Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,"

Transcript

1 Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary condiions Lin Wang, Xingqiu Zhang, Xinyi Lu School of Mahemaics, Liaocheng Universiy Liaocheng, Shandong 25259, China fengzhimengwl@63.com; zhxq9758@63.com; linda98989@26.com Received: 7 November 22 / Revised: 22 May 23 / Published online: 25 Sepember 23 Absrac. In his paper, we sudy he exisence and uniqueness of soluions for a singular sysem of nonlinear fracional differenial equaions wih inegral boundary condiions. We obain exisence and uniqueness resuls of soluions by using he properies of he Green s funcion, a nonlinear alernaive of Leray Schauder-ype, Guo Krasnoselskii s fixed poin heorem in a cone and he Banach fixed poin heorem. Some examples are included o show he applicabiliy of our resuls. Keywords: fracional differenial equaion, singular sysem, fracional Green s funcion, fixed poin heorem. Inroducion Fracional differenial equaions have been of grea ineres recenly. I is caused boh by he inensive developmen of he heory of fracional calculus iself and by he applicaions of such consrucions in various fields of sciences and engineering such as conrol, porous media, elecromagneic, and oher fields. There are many papers deal wih he exisence and mulipliciy of soluion of nonlinear fracional differenial equaions see [ 8] and he references herein). The paper [] considered he exisence of posiive soluions of singular coupled sysem D s u f, v), < <, D p v g, u), < <, where < s, p <, and f, g :, ] [, ) [, ) are wo given coninuous funcions, lim f, ), lim g, ) and D s, D p are he sandard fracional Riemann Liouville s derivaives. The exisence resuls of posiive soluion The projec is suppored financially by he Naional Naural Science Foundaion of China 9779), he Foundaion for Ousanding Middle-Aged and Young Scieniss of Shandong Province BS2SF4) and a Projec of Shandong Province Higher Educaional Science and Technology Program No. JLA53). Corresponding auhor. c Vilnius Universiy, 23

2 494 L. Wang e al. are obained by a nonlinear alernaive of Leray Schauder-ype and Guo Krasnoselskii s fixed poin heorem in a cone. The paper [3] considered he exisence of posiive soluions of singular coupled sysem D α u) f, v) ), < <, D β v) g, u) ), < <, u) u ) u) v) v ) v), where 2 < α, β 3 and f, g :, ] [, ) [, ) are wo given coninuous funcions, and lim f, ), lim g, ) and D, α D β are he sandard fracional Riemann Liouville s derivaives. The wo sufficien condiions for he exisence of soluions are obained by a nonlinear alernaive of Leray Schauder-ype and Guo Krasnoselskii s fixed poin heorem in a cone. Goodrich [5] considered he exisence of a posiive soluion o sysems of differenial equaions of fracional order subjec eiher o he boundary condiions D v y ) λ a )f y ), y 2 ) ), D v2 y 2) λ 2 a 2 )g y ), y 2 ) ), or y i) y i) ) yi) 2 ), i n 2, [ D k y ) ] [ D k y 2 ) ], α n 2, ) yi) 2 ), i n 2, [ D k y ) ] φ [ y), D k y 2 ) ] φ 2y), α n 2, where v, v 2 n, n] for n > 3 and n N, he coninuous funcionals φ, φ 2 : C[, ]) R represen nonlocal boundary condiions. The papers [9 2] considered he exisence of posiive soluions of so-called k, n k) or p, n p) conjugae boundary value problems BVP). For example, in [9], he auhors discussed he following p, n p) conjugae singular boundary value problem: ) n P ) y n) φ)f, y), < <, y i) ), i p, y j) ), j n p, where n 2, and he nonlineariy f may be singular a y. The exisence resuls of posiive soluion abou singular higher order boundary value problems are esablished. Inspired by he work of he above papers and many known resuls, in his paper, we sudy he exisence of posiive soluions of BVP ). The exisence and uniqueness

3 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 495 resuls of soluions are obained by a nonlinear alernaive of Leray Schauder-ype, Guo Krasnoselskii s fixed poin heorem in a cone and he Banach fixed poin heorem. We consider he singular sysem of nonlinear fracional differenial equaions wih inegral boundary condiions D α u) f, v) ), < <, D β v) g, u) ), < <, u) u ) u n 2) ), v) v ) v n 2) ), u i) ) λ v j) ) b c us) ds, vs) ds, where n < α, β n, n 3, <, c, i, j N, i, j n 2 and i, j are fixed consans, λ α /α >, 2 bc β /β >, {, i, α )α 2) α i), i, {, j, 2 β )β 2) β j), j. f, g :, ] [, ) [, ) are wo given coninuous funcions and singular a ha is, lim f, ), lim g, ) ), and D, α D β are he sandard fracional Riemann Liouville s derivaives. The paper is organized as follows. Firsly, we presen some necessary definiion and preliminaries, and derive he corresponding Green s funcion known as fracional Green s funcion and argue is properies. Secondly, he exisence resuls of posiive soluions are obained by a nonlinear alernaive of Leray Schauder-ype, Guo Krasnoselskii s fixed poin heorem in a cone and he Banach fixed poin heorem. Finally, we consruc some examples o demonsrae he applicaion of our main resuls. 2 Background maerials and Green s funcion For he convenience of he reader, we presen here he necessary definiions, lemmas and heorems from fracional calculus heory o faciliae analysis of BVP ). These definiions, lemmas and heorems can be found in he recen lieraure, see [ 8]. Definiion. The Riemann Liouville fracional inegral of order α > of a funcion y :, ) R is given by I α y) s) α ys) ds provided he righ-hand side is poinwise defined on, ). ) Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

4 496 L. Wang e al. Definiion 2. The Riemann Liouville fracional derivaive of order α > of a coninuous funcion y :, ) R is given by D α y) ) n d Γn α) d ys) ds, s) α n where n [α], [α] denoes he ineger par of he number α, provided ha he righhand side is poinwise defined on, ). From he definiion of he Riemann Liouville derivaive, we can obain he saemen. Lemma. See [7].) Le α >. If we assume u C, ) L, ), hen he fracional differenial equaion D α u) has u) C α C 2 α 2 C N α N, C i R, i, 2,..., N, as unique soluions, where N is he smalles ineger greaer han or equal o α. Lemma 2. See [7].) Assume ha u C, ) L, ) wih a fracional derivaive of order α > ha belongs o C, ) L, ). Then I α D α u) u) C α C 2 α 2 C N α N for some C i R, i, 2,..., N, where N is he smalles ineger greaer han or equal o α. Remark. See [6].) The following properies are useful for our discussion: I α I β f) Iαβ f), D α I α f) f), α, β >. In he following, we presen Green s funcion of he fracional differenial equaion boundary value problem. Lemma 3. Given y C[, ], he problem Du) α y), u) u ) u n 2) ), u i) ) λ us) ds, 2) where α > 2, n < α n, < <,, ], i N, i n 2 and i is a fixed consan, λ/α) α >, {, i, α )α 2) α i), i,

5 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 497 i N and i is a fixed consan, is equivalen o G, s) u) G, s)ys) ds, α s) α i λ α s)α α λ α α ) s) α λ α α ) α s) α i λ α α ) s) α λ α α ) α s) α i λ α s)α α λ α α ), s, s,, s,, s, α s) α i, s, s. λ α α ) Here, G, s) is called he Green s funcion of BVP 2). Obviously, G, s) is coninuous on [, ] [, ]. Proof. We may apply Lemma 2 o reduce 2) o an equivalen inegral equaion u) I α y) C α C 2 α 2 C n α n for some C, C 2,..., C n R. Consequenly, he general soluion of 2) is u) s) α ys) ds C α C 2 α 2 C n α n. By u) u ) u n 2) ), one ges ha C 2 C 3 C n. Then we have u) u i) ) s) α ys) ds C α, s) α i ys) ds C α i. On he oher hand, u i) ) λ us) ds combining wih u i) ) s) α i ys) ds C, 3) Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

6 498 L. Wang e al. yields C us) ds x s x s) α ys) ds dx C x s) α ys) dx ds C s) α α ys) ds C α α, s α ds s α ds s) α i λ s) α λ ys) ds α α ) λ ys) ds. α α )α Therefore, he unique soluion of he problem 2) is u) For, one has u) s) α ys) ds λ s) α α λ ys) ds. α α )α s) α ys) ds s) α i α λ ys) ds α α ) ) λ s) α α λ ys) ds α α )α ) s) α i α λ ys) ds α α ) α s) α i λ α s)α α λ α α ) s) α λ ys) ds α α ) α s) α i λ α s)α α λ ys) ds α α ) α s) α i λ ys) ds α α ) G, s)ys) ds.

7 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 499 For, one has u) ) s) α ys) ds ) s) α i α λ ys) ds α α ) λ s) α α λ ys) ds α α )α α s) α i λ α s)α α λ α α ) s) α λ ys) ds α α ) α ) α s) α i λ α α ) s) α λ ys) ds α α ) α s) α i λ ys) ds α α ) G, s)ys) ds. The proof is complee. Lemma 4. The funcion G, s) defined by 3) saisfies: a) G, s) > for all, s, ); a2) λ α /α)g, s) λ α /α) ) i s s) α i α for all, s [, ]; a3) λ α /α)g, s) n λ α /α λ α /α)s s) α i for all, s [, ]. Proof. For s, s, α G, s) α s) α i λ α s)α α α s) α α s) α λ α α s )α α α s) α Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

8 5 L. Wang e al. α s) α λ α α s) α α α s) α [ λ ] α α s) s) α α α s) α λα ] )[ α s) α α s) α λ α α s s) α α λ ) [ α α s) α 2 α 2 s) s) α 2 s) ] λ α α s s) α α α s) α 2 α 2[ s) s) ] λ α α s s) α α α s) α 2 α 2 s ) λ α α ) i s s) α i α λ α α ) i s s) α i α. α G, s) α s) α i λ α s)α α α s) α λ ) [ α α s) α i α s) α ] λ α α s) α i α λ α s)α α λ ) [ α α s) α i α s) α s) α i] λ α α [ α s) α i s ) α ] s) α i λα [ ) α s) α i α s ) α ] λ α α s) α i [ α s ) α ] λα [ ) α s) α i α s ) n ] ) n ] λ α α s) α i [ α λα α ) s) α i α s

9 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 5 [ s )][ s ) s ) 2 s ) n ] λ α α s) α i [ α s )] [ s ) s ) 2 s ) n ] n α s s) α i α 2 n λ α α s s) α i α n λα α λα ) α s s) α i. For s, λα α ) G, s) α s) α i α s) α λ ) [ α α s) α i α s) α ] λ α α s) α i α λ α α ) [ s) α α s) α ] λ α α s) α i α λ α α ) [ s) α 2 α 2 s) s) α 2 s) ] λ α α s) α i α α s) α 2 α 2[ s) s) ] λ α α s) α i α λα α ) s) α 2 α 2 s ) λ α α s) α i α λ α α ) i s s) α i α. λα α ) G, s) α s) α i α s) α λ α α ) [ s) α i α s) α ] λ α α s) α i α Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

10 52 L. Wang e al. λ α α ) [ s) α i α s) α s) α i] λ α α s) α i α λα [ ) α s) α i α λα [ ) α s) α i α λα α ) s) α i α s ) α ] λ α α s) α i α s ) n ] λ α α s) α i α [ s )][ s ) s ) 2 s ) n ] λ α α s) α i α n α s s) α i α 2 n λ α α s s) α i α n λα α λα ) α s s) α i. For s, λα α ) G, s) α s) α i λ α s)α α α s) α λ α α s ) α α α s) α λ α α s) α α [ λ ] α α s) s) α α α s) α α λ α α s s) α α λ α α ) i s s) α i α. λα α ) G, s) α s) α i λ α s)α α

11 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 53 α s) α i α λ α α s) α i α λ α α s ) α α α s) α i α λ α α [ α s) α i s ) α ] s) α i α s) α i α λα [ α s) α i α α s) α i α λα [ α s) α i α λα α ) s) α i α λα α s) α i α [ [ s n α ) s ) 2 s ) n ] s s) α i α 2 n λ α α s s) α i α n λα α λα ) α s s) α i. For s, s, λα α ) G, s) α s) α i α s) α i α λ α α s) α i α λ α α ) i s s) α i α. λα α ) G, s) s ) α ] s ) n ] s )] α s) α i α s) α i α λ α α s) α i α α s s) α i α 2 λ α α s s) α i α n λα α λα ) α s s) α i. From above, a) a3) are complee. The proof is complee. Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

12 54 L. Wang e al. Similarly, he general soluion of D β v) y), v) v ) v n 2) ), v j) ) b c vs) ds, where < <, n < β n, < c, j N, j n 2 and j is a fixed consan, 2 bc β /β >, {, j, 2 β )β 2) β j), j, j N and j is a fixed consan, is v) G 2, s)ys) ds, where G 2, s) can be obained from G, s) by replacing α, λ,, i wih β, b, c, j, correspondingly, and saisfy properies a) a3) wih α, λ,, i replaced by β, b, c, j in case of G 2, s), correspondingly. Lemma 5. See [3].) Le E be a Banach space and P E be a cone. Assume Ω and Ω 2 be wo bounded open subses in E such ha θ Ω and Ω Ω 2. Le operaor A : Ω 2 \Ω ) P P be compleely coninuous. Suppose ha one of he wo condiions: ) Au u for all u P Ω, Au u for all u P Ω 2 and 2) Au u for all u P Ω, Au u for all u P Ω 2 is saisfied. Then A has a fixed poin in Ω 2 \ Ω ) P. Lemma 6. See [4].) Le E be a Banach space and Ω E be closed and convex. Assume U is a relaively open subse of Ω wih θ U, and le operaor A : U Ω be a coninuous compac map. Then eiher ) A has a fixed poin in U or 2) here exiss u U and ϕ, ) wih u ϕau. 3 Main resuls and proof Le E C[, ] be he Banach space wih he maximum norm u max [,] u). Thus E E, ) is a Banach space wih he norm defined by u, v) max{ u, v } for all u, v) E E. We define he cone P E E by P { u, v) E E u), v), }.

13 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 55 Lemma 7. Le n < α, β n. Le F :, ] [, ) [, ) be coninuous and saisfy lim F, ). Assume ha here exiss < σ < such ha σ F ) is coninuous on [, ]. Then u) G, s)f s) ds is coninuous on [, ]. Proof. From he coninuiy of σ F ) and u) G, s) σ σ F s) ds, we know ha u). If u) u ) when for any [, ], hen he proof is complee. In he following we separae he process ino hree cases. Case,, ]). Owing o he coninuiy of σ F ), here exiss an M > such ha σ F ) M for all [, ], hen u) u) s) α s σ s σ F s) ds s) α i α λ s σ s σ F s) ds α α λ α s)α α λ s σ s σ F s) ds α α s) α s σ s σ F s) ds s) α i α λ s σ s σ F s) ds α α λ α s)α α λ s σ s σ F s) ds α α s) α s σ s σ F s) ds λ α s) α i α λ s σ s σ F s) ds α α M Mα σ s) α s σ ds M λ α λ α α s) α i α s σ ds B σ, α) λ α )Mα λ B σ, α i) α α ) λ α )MΓ σ) α σ λ α ) ). α α )Γ α i σ) Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

14 56 L. Wang e al. B ) menioned in he above funcions represens he Bea funcion. Case 2, ),, ]). u) u ) s) α s σ s σ F s) ds λ α α λ α α λ α α λ α α λ λ s) α i α s σ s σ F s) ds α s)α α s σ s σ F s) ds s) α i α s σ s σ F s) ds α s)α α s σ s σ F s) ds s) α s) α s σ s σ F s) ds s) α i α α λ α α ) λ α s)α α α λ α α ) ) ) s σ s σ F s) ds s σ s σ F s) ds s) α s) α s σ s σ F s) ds λ α λ α α M s) α i α α s) α s σ s σ F s) ds s) α s) α s σ ds ) s) α s σ s σ F s) ds s) α s σ s σ F s) ds s σ s σ F s) ds

15 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 57 M λ α )α α ) λ α α s) α i s σ ds M s) α s σ ds Mα σ α σ ) B σ, α) λ α )Mα α ) λ B σ, α i) α α ) λ α )MΓ σ) α σ λ α α α σ α α ) ). )Γ α i σ) Case 3, ], [, )). Similarly o he proof of Case 2, so we omi i. The proof is complee. From Lemma 3 we can wrie he sysem of BVPs ) as an equivalen sysem of inegral equaions u) v) G, s)f s, vs) ) ds,, G 2, s)g s, us) ) ds,, which can be proved in he same way as Lemma 3.3 in [6]. For convenience, he proof is omied. We define A : E E E E o be an operaor, i.e., Au, v)) G, s)s σ s σ f s, vs) ) ds, : A v), A 2 u) ). G 2, s)s σ2 s σ2 g s, us) ) ds Lemma 8. Le n < α, β n. Le f, g :, ] [, ) [, ) be coninuous and saisfy lim f, ), lim g, ). Assume ha here exiss < σ, σ 2 < such ha σ f, y), σ2 g, y) are coninuous on [, ] [, ). Then he operaor A : P P is compleely coninuous. Proof. For any u, v) P, we have ha u, v P { y E y), }. ) Since A v) G, s)s σ s σ f s, vs) ) ds, Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

16 58 L. Wang e al. we ge ha A : P P by Lemma 7 and he nonnegaiviy of f. Se v P and v c. If v P and v v <, hen v < c : c. By he coninuiy of σ f, y), we ge ha σ f, y) is uniformly coninuous on [, ] [, c], namely, for all ε >, exiss δ > δ < ), when y y 2 < δ, we have σ f, y ) σ f, y 2 ) < ε, for all [, ], y, y 2 [, c]. Obviously, if v v < δ, hen v ), v) [, c] and v) v ) < δ for all [, ]. Hence, we have σ f, v) ) σ f, v ) ) < ε 4) for all [, ], v P, v v < δ. I follows from 4), we can ge A v A v max A v) A v ) [,] max < ε [,] G, s)s σ s σ f s, vs) ) s σ f s, v s) ) ds G, s)s σ ds ε ε n λ α α λ α α ) λ α α ) n λ α α λ α α ) λ s s) α i s σ ds α α ) s) α i s σ ds ε n λ α α λ α α ) λ B2 σ, α i) α α ) ε n λ α α λ α α ) Γ2 σ )Γα i) λ α α ) Γ2 α i σ ). Owing o he arbirariness of v, we know ha A : P P is coninuous. Similarly, we can ge ha A 2 : P 2 P 2 is coninuous. So, we proved A : P P is coninuous. Le M P be bounded. Tha is o say here exiss a consan l > such ha u, v) l for all u, v) M. Since σ f, y), σ2 g, y) are coninuous on [, ] [, ), le L max [,],u,v) M { σ f, v)), σ2 g, u))}. Then, for each u, v) M, we have A v) G, s)s σ s σ f s, vs) ) ds L n λ α α λ α α ) λ s s) α i s σ ds α α ) L n λ α α λ α α ) Γ2 σ )Γα i) λ α α ) Γ2 α i σ ).

17 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 59 Hence, we have A v max A v) L n λ α α λ α α ) Γ2 σ )Γα i) [,] λ α α ) Γ2 α i σ ). Similarly, we have A 2 u max A 2u) L n 2 b β cβ b β cβ ) Γ2 σ 2 )Γβ j) [,] 2 b β cβ )Γβ) Γ2 β j σ 2 ). Thus, { Au, v) max A v, A 2 u } [,] { n λ α max α λ α α ) λ α α ) n 2 b β cβ b β cβ ) 2 b β cβ )Γβ) Γ2 σ )Γα i) Γ2 α i σ ), Γ2 σ 2 )Γβ j) Γ2 β j σ 2 ) } L. Therefore, AM) is bounded. Nex, we prove ha A is equiconinuous. Le, for all ε >, { ε λ α δ min α )Γ α i σ ) 2 n λ α )LΓ σ, ε 2 b } β cβ )Γ β j σ 2 ) ) 2 n 2 b β )LΓ σ. 2) Then, for any u, v) M,, 2 [, ] wih < 2 and < 2 < δ, we have A v 2 ) A v ) G 2, s)f s, vs) ) ds G, s)f s, vs) ) ds 2 2 s) α s σ s σ f s, vs) ) ds s) α i α 2 λ s σ s σ f s, vs) ) ds α α ) λ α s)α α 2 λ α α ) s σ s σ f s, vs) ) ds s) α s σ s σ f s, vs) ) ds Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

18 5 L. Wang e al. 2 s) α i α λ s σ s σ f s, vs) ) ds α α ) λ α s)α α λ α α ) s σ s σ f s, vs) ) ds 2 s) α s) α s σ s σ f s, vs) ) ds s) α i α 2 α λ α α ) λ α s)α α 2 α λ α α ) ) ) 2 s) α s σ s σ f s, vs) ) ds s σ s σ f s, vs) ) ds s σ s σ f s, vs) ) ds 2 s) α s) α s σ s σ f s, vs) ) ds 2 L λ α ) s)α i α 2 α λ α α ) 2 s) α s σ s σ f s, vs) ) ds 2 s) α s) α s σ ds L λ α )α 2 α ) λ α α 2 L 2 s) α s σ ds Lα σ 2 α σ ) ) s) α i s σ ds s σ s σ f s, vs) ) ds B σ, α) λ α )Lα 2 α λ α α ) ) λ α )LΓ σ ) α σ λ α α 2 α σ 2 α α ). )Γ α i σ ) B σ, α i)

19 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 5 Similarly, A2 u 2 ) A 2 u ) 2 b β )LΓ σ 2) β σ 2 2 b β cβ 2 β σ2 β 2 β ). )Γ β j σ 2 ) Hence, we figure on α σ 2 α σ, α 2 α, β σ2 2 β σ2, β 2 β in he following hree cases: Case. If < δ, 2 < 2δ, hen Case 2. If < 2 δ, hen Case 3. If δ < 2, hen α σ 2 α σ α σ ) α 2 α α ) α σ 2 α σ α σ 2 2δ) α σ < 2 n δ, α 2 α α 2 2δ) α < 2 n δ. 2 2 α σ 2 α σ α σ 2 δ α σ < 2 n δ, α 2 α 2 α δ α < 2 n δ. x α σ dx α σ ) 2 ) α σ 2 α σ )δ < 2 n δ, x α 2 dx α ) 2 ) α 2 2 α )δ < 2 n δ. Hence, A v 2 ) A v ) < ε 2 ε 2 ε. Similarly, A2 u 2 ) A 2 u ) < ε. Therefore, AM) is equiconinuous, and by Arzelà Ascoli s heorem, we obain ha AM) is a relaively compac se, hen we prove operaor A : P P is compleely coninuous. Now we give he following hree resuls of his paper. Theorem. Le n < α, β n. Le f, g :, ] [, ) [, ) be coninuous and saisfy lim f, ), lim g, ). Assume ha here exiss < σ, σ 2 < such ha σ f, y), σ2 g, y) are coninuous on [, ] [, ) and Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

20 52 L. Wang e al. here exis, ) and wo posiive consans ρ, ξ subjecing o ρ > max{ξα )/ m α ), ξβ )/m 2 β )}, where Furher suppose: m m 2 λ α α ) i λ α α b β cβ c) j 2 b β cβ i) for all, y) [, ] [, ξ], ii) for all, y) [, ] [, ρ], s σ s) α i ds, s σ2 s) β j ds. σ f, y) ξ m α, σ2 g, y) ξγβ) m 2 β ; σ f, y) ργ2 α i σ ) λ α α ) n λ α α λ α α )Γ2 σ ), σ2 g, y) ργ2 β j σ 2) 2 b β cβ ) n 2 b β cβ b β cβ )Γ2 σ 2 ). Then BVP ) has a leas one posiive soluion. Theorem 2. Le n < α, β n. Le f, g :, ] [, ) [, ) be coninuous and saisfy lim f, ), lim g, ). Assume ha here exiss < σ, σ 2 < such ha σ f, y), σ2 g, y) are coninuous on [, ] [, ). Suppose hey saisfy he following condiions: iii) here exis wo coninuous and nondecreasing funcions ϕ, ψ : [, ), ) such ha σ f, y) ϕy), σ2 g, y) ψy), y) [, ] [, ); iv) here exiss an r >, yielding { r max{ϕr), ψr)} > max n λ α α λ α α ) Γ2 σ ) λ α α Γ2 α i σ ), n 2 b β cβ b } β cβ ) Γ2 σ 2 ) 2 b. β cβ Γ2 β j σ 2 ) Then he BVP ) has a posiive soluion.

21 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 53 Theorem 3. Le n < α, β n. Le f, g :, ] [, ) [, ) be coninuous and saisfy lim f, ), lim g, ). Assume ha here exiss < σ, σ 2 < such ha σ f, y), σ2 g, y) are coninuous on [, ] [, ). Suppose hey saisfy he following condiion: v) here exiss wo posiive consans L, L 2 such ha, for all, ) [, ] [, ), σ f, y) σ f, x) L y x, σ2 g, y) σ2 g, x) L 2 y x, where n λ α α λ α α ) λ α α Γ2 σ )L Γ2 α i σ ) <, n 2 b β cβ b β cβ ) 2 b β cβ Γ2 σ 2 )L 2 Γ2 β j σ 2 ) <. Then he BVP ) has a unique soluion. In addiion, we can ge he unique soluion by consrucing ieraive sequence and error esimae of he n imes ieraed. Proof of Theorem. From he condiions we obain ρ > max{ξα )/m α ), ξβ )/m 2 β )} > ξ. We divide he demonsraion ino wo seps. Sep. Le Ω {u, v) P u < ξ, v < ξ} such ha u), v) ξ for any u, v) P Ω and for all [, ]. By condiion i) and Lemma 4, we ge A v ) G, s)s σ s σ f s, vs) ) ds ) G, s)s σ s σ f s, vs) ds ξ λ α α ) i m α λ α α ) α s s) α i s σ ds ξ. Hence, Similarly, Therefore, A v max A v) ξ v P Ω. [,] A 2 u max A2 u) ξ u P Ω. [,] Au, v) ξ u, v). Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

22 54 L. Wang e al. Sep 2. Le Ω 2 {u, v) P u < ρ, v < ρ}. For any u, v) P Ω 2, [, ], we have ha u), v) ρ. By condiion ii) and Lemma 4, we ge A v) G, s)s σ s σ f s, vs) ) ds ργ2α i σ ) λ α α ) n λ α α λ α α )Γ2 σ ) ρ. Then we obain Similarly, A v ρ u, v) P Ω 2. n λ α α λ α α ) λ s s) α i s σ ds α α ) A 2 u max A 2 u) ρ u, v) P Ω 2. [,] Therefore, Au, v) ρ u, v). Besides, by Lemma 8, operaor A : P P is compleely coninuous. Then wih Lemma 5, our proof is complee. Proof of Theorem 2. Le U {u, v) P u < r, v < r}, so ha U P. By Lemma 8, we ge o know ha operaor A : U P is compleely coninuous. And if here exiss u, v) U and λ, ), we have u, v) λau, v), hen by iii) for [, ], we obain u) λa v) λ Hence, G, s)f s, vs) ) ds < G, s)s σ ϕ vs) ) ds ϕ v ) G, s)s σ ds ϕ v )n λ α α λ α α ) λ α α ) G, s)s σ s σ f s, vs) ) ds s) α i s σ ds ϕ v )n λ α α λ α α ) λ B2 σ, α i) α α ) ϕ u, v) )n λ α α λ α α ) λ α α Γ2 σ ) Γ2 α i σ ). u < ϕ u, v) )n λ α α λ α α ) λ α α Γ2 σ ) Γ2 α i σ ),

23 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 55 i.e., Similarly, u ϕ u, v) ) < n λ α α λ α α ) Γ2 σ ) λ α α Γ2 α i σ ). v ψ u, v) ) < n 2 b β cβ b β cβ ) Γ2 σ 2 ) 2 b β cβ Γ2 β j σ 2 ). Consequenly, { u, v) max{ϕ u, v) ), ψ u, v) )} < max n λ α α λ α α ) Γ2 σ ) λ α α Γ2 α i σ ), n 2 b β cβ b } β cβ ) Γ2 σ 2 ) 2 b. β cβ Γ2 β j σ 2 ) Again by iv) we know u, v) r which conradics ha u, v) U. Then based on Lemma 6, here is a fixed poin u, v) U. Therefore he BVP ) has a posiive soluion. Proof of Theorem 3. We shall use Banach fixed poin heorem. From v), for any v, v 2 P, [, ], we can ge ha A v 2 ) A v ) G, s)s σ s σ f s, v 2 s) ) s σ f s, v s) ) ds L v 2 ) v ) n λ α α λ α α ) λ α α ) s) α i s σ ds L v2 ) v ) n λ α α λ α α ) λ B2 σ, α i) α α ) L v 2 ) v ) n λ α α λ α α ) λ α α Γ2 σ ) Γ2 α i σ ). Similarly, for any u, u 2 P, [, ], A2 u 2 ) A 2 u ) n 2 b β cβ b β cβ ) Γ2 σ 2 ) 2 b β cβ Γ2 β j σ 2 ) L 2u 2 ) u ). Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

24 56 L. Wang e al. So, we have max Au2, v 2 ) Au, v ) where [,] Au2, v 2 ) Au, v ) A v 2, A 2 u 2 ) A v, A 2 u ) A v 2 A v, A 2 u 2 A 2 u ) L v2 v, u 2 u ), { n L λ α max α λ α α ) Γ2 σ )L λ α α Γ2 α i σ ), n 2 b β cβ b β cβ ) 2 b β cβ Γ2 σ 2 )L 2 Γ2 β j σ 2 ) } <. By he conracion mapping principle, he BVP ) has a unique soluion. Example. For any n < α, β n, ake /4, ξ >, and ρ > max{4 α ξα )/m, 4 β ξβ )/m 2 }, ρ >. Choose σ σ 2 /2. Consider he boundary value problem o he singular sysem of fracional equaions D α u) c v, < <, D β v) c 2 u, < <, u) u ) u n 2) ), u) /2 us) ds, 2 v) v ) v n 2) ), v) /2 vs) ds, 2 5) where c, c 2 are consans saisfying µn/α) α 4 α ξ c ρ[γ2 α σ ) α µ α /α) )Γ2 σ )] m [α µn/α)α µ α /α) ]Γ2 σ, ) µn/β) β 4 β ξγβ) c 2 ρ[γ2 β σ 2) β µ β /β) )Γ2 σ 2)] m 2 [β µn/β)β µ β /β) ]Γ2 σ. 2) Denoe f, y) c y)/, g, y) c 2 y)/. Then f, g are coninuous on, ] [, ) and lim f, ), lim g, ). All condiions of Theorem 3 hold. Therefore, BVP 5) has a leas one posiive soluion.

25 Exisence and uniqueness of soluions for singular sysem wih inegral boundary condiions 57 Example 2. Consider he boundary value problem o he following singular sysem of fracional equaions: D 9/2 u) 2 )2 ln2 v)), < <, D 3/3 v) 2 )2 ln2 u)), < <, u) u ) u ) u 3) ), u) /2 us) ds, 2 v) v ) v ) v 3) ), v) /2 vs) ds. 2 6) Denoe f, g are coninuous on, ] [, ) and lim f, ), lim g, ). Choose σ σ 2 /2 and ϕy) ψy) ln2 y), hen we have /2) 2 ln2 v))/ ln2 v)) for all, y) [, ] [, ). ϕ, ψ : [, ), ) are coninuous, nondecreasing funcions, so, condiion iii) of Theorem 2 holds. Nex, se r. Then condiion iv) of Theorem 2 holds. Therefore, BVP 6) has a leas one posiive soluion. Example 3. Consider he boundary value problem o he following singular sysem of fracional equaions: D 3/2 u) )3 v) ) 2, < <, D 2/3 v) 3 )2 u) ) 5 3, < <, u) u ) u 5) ), u ) 2 v) v ) v 5) ), v ) 3 4 /3 2/3 us) ds, vs) ds, 7) where f, v)) /) 3 v) )/2, g, u)) /3) 2 u) )/ 5 3, and f, g are coninuous on, ] [, ) and lim f, ), lim g, ). Choose σ /2, σ 2 /3. Clearly, σ f, v 2 )) σ f, v )) 33/2) v 2 v, σ2 g, u 2 )) σ2 f, u )) 6/35) u 2 u for all [, ]. By a simple calculaion, we know L <. All condiions of Theorem 3 hold. Therefore, BVP 7) has a unique soluion. Nonlinear Anal. Model. Conrol, 23, Vol. 8, No. 4,

26 58 L. Wang e al. References. C. Bai, J. Fang, The exisence of aposiive soluion for a singular coupled sysem of nonlinear fracional differenial equaions, Appl. Mah. Compu., 5:6 62, Z. Bai, H. Lü, Posiive soluions for boundary value problem of nonlinear fracional differenial equaion, J. Mah. Anal. Appl., 3:495 55, W. Feng, S. Sun, Z. Han, Y. Zhao, Exisence of soluions for a singular sysem of nonlinear fracional differenial equaions, Compu. Mah. Appl., 62:37 378, C.S. Goodrich, Exisence of a posiive soluion o a class of fracional differenial equaions, Appl. Mah. Le., 23:5 55, C.S. Goodrich, Exisence of a posiive soluion o sysems of differenial equaions of fracional order, Compu. Mah. Appl., 62:25 268, X. Su, Boundary value problem for a coupled sysem of nonlinear fracional differenial equaions, Appl. Mah. Le., 22:64 69, X. Xu, D. Jiang, C. Yuan, Muliple posiive soluions o singular posione and semiposione Dirichle-ype boundary value problems of nonlinear fracional differenial equaions, Nonlinear Anal. Theory Mehods Appl., 74: , J. Xu, Z. Wei, W. Dong, Uniqueness of posiive soluions for a class of fracional boundary value problems, Appl. Mah. Le., 25:59 593, R.P. Agarwal, D. O Regan, Posiive soluions for p, n p) conjugae boundary value problems, J. Differ. Equaions, 5: , L. Kong, J. Wang, The Green s funcion for k, n k) conjugae boundary value problems and is applicaions, J. Mah. Anal. Appl., 255:44 422, 2.. R. Ma, Posiive soluions for semiposione k, n k) conjugae boundary value problems, J. Mah. Anal. Appl., 252:22 229, L. Zu, D. Jiang, Y. Gai, D. O Regan, H. Gao, Weak singulariies and exisence of soluions o k, n k) conjugae boundary value problems, Nonlinear Anal., Real World Appl., : , M.A. Krasnoselskii, Posiive Soluion of Operaor Equaion, Noordhoff, Groningen, G. Isac, Leray Schauder Type Alernaives Complemenariy Problem and Variaional Inequaliies, Springer, Berlin, 26.

