rham cohomology - Part I

Differential forms and the de Rham cohomology - Part I Differential forms and the de Rham cohomology - Part I Paul Harrison University of Toronto October 30, 2009 I. Review Triangulation of Manifolds M = smooth, compact, oriented n-manifold. Can triangulate

Διαβάστε περισσότερα

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα