ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems"

Transcript

1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Κλειστών Δικτύων Ουρών Markov: 1. Ανάλυση Window Flow Control σε Δίκτυα Υπολογιστών 2. Αξιολόγηση Συστημάτων Πολύ-προγραμματισμού (Multitasking) 3. Ανάλυση Μέσης Τιμής (Mean Value Analysis MVA) 4. Προσομοίωση Κλειστού Δικτύου Markov 5. Γενίκευση Μοντέλων Μορφής Γινομένου (BCMP) Βασίλης Μάγκλαρης 23/5/2018

2 ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (επανάληψη) ΘΕΩΡΗΜΑ GORDON-NEWELL (1/2) Παραδοχές: Κλειστό δίκτυο N περιφερομένων πελατών σε M διασυνδεόμενα υποσυστήματα (ουρές) M Q i εκθετικής εξυπηρέτησης σταθερού συνολικού αριθμού πελατών N = i=1 n i όπου n i ο αριθμός πελατών στο Q i στην εργοδική κατάσταση: Τυχαία μεταβλητή n i = lim n i t t Ανεξάρτητοι εκθετικοί εξυπηρετητές i = 1, 2,, M ρυθμού μ i με παραδοχή Kleinrock Τυχαία Δρομολόγηση από υποσύστημα Q i σε Q j με πιθανότητα p ij = Prob i j Θεώρημα: Οι εργοδικές πιθανότητες της n = n 1, n 2,, n M έχουν μορφή γινομένου: P n = P n 1, n 2,, n M = 1 n X i G N i i=1 Οι παράμετροι X i είναι ανάλογες των βαθμών χρησιμοποίησης των ουρών i, κατ αναλογία με τα ρ i = λ i /μ i στα ανοικτά δίκτυα ουρών Μ/Μ/1 του Θεωρήματος Jackson Η ρυθμαπόδοση λ j διαμέσου του Q j είναι ανάλογη του μ j X j. Οι X j δεσμεύονται από γραμμικό σύστημα διατήρησης μέσων ρυθμών πελατών από δρομολόγηση άλλων Q i : μ j X j = M i=1 M μ i X i p ij, j = 1,, N Συνήθως ορίζουμε αυθαίρετα την τιμή της X 1 = 1 ώστε το ανωτέρω γραμμικώς εξαρτημένο σύστημα εξισώσεων να έχει μονοσήμαντη λύση για τις παραμέτρους X j Σημείωση: Στα ανοικτά δίκτυα Jackson οι εξωτερικές ροές εισόδου γ ι εγγυώνται τη γραμμική ανεξαρτησία των εξισώσεων διατήρησης μέσων ρυθμών πελατών

3 ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (επανάληψη) ΘΕΩΡΗΜΑ GORDON-NEWELL (2/2) Η σταθερά G(N), προκύπτει από την εξίσωση κανονικοποίησης (άθροισμα εργοδικών πιθανοτήτων για όλες τις πιθανές απείρως επισκέψιμες καταστάσεις - positive recurrent states - ίσο με μονάδα) Η G(N) αντιστοιχεί στη Συνάρτηση Κερματισμού Partition Function της Στατιστικής Μηχανικής. Ο υπολογισμός της απαιτεί την καταγραφή όλων των καταστάσεων n 1, n 2,, n M συνδυασμών n i που αθροίζουν σε N (στην γενικότητα του «δύσκολο» πρόβλημα). Στην περίπτωση μας λύνεται με τον Επαναληπτικό Αλγόριθμο του Buzen (επόμενη διαφάνεια) Οι οριακές πιθανότητες (Marginal Probabilities) για το υποσύστημα (ουρά) Q i δίνονται από: P n i = k = X i k G N G N k X ig N k 1 Ο βαθμός χρησιμοποίησης του εξυπηρετητή i δίνεται από P n i 1 = X i G(N 1)/G N Ο μέσος αριθμός πελατών στο υποσύστημα Q i (μαζί με τον εξυπηρετούμενο) δίνεται από: N E n i = X i k k=1 G N k G N

4 ΕΠΑΝΑΛΗΠΤΙΚΟΣ ΑΛΓΟΡΙΘΜΟΣ BUZEN (επανάληψη) Πολυπλοκότητα Ο(Ν Μ) Διαμόρφωση πίνακα (N + 1) (M + 1) στοιχείων g(n, m), n = 0,1,, N και m = 0,1,, M : m n g(n, m) X i n i n 1 + +n m i=1 m n m = X i n i (n 1 + +n m =n) ^ (n m =0) i=1 + X i n i (n 1 + +n m =n) ^ (n m >0) i=1 Επαναληπτική σχέση (Recurrence Relation): g(n, m) = g(n, m 1) + X m g(n 1, m) Αρχικές συνθήκες Επαναληπτικού Αλγορίθμου: g 0, m = 1, m = 1,, M και g n, 1 = X 1 n, n = 0,, N. Με X 1 = 1 g n, 1 = 1 Η συνάρτηση κερματισμού (Partition Function) για κλειστό δίκτυο M ουρών και n πελατών (n = 0,, N) δίνεται από την τελευταία στήλη του πίνακα g(n, m): G n = g n, M, n = 1,2, N και G N = g(n, M) N k G N k E n i = k=1 X i, P n i 1 = X i G(N 1)/G(N) G N Για τον υπολογισμό των Ν στοιχείων της στήλης Μ του πίνακα g(n, m) απαιτούνται N M προσθέσεις και N M πολλαπλασιασμοί: Πολυπλοκότητα O(N M)

5 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (επανάληψη) Θεώρημα Gordon-Newell για Μ = 2 Ουρές, Ν = 3 Πελάτες Χ 1 μ 1 = Χ 2 μ 2 Χ 1 = 1, Χ 2 = μ 1 /μ 2 = α P(0,3) = X 23 /G(3)=α 3 /G(3) P(1,2) = X 22 /G(3)=α 2 /G(3) P(2,1) = X 2 /G(3)=α/G(3) P(3,0) = 1/G(3) 1/G(3) + α/g(3) + α 2 /G(3) + α 3 /G(3) = 1 Άρα: G(3)=1/(1+α+α 2 +α 3 ) γ = μ 2 [1- P(3,0)] = μ 2 [1-1/G(3)] E(T 1 ) = E(n 1 )/γ E n 1 = P 1,2 + 2P 2,1 + 3P 3,0 = a2 +2a+3 G 3 E n 2 = P 2,1 + 2P 1,2 + 3P 0,3 = a+2a2 +3a 3 E n 1 + E n 2 = N = 3 G 3

6 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (επανάληψη) Αλγόριθμος Buzen για Μ = 2 Ουρές, Ν = 3 Πελάτες Με βάση τον Επαναληπτικό Αλγόριθμο του Buzen και X 1 = 1, X 2 = μ 1 μ 2 = a ισχύει ότι: g n, m = g n, m 1 + X m g(n 1, m) G N = g(n, M) Προκύπτει : G 1 = 1 + a G 2 = 1 + a + a 2 G 3 = 1 + a + a 2 + a 3 Η χρησιμοποίηση της ουράς Q 1 είναι P n i 1 = P 1,2 + P 2,1 + P 3,0 = 1 P(0,3) = X i G(N 1)/G(N) = X 1 G(2)/G(3)= Επίσης: P 0,3 = a 3 /G 3 P 1,2 = a 2 /G 3 P 2,1 = a/g 3 P 3,0 = 1/G 3 = 1+a+a2 1+a+a 2 +a 3 (όπως και στη 2η διαφάνεια) E n i = X i k E n 1 = N k=1 3 k=1 3 E n 2 = X 2 k k=1 G N k G N G 3 k G 3 G N k G N n X 1 X a a = a2 + 2a a + a 2 + a 3 Πίνακας Τιμών g(n, m) a + a a + a 2 + a 3 = 3 E n 1 = a + 2a2 + 3a a + a 2 + a 3 6

7 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (1/2) (επανάληψη) Βασισμένο στο Παράδειγμα του Jeffrey Buzen, "Computational Algorithms for Closed Queuing Networks with Exponential Servers, Communications of the ACM 16 (9), Sept Κλειστό δίκτυο Μ εκθετικών ουρών Q 1 (CPU), Q 2,,Q M (I/O) Παράλληλη Επεξεργασία Ν προγραμμάτων (εντολών) με ανακύκλωση στη CPU (πιθανότητα p 11 = p 1 ), επιλογή Υποσυστήματος I/O (με πιθανότητες p 12 = p 2, p 13 = p 3,, p 1M = p M ) και απάντηση δημιουργία νέας εντολής (εξωτερική ανάδραση). Εφαρμογή Αλγορίθμου Buzen για Ν = 1,2,3,4 πελάτες (παράλληλα προγράμματα) και Μ = 3 ουρές Q 1, Q 2, Q 3 Πίνακας Τιμών g(n, m) μ 1 Χ 1 = p 1 μ 1 Χ 1 + μ 2 Χ 2 + μ 3 Χ 3 μ 2 Χ 2 = p 2 μ 1 Χ 1 n X 1 X 2 X 3 μ 3 Χ 3 = p 3 μ 1 Χ 1 Με μ 1 = 1 28 msec 1, μ 2 = 1 40 msec 1, μ 3 = msec 1, p 1 = 0.1, p 2 = 0.7, p 3 = 0.2 και Χ 1 = 1 προκύπτει πως Χ 2 = 1, Χ 3 = 2 Ο αναδρομικός τύπος g n, m = g n, m 1 + X m g(n 1, m) δίνει τον πίνακα δεξιά Οι σταθερές G N = g N, 3 αντιστοιχούν σε Ν = 1,2,3,4 προγράμματα G 1 = 4, G 2 = 11, G 3 = 26, G 4 =

8 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (2/2) (επανάληψη) Βασισμένο στο Παράδειγμα του Jeffrey Buzen, "Computational Algorithms for Closed Queuing Networks with Exponential Servers, Communications of the ACM 16 (9), Sept Οι αντίστοιχοι βαθμοί χρησιμοποίησης U 1 της CPU (Q 1 ) G(N)/G N 1 είναι: n X 1 X 2 X Ν U 1 1/4 4/11 11/26 26/ Η ρυθμαπόδοση του συστήματος είναι γ = μ 2 p n μ 3 p n 3 1 Ο μέσος χρόνος απόκρισης είναι E T AB = N γ = μ 2 Χ 2 G(N 1)/G N +μ 3 Χ 3 G(N 1)/G(N) Οι αντίστοιχες τιμές σε sec είναι: = (μ 2 Χ 2 + μ 3 Χ 3 )G(N 1)/G(N) Οι αντίστοιχες τιμές σε προγράμματα/sec είναι: Ν Ν γ γ Ρυθμαπόδοση γ ως προς Αριθμό Προγραμμάτων Ν Πίνακας Τιμών g(n, m) E(T AB ) 0,4 0,3 0,2 E(T AB ) Μέσος Χρόνος Απόκρισης ως προς Αριθμό Προγραμμάτων Ν 5 0, Ν Ν

9 ΕΛΕΓΧΟΣ ΡΟΗΣ ΑΠΟ ΑΚΡΟ ΣΕ ΑΚΡΟ ΣΤΟ INTERNET (1/10) End-to-End Window Flow Control TCP Session, Μέγεθος Παραθύρου W Αναπάρασταση Μηχανισμού Ελέγχου Ροής Παραθύρου (Window Flow Control) μέσω Κλειστού Δικτύου Μ ανεξαρτήτων εκθετικών ουρών και W πελατών. Η μορφή των πελατών εναλλάσσεται ανάμεσα σε πακέτα δεδομένων, μηνύματα επιβεβαίωσης acknowledgments και άδειες εκπομπής tokens Το κλειστό δίκτυο του παραδείγματος αποτελείται από Μ = 5 υποσυστήματα: Q 0 : Αποθηκεύει τα Tokens στην πηγή (Source) με τον μηχανισμό Window Flow Control και αποστέλλει στον προορισμό (Destination) νέα πακέτα ανά χρονικά διαστήματα μέσης τιμής 1/λ sec (μοντέλο δημιουργίας κίνησης λ πακέτα/sec) εφόσον υπάρχουν διαθέσιμα tokens στην Q 0 Q 1, Q 2, Q 3 : Ενδιάμεσοι δικτυακοί κόμβοι μεταγωγής πακέτου με μέσους εκθετικούς ρυθμούς μ 1, μ 2, μ 3 πακέτα/sec Q r : Ισοδύναμο μοντέλο καθυστέρησης για την δημιουργία και μεταβίβαση μηνυμάτων επιβεβαίωσης ACK σαν ανεξάρτητη ουρά με μέσο εκθετικό ρυθμό μ r πακέτα/sec (θεωρούμε κατά προσέγγιση 1 μ r 1 μ μ μ 3 sec) Στο κλειστό δίκτυο υπάρχουν ανά πάσα στιγμή W 8 πελάτες που αντιστοιχούν στο μέγεθος παραθύρου Window Size: W = n 0 + n 1 + n 2 + n 3 + n r Θεωρούμε πως ισχύουν οι παραδοχές για μορφή γινομένου του θεωρήματος Gordon Newell και εφαρμόζουμε τον Αλγόριθμο του Buzen για W = 1,, 8 πελάτες που κυκλοφορούν σε Μ = 5 ουρές, ως προς την ρυθμαπόδοση γ και την μέση καθυστέρηση πακέτου από άκρο σε άκρο (S σε D) στο δίκτυο E T S,D = [E n 1 + E n 2 + E(n 3 )]/γ

10 ΕΛΕΓΧΟΣ ΡΟΗΣ ΑΠΟ ΑΚΡΟ ΣΕ ΑΚΡΟ ΣΤΟ INTERNET (2/10) End-to-End Window Flow Control TCP Session, Μέγεθος Παραθύρου W = 4

11 ΕΛΕΓΧΟΣ ΡΟΗΣ ΑΠΟ ΑΚΡΟ ΣΕ ΑΚΡΟ ΣΤΟ INTERNET (3/10) End-to-End Window Flow Control TCP Session, Μέγεθος Παραθύρου W = 4

12 ΕΛΕΓΧΟΣ ΡΟΗΣ ΑΠΟ ΑΚΡΟ ΣΕ ΑΚΡΟ ΣΤΟ INTERNET (4/10) End-to-End Window Flow Control TCP Session, Μέγεθος Παραθύρου W = 4

13 ΕΛΕΓΧΟΣ ΡΟΗΣ ΑΠΟ ΑΚΡΟ ΣΕ ΑΚΡΟ ΣΤΟ INTERNET (5/10) End-to-End Window Flow Control TCP Session, Μέγεθος Παραθύρου W = 4

14 ΕΛΕΓΧΟΣ ΡΟΗΣ ΑΠΟ ΑΚΡΟ ΣΕ ΑΚΡΟ ΣΤΟ INTERNET (6/10) End-to-End Window Flow Control TCP Session, Μέγεθος Παραθύρου W = 4

15 ΕΛΕΓΧΟΣ ΡΟΗΣ ΑΠΟ ΑΚΡΟ ΣΕ ΑΚΡΟ ΣΤΟ INTERNET (7/10) End-to-End Window Flow Control TCP Session, Μέγεθος Παραθύρου W = 4

16 ΕΛΕΓΧΟΣ ΡΟΗΣ ΑΠΟ ΑΚΡΟ ΣΕ ΑΚΡΟ ΣΤΟ INTERNET (8/10) End-to-End Window Flow Control TCP Session, Μέγεθος Παραθύρου W = 4 Υποθέτουμε πως λ = 1, μ 1 = μ 2 = μ 3 = 2 πελάτες/sec 1 μ r = 1 μ μ μ 3 = 3 2 sec ή μ r = 2/3 πελάτες/sec Με Χ 0 = 1 έχουμε: λχ 0 = μ 1 Χ 1 = μ 2 Χ 2 = μ 3 Χ 3 = μ 4 Χ 4 = μ r Χ r Άρα: X 1 = X 2 = X 3 = 0.5, X r = 3 2 Ο αναδρομικός τύπος g n, m = g n, m 1 + X m g(n 1, m) δίνει τον πίνακα δεξιά Οι σταθερές G W = g(w, 5) αντιστοιχούν σε W = 1,, 8 Η ρυθμαπόδοση του συστήματος γ σε πακέτα/sec είναι: γ = μ 1 p n 1 1 = μ 1 Χ 1 G(W 1)/G W Η μέση καθυστέρηση πακέτων σε sec από το S στο D είναι E T SD = E n 1 + E n 2 + E(n 3 ) /γ, όπου N E n i = X i k k=1 G N k G N Πίνακας Τιμών g(n, m) W X 1 X 2 X 3 X 4 X r

17 ΕΛΕΓΧΟΣ ΡΟΗΣ ΑΠΟ ΑΚΡΟ ΣΕ ΑΚΡΟ ΣΤΟ INTERNET (9/10) End-to-End Window Flow Control TCP Session, Μέγεθος Παραθύρου W = 1,,8 Ρυθμαπόδοση του συστήματος, γ = μ 1 p n 1 1 : W γ γ 0,8 Ρυθμαπόδοση γ ως προς το Παράθυρο W 0,6 0,4 0,2 Μέση καθυστέρηση πακέτου από το S στο D, E T SD : W W Ε Τ SD E(T SD ) 2,5 Μέση Καθυστέρηση Πακέτων από S σε D ως προς το Παράθυρο W E(T SD ) 2,5 Μέση Καθυστέρηση Πακέτων από S σε D ως προς τη Ρυθμαπόδοση γ 2 2 1,5 1, ,5 0, W 0 0 0,2 0,4 0,6 0,8 γ

18 ΕΛΕΓΧΟΣ ΡΟΗΣ ΑΠΟ ΑΚΡΟ ΣΕ ΑΚΡΟ ΣΤΟ INTERNET (10/10) End-to-End Window Flow Control TCP Session, Μέγεθος Παραθύρου W = 1,,8 Σενάριο Συμφόρησης Υποθέτουμε πως λ = 1, μ 1 = μ 2 = μ 3 = 1 2 πελάτες/sec 1 μ r = 1 μ μ μ 3 = 6 sec ή μ r = 1 6 (ανεπαρκείς ταχύτητες γραμμών συμφόρηση) Έχουμε X 0 = 1, X 1 = X 2 = X 3 = 2, X r = 6 Η ρυθμαπόδοση του συστήματος γ είναι: W γ Η μέση καθυστέρηση πακέτων Ε Τ SD είναι: W Ε Τ SD E(T SD ) ,2 0,4 0,6 γ Πίνακας Τιμών g(n, m) W X 0 X 1 X 2 X 3 X r Σύγκριση Επίδοσης Σεναρίων για Αυξανόμενες τιμές του W Συμφόρηση στο Δίκτυο (μ 1 = μ 2 = μ 3 = 0.5, λ = 1) Δίκτυο με καλή επίδοση (μ 1 = μ 2 = μ 3 = 2, λ = 1) Στην περίπτωση συμφόρησης, ανεκτή καθυστέρηση απαιτεί μικρές τιμές τουw με σημαντικούς περιορισμούς ωφέλιμης ρυθμαπόδοσης

19 ΠΑΡΑΔΕΙΓΜΑ ΠΟΛΥ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ (1/4) Κλειστό Δίκτυο με Μ = 2 Ουρές και Ν Πελάτες (Παράλληλες Εντολές) Το μοντέλο θεωρεί Ν πελάτες που περιφέρονται σε κλειστό δίκτυο. Εναλλάσσονται σε δύο υποσυστήματα, είτε με τη μορφή σκέψης ενός «χρήστη» (τερματικό ή ενεργό παράθυρο) για την παραγωγή (input) νέας εντολής, ή με τη μορφή επεξεργασίας εντολών που έχουν κατατεθεί και αναμένεται η απόκριση (output) στον «χρήστη» Μοντέλα 2 Υποσυστήματων Εξυπηρέτησης: Υποσύστημα Παραγωγής Εντολών: Q 1, M/M/ (ή Μ/Μ/Ν/Ν) με εκθετικούς χρόνους εξυπηρέτησης (Thinking Time, T TH ) μέσης τιμής E T TH = 1 μ 1 Ο χρόνος T TH αντιστοιχεί με τον χρόνο «σκέψης» για την σύνταξη μιας νέας εντολής εισόδου (input) σε συνέχεια της απόκρισης (output) από προηγούμενη εντολή Υποσύστημα Επεξεργασίας Εντολών: Q 2, M/M/1 με εκθετικούς χρόνους εξυπηρέτησης 1 μ 2 και μέσο χρόνο καθυστέρησης (Processing Time, T PR ) μέσης τιμής E T PR Η ουρά Q 2 αντιστοιχεί με το συνολικό σύστημα επεξεργασίας εντολών (CPU, I/O) σαν συναθροισμένο ισοδύναμο μοντέλο (aggregate equivalent, γενικεύεται σαν Ισοδύναμο Norton)

20 ΠΑΡΑΔΕΙΓΜΑ ΠΟΛΥ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ (2/4) Κλειστό Δίκτυο με Μ = 2 Ουρές και Ν Πελάτες (Παράλληλες Εντολές) Ανάλυση Κλειστού Δικτύου Markov Εργοδικές Καταστάσεις n = n 1, n 2, n 1 + n 2 = N Εξισώσεις Ισορροπίας: μ 2 P 0, N = μ 1 P 1, N 1 μ 2 P k, N k = (k + 1)μ 1 P k + 1, N k + 1 μ 2 P N 1,1 = Nμ 1 P N, 0 Αν a μ 2 μ 1 P k, N k = P(0, N) ak και P k, N k = a k k! N a n n=0 n! Υπολογισμοί όπως για Erlang-B: P N, 0 = B a, N, P N 1,1 = Nμ 1 B a, N, N E n 2 = k=1 kp(n k, k) και η ρυθμαπόδοση γ = μ 2 [1 P N, 0 ] εντολές/sec k! Η Μέση Καθυστέρηση Εντολών στο Υποσύστημα Επεξεργασίας είναι E T PR = E n 2 γ sec

21 ΠΑΡΑΔΕΙΓΜΑ ΠΟΛΥ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ (3/4) Κλειστό Δίκτυο με Μ = 2 Ουρές και Ν Πελάτες (Παράλληλες Εντολές) Αριθμητικά Αποτελέσματα: Εφαρμογή της ανάλυσης για τιμές των μ 1 = 1, μ 2 = 10 (α = μ 2 μ 1 = 10) και μεταβάλλοντας τις δυνατότητες παραλληλισμού (Βαθμός Πολύ-προγραμματισμού, Degree of Parallelism - Multitasking) N = 1,, 7

22 ΠΑΡΑΔΕΙΓΜΑ ΠΟΛΥ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ (4/4) Κλειστό Δίκτυο με Μ = 2 Ουρές και Ν Πελάτες (Παράλληλες Εντολές) γ γ 4 3,95 3,9 3,85 3,8 3,75 3,7 3,65 3,6 3,55 3,5 Ρυθμαπόδοση ως προς N, μ 1 =1, μ 2 = Ρυθμαπόδοση ως προς μ 2, μ 1 =1, Ν= N μ 2 E(T PR ) E(T PR ) Συμπεράσματα: 1. Για αυξανόμενο βαθμό πολύ-προγραμματισμού N αναμένεται βελτίωση της Ρυθμαπόδοσης γ προς ένα μέγιστο όριο, με παράλληλη αύξηση της Μέσης Καθυστέρησης Επεξεργασίας Εντολών E T PR 1,20 1,00 0,80 0,60 0,40 0,20 0,00 0,17 0,165 0,16 0,155 0,15 E(T PR ) ως προς N, μ 1 =1, μ 2 = E(T PR ) ως προς μ 2, μ 1 =1, Ν= μ 2 N 2. Όσο μειώνεται ο Μέσος Χρόνος Σκέψης E T TH = 1 μ 1 0 των χρηστών για N = 4 βελτιώνεται η Ρυθμαπόδοση γ και αυξάνεται η Μέση Καθυστέρηση Επεξεργασίας Εντολών, συγκλίνοντας προς τα αποτελέσματα ουράς Μ/Μ/1 ρυθμού εισόδου γ και ρυθμού εξυπηρέτησης μ 2 : E T PR 1 μ 2 1 γ μ

23 ΑΝΑΛΥΣΗ ΜΕΣΗΣ ΤΙΜΗΣ ΓΙΑ ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ MEAN VALUE ANALYSIS - MVA (1/5) 1. Mean Value Analysis of Closed Multichain Queuing Networks, M. Reiser & S.S. Lavenberg, Journal of the ACM 27 (2), 1980 ( 2. Wikipedia Παραδοχές: Κλειστό δίκτυο από M διασυνδεόμενα υποσυστήματα (ουρές) Q i, i = 1,2, M στην εργοδική κατάσταση, έκαστο με n i (k) πελάτες και ρυθμαπόδοση συστήματος γ(k) πελάτες/sec ανά περιφορά πελάτη, όταν περιφέρονται στο δίκτυο k = 1,2,, N πελάτες Ανεξάρτητοι εκθετικοί εξυπηρετητές i = 1, 2,, M μέσου ρυθμού μ i με παραδοχή Kleinrock Τυχαία Δρομολόγηση από υποσύστημα Q i σε Q j με πιθανότητα p ij = Prob i j. Η δρομολόγηση ορίζει τους μέσους ρυθμούς πελατών (ρυθμαποδόσεις) λ i (k) στα υποσυστήματα Q i σαν το γινόμενο της συνολικής ρυθμαπόδοσης γ(k) και του μέσου αριθμού επισκέψεων v i ενός πελάτη στο Q i ανά περιφορά του στο συνολικό σύστημα : λ i k = v i γ(k) Θεώρημα Αφίξεων σε Κλειστά Δίκτυα Εκθετικών Ουρών: Πελάτης που αφικνείται σε υποσύστημα εξυπηρέτησης Q i κλειστού δικτύου ανεξαρτήτων εκθετικών εξυπηρετήσεων συνολικού αριθμού πελατών N παρατηρεί την εργοδική κατάσταση ισορροπίας του δικτύου όπως προκύπτει με N 1 πελάτες (βλέπει το σύστημα όπως θα ισορροπούσε χωρίς τη παρουσία του)

24 ΑΝΑΛΥΣΗ ΜΕΣΗΣ ΤΙΜΗΣ ΓΙΑ ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ MEAN VALUE ANALYSIS - MVA (2/5) Αναδρομικός Αλγόριθμος: Έστω: E[n i (k)]: Μέσος όρος πελατών στο Q i με k = 1,2,, N πελάτες στο δίκτυο Έχουμε Μέση καθυστέρηση πελατών στο Q i : E[T i (k)] E[n i (k)] = E[T i (k)] λ i k (τύπος Little ανά υποσύστημα Q i ) Συνολική μέση καθυστέρηση περιφοράς πελάτη Συνολική ρυθμαπόδοση γ(k) = M i=1 k v i E[T i (k)] M i=1 v i E[T i (k)]: (τύπος Little για το δίκτυο με k πελάτες) Από το Θεώρημα Αφίξεων σε Κλειστά Δίκτυα έχουμε τον αναδρομικό τύπο για k = 1,2,, N E[T i (k)] = 1 + E[n i(k 1)] μ i με αρχικές τιμές E[n i (0)] = 0, i = 1,2, M

25 ΑΝΑΛΥΣΗ ΜΕΣΗΣ ΤΙΜΗΣ ΓΙΑ ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ MEAN VALUE ANALYSIS - MVA (3/5) Εφαρμογή για: Ν = 3 πελάτες, Μ = 3 ουρές και τιμές των παραμέτρων: μ 1 = 1 28 msec 1, μ 2 = 1 40 msec 1, μ 3 = msec 1 και p 1 = 0.1, p 2 = 0.7, p 3 = 0.2 Εύρεση των v i : Σε κάθε περιφορά πελάτη στον εξωτερικό βρόχο ανάδρασης αντιστοιχούν v i επισκέψεις στα υποσυστήματα Q i που συντελούν στις ρυθμαποδόσεις λ i k : λ i k = v i γ k ή λ 1 k = γ k + p 1 λ 1 k, λ 2 k = p 2 λ 1 k, λ 3 k = p 3 λ 1 k v 1 = 10 9, v 2 = 7 9, v 3 = 2 9

26 Για k = 2: E T 1 2 = 1+E n 1 1 = = 35 msec = sec μ 1 1/28 E T 2 2 = 1+E[n 2 1 ] = = 50 msec = sec μ 2 1/40 E T 3 2 = 1+E[n 3 1 ] = μ 3 1/280 γ 2 = ΑΝΑΛΥΣΗ ΜΕΣΗΣ ΤΙΜΗΣ ΓΙΑ ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ MEAN VALUE ANALYSIS - MVA (4/5) Για k = 1: E T 1 1 = 1+E n 1 0 = 1+0 = 28 msec = sec μ 1 1/28 E T 2 1 = 1+E[n 2 0 ] = 1+0 = 40 msec = sec μ 2 1/40 E T 3 1 = 1+E[n 3 0 ] μ 3 = 1+0 γ 1 = 1/ = 280 msec = sec = πελάτες/sec λ 1 1 = v 1 γ 1 = = , λ = v 2 γ 1 = 7 9 λ 3 1 = v 3 γ 1 = = (πελάτες/sec) 9 Ε n 1 1 = E T 1 1 λ 1 1 = = 0.25 πελάτες Ε n 2 1 = E T 2 1 λ 2 1 = = 0.25 πελάτες Ε n 3 1 = E T 3 1 λ 3 1 = = 0.5 πελάτες = 420 msec = sec = πελάτες/sec λ 1 2 = v 1 γ 2 = = , λ = v 2 γ 2 = 7 9 λ 3 2 = v 3 γ 2 = = (πελάτες/sec) 9 Ε n 1 2 = E T 1 2 λ 1 2 = = πελάτες Ε n 2 2 = E T 2 2 λ 2 2 = = πελάτες Ε n 3 2 = E T 3 2 λ 3 2 = = πελάτες = , = ,

27 Για k = 4: E T 1 4 = 1+E n 1 3 = = msec = sec μ 1 1/28 E T 2 4 = 1+E[n 2 3 ] = = msec = sec μ 2 1/40 E T 3 4 = 1+E[n 3 3 ] = μ 3 1/280 γ 4 = ΑΝΑΛΥΣΗ ΜΕΣΗΣ ΤΙΜΗΣ ΓΙΑ ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ MEAN VALUE ANALYSIS - MVA (5/5) Για k = 3: E T 1 3 = 1+E n 1 2 = = msec = sec μ 1 1/28 E T 2 3 = 1+E[n 2 2 ] = = msec = sec μ 2 1/40 E T 3 3 = 1+E[n 3 2 ] = μ 3 1/280 γ 3 = = msec = sec = πελάτες/sec λ 1 3 = v 1 γ 3 = = , λ = v 2 γ 3 = 7 9 λ 3 3 = v 3 γ 3 = = (πελάτες/sec) 9 Ε n 1 3 = E T 1 3 λ 1 3 = = πελάτες Ε n 2 3 = E T 2 3 λ 2 3 = = πελάτες Ε n 3 3 = E T 3 3 λ 3 3 = = πελάτες = msec = sec = πελάτες/sec λ 1 4 = v 1 γ 4 = = , λ = v 2 γ 4 = 7 9 λ 3 4 = v 3 γ 4 = = (πελάτες/sec) 9 Ε n 1 4 = E T 1 4 λ 1 4 = = πελάτες Ε n 2 4 = E T 2 4 λ 2 4 = = πελάτες Ε n 3 4 = E T 3 4 λ 3 4 = = πελάτες = , = ,

28 ΠΡΟΣΟΜΟΙΩΣΗ ΣΤΟΧΑΣΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ MARKOV (BIRTH-DEATH) Έστω στοχαστικό σύστημα Birth-Death με απ ευθείας μεταβάσεις από την εργοδική κατάσταση S i σε γειτονική κατάσταση S j που μπορεί να γίνονται με ρυθμό r ij Ο συνολικός ρυθμός μεταβάσεων από την S i προς όλες τις γειτονικές καταστάσεις είναι R i = r ij S j Ο χρόνος παραμονής (dwell time) T i στη κατάσταση S i μέχρι την επόμενη μετάβαση είναι τυχαία μεταβλητή που προκύπτει από το ελάχιστο ανεξαρτήτων εκθετικών τυχαίων μεταβλητών, αντίστοιχων με όλες τις πιθανές μεταβάσεις εκτός της S i. Η T i θα είναι εκθετική με ρυθμό R i = Sj r ij και μέση τιμή E T i = 1 R i Οι εργοδικές πιθανότητες P[S i ] αν υπάρχουν μπορούν να υπολογισθούν σαν το όριο του λόγου του συνολικού χρόνου που το σύστημα παραμένει στη κατάσταση S i δια του χρονικού διαστήματος παρατήρησης Τ μιας χρονικής εξέλιξης (δείγματος) της στοχαστικής ανέλιξης : #{ΕΠΙΣΚΕΨΕΩΝ στην S i } E T i P[S i ] = lim #{ΕΠΙΣΚΕΨΕΩΝ στην S i} E T i T T #{ΕΠΙΣΚΕΨΕΩΝ στην S j } E T j Άρα μπορούμε να προσομοιώσουμε σύστημα Birth-Death καταμετρώντας τις αφίξεις στις διάφορες καταστάσεις που μεταβαίνει Η εξέλιξη της κατάστασης (πληθυσμού) του συστήματος προκύπτει από τις πιθανότητες μετάβασης από την κατάσταση S i στις γειτονικές καταστάσεις S j με το δεδομένο ότι μια από αυτές θα συμβεί με απόλυτη βεβαιότητα: P[ S i S j /μετάβαση] = r ij R i Η προσομοίωση ενεργοποιεί τις μεταβάσεις με κλήση τυχαίου αριθμού RANDOM(0,1) ομοιόμορφα κατανεμημένου μεταξύ (0, 1): Αν ο RANDOM(0,1) ανήκει σε υποδιάστημα του (0, 1) ανάλογο του r ij R i, η επόμενη κατάσταση θα είναι η S j Sj

29 ΠΡΟΣΟΜΟΙΩΣΗ ΚΛΕΙΣΤΟΥ ΔΙΚΤΥΟΥ MARKOV Κριτήριο σύγκλισης: Διαδοχικές τιμές μέσου αριθμού πελατών σε κάθε ουρά < μ 1 /μ 2 = 1 P 0,3 = 0.252, P 1,2 = 0.251, P 2,1 = 0.249, P 3,0 = 0.247, E n 1 = 1.49, E n 2 = 1.51, E n 1 + E n 2 = 3 μ 1 /μ 2 = 2 P 0,3 = 0.534, P 1,2 = 0.266, P 2,1 = 0.133, P 3,0 = 0.067, E n 1 = 0.73, E n 2 = 2.27, E n 1 + E n 2 = 3 μ 1 /μ 2 = 3 P 0,3 = 0.673, P 1,2 = 0.225, P 2,1 = 0.249, P 3,0 = 0.025, E n 1 = 0.45, E n 2 = 2.55, E n 1 + E n 2 = 3 μ 1 /μ 2 = 4 P 0,3 = 0.754, P 1,2 = 0.158, P 2,1 = 0.047, P 3,0 = 0.012, E n 1 = 0.32, E n 2 = 2.68, E n 1 + E n 2 = 3 μ 1 /μ 2 = 1 μ 1 /μ 2 = 2 Διαγράμματα μέσου αριθμού πελατών E n 1, E n 2 στα υποσυστήματα Q 1, Q 2

30 ΓΕΝΙΚΕΥΣΗ ΓΙΑ ΔΙΚΤΥΑ ΟΥΡΩΝ ΜΕ ΕΡΓΟΔΙΚΕΣ ΠΙΘΑΝΟΤΗΤΕΣ ΜΟΡΦΗΣ ΓΙΝΟΜΕΝΟΥ BCMP Networks: F. Basket, K.M. Chandi, R.H. Muntz, F.C. Palacios: Open, Closed, and Mixed Networks of Queues with Different Classes of Customers, Journal of the ACM, 22 (2), April 1975 Παραδοχές: Δίκτυο M συστημάτων εξυπηρέτησης (ουρών) Q i των εξής τύπων: 1. Εξυπηρέτησης FCFS (FIFO) M/M/1 με εκθετικό εξυπηρετητή 1/μ ι και ενιαίο τύπο πελατών 2. Εξυπηρέτησης Processor Sharing M/G/1 με πολλαπλές κλάσεις (τύπους, chains) πελατών 3. Ουρές με άπειρους εξυπηρετητές Μ/G/ με πολλαπλές κλάσεις (τύπους, chains) πελατών 4. Εξυπηρέτησης LCFS (with pre-preemptive resume) M/G/1 με πολλαπλές κλάσεις (τύπους, chains) πελατών Για τις περιπτώσεις 2-4 η κατανομή του χρόνου εξυπηρέτησης πρέπει να έχει μετασχηματισμό Laplace μορφής κλάσματος (rational Laplace Transform) Η δρομολόγηση μεταξύ ουρών γίνεται με τυχαίο τρόπο Ισχύει η παραδοχή ανεξαρτησίας του Kleinrock Poisson εξωτερικές αφίξεις Αποτέλεσμα: Η εργοδική πιθανότητα (αν υπάρχει) του διανύσματος κατάστασης (x 1, x 2,, x M ) του δικτύου δίνεται σε μορφή γινομένου παραγόντων εξαρτώμενων από την κατάσταση της κάθε ουράς: p x 1, x 2,, x M = C π 1 x 1 π 2 x 2 π M (x M ) (απόδειξη με επαλήθευση εξισώσεων ισορροπίας μεταβάσεων)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Κλειστών Δικτύων Ουρών Markov: 1. Ανάλυση Window Flow Control σε Δίκτυα Υπολογιστών 2. Αξιολόγηση Συστημάτων Πολύ-προγραμματισμού (Multitasking) Γενίκευση Μοντέλων

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov - Αλγόριθμος Buzen Μοντέλο Παράλληλης Επεξεργασίας Έλεγχος Ροής Άκρου σε Άκρο (e2e) στο Internet Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 10/5/2017 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ Μ = 2 Ουρές,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 9/5/2018 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ Μ = 2 Ουρές,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές //1 εν σειρά, Θεώρημα Burke Ανοικτά Δίκτυα Ουρών arkov, Θεώρημα Jackson Εφαρμογή σε Δίκτυα Μεταγωγής Πακέτου Κλειστά Δίκτυα Ουρών arkov, Θεώρημα Gordon- Newell

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανοικτά Δίκτυα Ουρών arkov - Θεώρημα Jackson (1) Παράδειγμα Επίδοσης Δικτύου Μεταγωγής Πακέτου (2) Παράδειγμα Ανάλυσης Υπολογιστικού Συστήματος Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Θεωρήματος Jackson: (i) Δίκτυα Μεταγωγής Πακέτου (ii) Υπολογιστικά Μοντέλα Πολυεπεξεργασίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 3/5/2017 ΑΝΟΙΚΤΑ ΔΙΚΤΥΑ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Γεννήσεων Θανάτων: 1. Σφαιρικές & Λεπτομερείς Εξισώσεις Ισορροπίας 2. Ουρές Markov M/M/1, M/M/1/N Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 27/3/2019 ΔΙΑΔΙΚΑΣΙΑ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 26/4/2017 ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Η Ουρά Μ/Μ/1/N Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 22/3/2017 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (1/4) Birth Death Processes

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων, Εξισώσεις Ισορροπίας 2. Προσομοιώσεις, Άσκηση Προσομοίωσης Ουράς M/M/1/10 Βασίλης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων 2. Εξισώσεις Ισορροπίας 3. Προσομοιώσεις Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές //1 εν Σειρά - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών arkov - Θεώρημα Jackson Εφαρμογή σε Δίκτυα Μεταγωγής Πακέτου Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 25/4/2018

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Γεννήσεων Θανάτων (I) 1. Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας 2. Ουρές Markov M/M/1, M/M/1/N Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 21/3/2018 ΔΙΑΔΙΚΑΣΙΑ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Ουρών Αναμονής Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 13/3/2019 ΠΑΡΑΜΕΤΡΟΙ (1/3) Ένταση φορτίου (traffic intensity) Σε περίπτωση 1 ουράς, 1 εξυπηρετητή:

Διαβάστε περισσότερα

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 15/3/2017 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr Χρύσα Παπαγιάννη chrisap@noc.ntua.gr 24/2/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ, Erlang-C Σύστημα Μ/Μ/c/c, Erlang-B Ανάλυση & Σχεδιασμός Τηλεφωνικών Κέντρων Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

Θέμα 1 (20%) (α) Πότε είναι εργοδικό το παραπάνω σύστημα; Για πεπερασμένο c, το σύστημα είναι πάντα εργοδικό.

Θέμα 1 (20%) (α) Πότε είναι εργοδικό το παραπάνω σύστημα; Για πεπερασμένο c, το σύστημα είναι πάντα εργοδικό. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 1/3/2017 ΠΕΡΙΕΧΟΜΕΝΑ (1/3) http://www.netmode.ntua.gr/main/index.php?option=com_content&task=view& id=130&itemid=48

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων Κατανομή Poisson & Εκθετική Κατανομή Διαδικασία Markov Γεννήσεων Θανάτων (Birth Death Markov Processes) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 23/3/2016 Άδεια Χρήσης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών Β. Μάγκλαρης, Σ. Παπαβασιλείου 10-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Μοντέλα Στατιστικής Μηχανικής, Κινητικότητα & Ισορροπία Αλυσίδες Markov: Καταστάσεις, Εξισώσεις Μεταβάσεων καθ. Βασίλης Μάγκλαρης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Αρχές Ανάλυσης Ουράς M/G/1 Ενσωματωμένη Αλυσίδα Markov (Embedded Markov Chain) Τύποι Pollaczeck - Khinchin (P-K) για Ουρές M/G/1 Μέσες Τιμές

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 2/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1.

Γραπτή Εξέταση στο Μάθημα ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηεκτρονικής & Συστημάτων Πηροφορικής Εργαστήριο Διαχείρισης και Βέτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 9/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ, Erlang-C Σύστημα Μ/Μ/c/c, Erlang-B Ανάλυση & Σχεδιασμός Τηλεφωνικών Κέντρων Βελτιστοποίηση Μέσου Μήκους

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα Β. Μάγκλαρης, Σ. Παπαβασιλείου 17-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Μεταγωγής Πακέτου - Μοντέλο M/M/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 25/4/2018 ΟΥΡΑ Μ/Μ/2 (επανάληψη) Αφίξεις Poisson με ομοιόμορφο μέσο ρυθμό λ k = λ

Διαβάστε περισσότερα

Διαδικασίες Markov Υπενθύμιση

Διαδικασίες Markov Υπενθύμιση Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Διαδικασίες Markov Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Β. Μάγκλαρης, Σ. Παπαβασιλείου 8-5-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός: ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες:

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τοµέας Επικοινωνιών, Ηεκτρονικής & Συστηµάτων Πηροφορικής Εργαστήριο ιαχείρισης & Βετίστου Σχεδιασµού ικτύων - NETMODE Πουτεχνειούποη

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης, Σ. Παπαβασιλείου 5-6-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Σκοποί ενότητας Κατά τη διάρκεια των καθημερινών μας

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου 200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη

Διαβάστε περισσότερα

Τεχνικές βασισμένες στα Δίκτυα Αναμονής

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή βασικών μοντέλων τηλεπικοινωνιακής

Διαβάστε περισσότερα

Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών. Ανάλυση Ουρών. Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών

Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών. Ανάλυση Ουρών. Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών Ανάλυση Ουρών Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μενού 1. Εισαγωγή 2. Θεώρημα του Little 3. Σύστημα M/M/1 System 4. Συστήματα

Διαβάστε περισσότερα

Απλα Συστήματα Αναμονής Υπενθύμιση

Απλα Συστήματα Αναμονής Υπενθύμιση Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Απλα Συστήματα Αναμονής Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Προσομοίωση Monte Carlo Αλυσίδων Markov: Αλγόριθμοι Metropolis & Metropolis-Hastings Προσομοιωμένη Ανόπτηση Simulated Annealing

Διαβάστε περισσότερα

Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών

Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών Δίκτυα Επικοινωνιών ΙΙ Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών Διδάσκων: Λάζαρος Μεράκος Δίκτυα Επικοινωνιών

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων Συμβολισμός Kedel Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C Κατανομή αφίξεων Κατανομή εξυπηρετήσεων Αριθμός των εξυπηρετητών Όπου Α,Β μπορεί να είναι: M κατανομή Posso G κατανομή

Διαβάστε περισσότερα

H επίδραση των ουρών στην κίνηση ενός δικτύου

H επίδραση των ουρών στην κίνηση ενός δικτύου H επίδραση των ουρών στην κίνηση ενός δικτύου Ηεπίδραση των ριπών δεδοµένων Όταν οι αφίξεις γίνονται κανονικά ή γίνονται σε απόσταση η µία από την άλλη, τότε δεν υπάρχει καθυστέρηση Arrival s 1 2 3 4 1

Διαβάστε περισσότερα

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Διάλεξη 6: Εισαγωγή στην Ουρά M/G/1 Δρ Αθανάσιος Ν Νικολακόπουλος ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής 18 Νοεμβρίου 2016

Διαβάστε περισσότερα

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov Γ. Κορίλη, Αλυσίδες Markov 3- http://www.seas.upe.edu/~tcom5/lectures/lecture3.pdf Αλυσίδες Markov Αλυσίδες Markov ιακριτού Χρόνου Υπολογισµός Στάσιµης Κατανοµής Εξισώσεις Ολικού Ισοζυγίου Εξισώσεις Λεπτοµερούς

Διαβάστε περισσότερα

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2. (μονάδα παραγωγής ενέργειας) Έχουμε μια απομακρυσμένη μονάδα παραγωγής ενέργειας. Η ζήτηση σε ενέργεια καλύπτεται από διάφορες πηγές. Η ισχύς εξόδου της ανεμογεννήτριας εξαρτάται από την ταχύτητα ανέμου

Διαβάστε περισσότερα

P (M = n T = t)µe µt dt. λ+µ

P (M = n T = t)µe µt dt. λ+µ Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 1 2 (Εισαγωγή Θεμελιώδεις σχέσεις) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα 1.

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 7: Ουρά Μ/Μ/1 Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuig Systems Επισκόπηση Γνώσεων Πιθανοτήτων Βασίλης Μάγκλαρης maglaris@etmode.tua.gr 7/3/2018 1 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ POISSON Η τυχαία εμφάνιση παλμών περιγράφεται σαν

Διαβάστε περισσότερα

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης Γ. Κορίλη, Μοντέλα Εξυπηρέτησης 2-1 hp://www.seas.upenn.edu/~com501/lecures/lecure3.pdf Καθυστερήσεις στα ίκτυα Πακέτων Εισαγωγή στη Θεωρία Ουρών Ανασκόπηση Θεωρίας Πιθανοτήτων ιαδικασία Poisson Θεώρηµα

Διαβάστε περισσότερα

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0 Στοχαστικές Διαδικασίες ΙΙ Ιανουάριος 07 Διαδικασίες Markov σε Συνεχή Χρόνο - Παραδείγματα Μ. Ζαζάνης Πρόβλημα. Εστω ένα σύστημα M/M//3 στο οποίο οι αφίξεις είναι Poisson με ρυθμό λ και οι δύο υπηρέτες

Διαβάστε περισσότερα

Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ)

Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ) Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

καθ. Βασίλης Μάγκλαρης

καθ. Βασίλης Μάγκλαρης ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος

Διαβάστε περισσότερα

Άσκηση 2. Αν συμβούν 2 duplicate ACKs αντί για timeout τι γίνεται σε αυτή την περίπτωσή;

Άσκηση 2. Αν συμβούν 2 duplicate ACKs αντί για timeout τι γίνεται σε αυτή την περίπτωσή; ΤCP protocol Άσκηση 1 Είναι το ίδιο να αυξάνεται το congestion window κατά μία μονάδα μετά τη λήψη από κάθε ΑCK πακέτου με το να αυξάνεται σε κάθε RTT; Αν δεν είναι το ίδιο σε ποια περίπτωση επιτυγχάνεται

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Δυναμικός Προγραμματισμός με Μεθόδους Monte Carlo: 1. Μάθηση Χρονικών Διαφορών (Temporal-Difference Learning) 2. Στοχαστικός

Διαβάστε περισσότερα

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Α Α Π Σ Δ 1-4: Λ Α Καθ Γιάννης Γαροφαλάκης ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Εισαγωγή I Λειτουργικοί νόμοι : Απλές σχέσεις που δεν απαιτούν κατανομή χρόνων μεταξύ

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Γιατί δίκτυα συστημάτων αναμονής; Τα απλά συστήματα

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 10: Ουρά Μ/Μ/s Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Α Α Π Σ Δ 11: Ε Σ Α M/G/1 Καθ Γιάννης Γαροφαλάκης ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Το σύστημα αναμονής M/G/1 I Θεωρούμε ένα σύστημα στο οποίο οι πελάτες φθάνουν

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1 Εργαστηριακή Άσκηση 2011-2012 Το σύστημα αναμονής M/G/1 Γιάννης Γαροφαλάκης, Καθηγητής Αθανάσιος Ν.Νικολακόπουλος, Υποψ. Διδάκτορας Σκοπός της παρούσας εργασίας είναι η εξερεύνηση των βασικών ιδιοτήτων

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 208-209 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Διαστασιοποίηση Ασύρματου Δικτύου Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Τηλεπικοινωνιακή κίνηση στα κυψελωτά συστήματα Βασικός στόχος

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 5.9 Η Στοχαστική Ανέλιξη Gauss (οι διαφάνειες ακολουθούν διαφορετική

Διαβάστε περισσότερα

Δίκτυα Επικοινωνιών ΙΙ. Ενότητα 2: Μοντέλα Συστηµάτων Αναµονής σε Δίκτυα Επικοινωνιών

Δίκτυα Επικοινωνιών ΙΙ. Ενότητα 2: Μοντέλα Συστηµάτων Αναµονής σε Δίκτυα Επικοινωνιών Δίκτυα Επικοινωνιών ΙΙ Ενότητα 2: Μοντέλα Συστηµάτων Αναµονής σε Δίκτυα Επικοινωνιών Διδάσκων: Λάζαρος Μεράκος Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό & Καποδιστριακό Πανεπιστήµιο Αθηνών Δίκτυα Επικοινωνιών

Διαβάστε περισσότερα

2

2 ΑΝΑΛΥΣΗ ΕΠΙΔΟΣΗΣ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αναλυτικά μοντέλα, προσομοίωση, μετρήσεις ΚΕΦΑΛΑΙΟ 5 Προσεγγιστικές Τεχνικές Α.-Γ. ΣΤΑΦΥΛΟΠΑΤΗΣ Καθηγητής Ε.Μ.Π. Γ. ΣΙΟΛΑΣ Ε.ΔΙ.Π. Ε.Μ.Π. Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY DEPARTMENT OF STATISTICS POSTGRADUATE PROGRAM Elements of Markovian Processes and Queueing Processes with Numerical Applications By Erold Ajdini A THESIS Submitted

Διαβάστε περισσότερα

Μαρκοβιανές Αλυσίδες

Μαρκοβιανές Αλυσίδες Μαρκοβιανές Αλυσίδες { θ * } Στοχαστική Ανέλιξη είναι μια συλλογή τ.μ. Ο χώρος Τ (συνήθως είναι χρόνος) μπορεί να είναι είτε διακριτός είτε συνεχής και καλείται παραμετρικός χώρος. Το σύνολο των δυνατών

Διαβάστε περισσότερα

ίκτυα Επικοινωνίας Υπολογιστών

ίκτυα Επικοινωνίας Υπολογιστών ίκτυα Επικοινωνίας Υπολογιστών Ενότητα: Ασκήσεις για την ενότητα 5 (Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων ο Σετ Ασκήσεων - Λύσεις Νοέμβριος - Δεκέμβριος 205 Ερώτημα (α). Η νοσοκόμα ακολουθεί μια Ομογενή Μαρκοβιανή Αλυσίδα Διακριτού Χρόνου με χώρο καταστάσεων το σύνολο

Διαβάστε περισσότερα

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαροφαλάκης Αν. Καθηγητής ιατύπωση του προβλήματος (1) Τα συστήματα αναμονής (queueing systems), βρίσκονται

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας

Διαβάστε περισσότερα

Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B)

Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B) ΑΣΚΗΣΗ Β Μέγιστο στήλης Ο Π Ε Υ Ελάχιστα γραμμών Ο 60 5 55 65 5*maximin (A) Π 50 75 70 45 45 Ε 56 30 30 50 30 Υ 40 30 35 55 30 *60 75 70 65 minimax (B) Επειδή maximin (A) minimax (B) δεν υπάρχει ισορροπία

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10: Θόρυβος (Πηγές Θορύβου, Κατανομή Poisson, Λευκός Θόρυβος, Ισοδύναμο

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Κλήσεις σε εξέλιξη 22/6/2013 ΘΕΩΡΙΑ ΚΙΝΗΣΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ Θ. ΣΦΗΚΟΠΟΥΛΟΣ 1 ΓΕΝΙΚΑ ΠΕΡΙ ΚΙΝΗΣΗΣ

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Έστω μια δυναμοσειρά a (x ξ) = a 0 + a (x ξ) + a 2 (x ξ) 2 + με ακτίνα σύγκλισης R και με ρ = lim a. Αν x = ξ, η δυναμοσειρά συγκλίνει και έχει άθροισμα

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης & Συνδιασποράς 5.7: Μετάδοση Στοχαστικής

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 6: Θεωρία Ουρών Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ). ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Διατύπωση του προβλήματος

Διαβάστε περισσότερα