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016 4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s

Διαβάστε περισσότερα

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

Linear singular perturbations of hyperbolic-parabolic type

Linear singular perturbations of hyperbolic-parabolic type BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions

Διαβάστε περισσότερα

Multiple positive periodic solutions of nonlinear functional differential system with feedback control

Multiple positive periodic solutions of nonlinear functional differential system with feedback control J. Mah. Anal. Appl. 288 (23) 819 832 www.elsevier.com/locae/jmaa Muliple posiive periodic soluions of nonlinear funcional differenial sysem wih feedback conrol Ping Liu and Yongkun Li Deparmen of Mahemaics,

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

Διαβάστε περισσότερα

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

On Strong Product of Two Fuzzy Graphs

On Strong Product of Two Fuzzy Graphs Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

Positive solutions for three-point nonlinear fractional boundary value problems

Positive solutions for three-point nonlinear fractional boundary value problems Electronic Journal of Qualitative Theory of Differential Equations 2, No. 2, -9; http://www.math.u-szeged.hu/ejqtde/ Positive solutions for three-point nonlinear fractional boundary value problems Abdelkader

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems

Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems INSTITUTE OF PHYSICS PUBLISHING Nonlineariy 9 (2006) 253 273 NONLINEARITY doi:0.088/095-775/9/6/003 Exisence of ravelling wave soluions in delayed reacion diffusion sysems wih applicaions o diffusion compeiion

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Almost all short intervals containing prime numbers

Almost all short intervals containing prime numbers ACTA ARITHMETICA LXXVI (6 Almos all shor inervals conaining prime nmbers by Chaoha Jia (Beijing Inrocion In 37, Cramér [] conjecred ha every inerval (n, n f(n log 2 n conains a prime for some f(n as n

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

A Simple Version of the Lucas Model

A Simple Version of the Lucas Model Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

arxiv: v3 [math.ca] 4 Jul 2013

arxiv: v3 [math.ca] 4 Jul 2013 POSITIVE SOLUTIONS OF NONLINEAR THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS arxiv:125.1844v3 [math.ca] 4 Jul 213 FAOUZI HADDOUCHI, SLIMANE BENAICHA Abstract. We

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface ANNALE POLONICI MAHEMAICI LIX.2 (1994 On local moion of a general compressible viscous hea conducing fluid bounded by a free surface by Ewa Zadrzyńska ( Lódź and Wojciech M. Zaja czkowski (Warszawa Absrac.

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

arxiv: v1 [math.ap] 10 Apr 2017

arxiv: v1 [math.ap] 10 Apr 2017 C 1,θ -Esimaes on he disance of Inerial Manifolds José M. Arriea and Esperanza Sanamaría arxiv:1704.03017v1 [mah.ap] 10 Apr 2017 Absrac: In his paper we obain C 1,θ -esimaes on he disance of inerial manifolds

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ON LOCAL MOTION OF A COMPRESSIBLE BAROTROPIC VISCOUS FLUID WITH THE BOUNDARY SLIP CONDITION. Marek Burnat Wojciech M. ZajĄczkowski. 1.

ON LOCAL MOTION OF A COMPRESSIBLE BAROTROPIC VISCOUS FLUID WITH THE BOUNDARY SLIP CONDITION. Marek Burnat Wojciech M. ZajĄczkowski. 1. opological Mehods in Nonlinear Analysis Journal of he Juliusz Schauder Cener Volume 1, 1997, 195 223 ON LOCAL MOION OF A COMPRESSIBLE BAROROPIC VISCOUS FLUID WIH HE BOUNDARY SLIP CONDIION Marek Burna Wojciech

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Riemann Hypothesis: a GGC representation

Riemann Hypothesis: a GGC representation Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q) Online Appendix I Appendix D Additional Existence Proofs Denote B q = {q : A E A S [0, +r ]}, Bψ = {ψ : Y E A S S}, B W = {W : I E A S R}. I slightly abuse the notation by defining B q (L q ) the subset

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Cubic Γ-n normed linear spaces

Cubic Γ-n normed linear spaces Malaya Journal of Maemaik, Vol. 6, No. 3, 643-647, 18 hps://doi.org/1.6637/mjm63/8 Cubic Γ-n normed linear spaces P. R. Kavyasree1 * and B. Surender Reddy Absrac This paper is aimed o propose he noion

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9. 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Center Manifold Theory and Computation Using a Forward Backward Approach

Center Manifold Theory and Computation Using a Forward Backward Approach College of William and Mary W&M Publish Undergraduae Honors Theses Theses, Disseraions, & Maser Projecs 4-217 Cener Manifold Theory and Compuaion Using a Forward Backward Approach Emily E. Schaal College

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

The third moment for the parabolic Anderson model

The third moment for the parabolic Anderson model The hird momen for he parabolic Anderson model Le Chen Universiy of Kansas Thursday nd Augus, 8 arxiv:69.5v mah.pr] 5 Sep 6 Absrac In his paper, we sudy he parabolic Anderson model saring from he Dirac

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

3 Frequency Domain Representation of Continuous Signals and Systems

3 Frequency Domain Representation of Continuous Signals and Systems 3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα