ΓΕΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ ΤΕΧΝΙΚΗ ΚΑΜΠΥΛΗΣ ΑΝΑΦΟΡΑΣ (CALIBRATION CURVE TECHNIQUE)
|
|
- Θέτις Παπάζογλου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΓΕΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Σχεδόν στο σύνολό τους οι ενόργανες τεχνικές παρέχουν τη μέτρηση μιας φυσικής ή φυσικοχημικής παραμέτρου Ρ η οποία συνδέεται άμεσα η έμμεσα με την τιμή της επιθυμητής αναλυτικής πληροφορίας που κατά κανόνα είναι η συγκέντρωση C. Η μετατροπή της μετρούμενης παραμέτρου σε αναλυτική πληροφορία γίνεται με μια από τις τεχνικές ποσοτικοποιήσεως (quantification techniques). ΤΕΧΝΙΚΗ ΚΑΜΠΥΛΗΣ ΑΝΑΦΟΡΑΣ (CALIBRATION CURVE TECHNIQUE) Παρασκευή προτύπων δειγμάτων (διαλυμάτων) xi του προς μέτρηση συστατικού και μετρούνται οι τιμές της αναλυτικής παραμέτρου Ρi. Κατασκευάζεται γραφικά σε χιλιοστομετρικούς χάρτες, η καμπύλη αναφοράς, όπου στον άξονα των τεταγμένων τίθενται οι τιμές Ρi καιστονάξονατωντετμημένωνοιτιμές xi. Ο αριθμός n των μετρήσεων είναι τόσο μεγαλύτερος, όσο μεγαλύτερη είναι η απαιτούμενη αξιοπιστία των τιμών Ρi. Χαράζεται η ευθεία η καμπύλη γραμμή που ορίζεται από τα σημεία. Αν τα σημεία εμφανίζονται με μια φυσιολογική διασπορά η χάραξη γίνεται έτσι ώστε η γραμμή να διέρχεται ανάμεσα από τα πειραματικά σημεία.
2 ΤΕΧΝΙΚΗ ΚΑΜΠΥΛΗΣ ΑΝΑΦΟΡΑΣ (CALIBRATION CURVE TECHNIQUE) Απαγορεύεται η χάραξη τεθλασμένων γραμμών. Δεν επιτρέπεται η εξαγωγή συμπερασμάτων γιαδείγματατων οποίων η τιμή της μετρούμενης παραμέτρου Ρ βρίσκεται εκτός των ορίων που ορίζονται από τα πρότυπα. Όταν ισχύει η γραμμική σχέση Ρ = αx + β Τέσσερις έως έξι μετρήσεις προτύπων δειγμάτων είναι αρκετές. Μπορεί να χρησιμοποιηθεί επικουρικά η μέθοδος των ελαχίστων τετραγώνων για τον στατιστικά επακριβή προσδιορισμό των παραμέτρων α και β (α:κλίση, β:τομή) καθώς επίσης και του συντελεστή συσχετίσεως (correlation coefficient) r.
3 ΤΕΧΝΙΚΗ ΚΑΜΠΥΛΗΣ ΑΝΑΦΟΡΑΣ (CALIBRATION CURVE TECHNIQUE) Μέθοδος Ελαχίστων Τετραγώνων Ρ = αx + β r = n x iρi xi Ρι [ ][ Ρ Ρ ] n xi ( xi ) n i ( i) Το μέτρο της καλής προσαρμογής μεταξύ των δύο μεταβλητών x και μ, δίδεται από τον συντελεστή συσχετίσεως (correlation coefficient) r. H προσαρμογή είναι τόσο καλύτερη, όσο πλησιέστερα προς τη μονάδα βρίσκεται η τιμή του r Μια καμπύλη θεωρείται ικανοποιητική για τιμές 0,95< r <0,99, ενώ τιμές r >0,99 υποδηλώνουν πολύ καλή γραμμικότητα. Απαιτεί πανομοιότυπα πρότυπα και άγνωστα Σε καμία περίπτωση δεν επιτρέπεται να χρησιμοποιηθεί η μέθοδος των ελαχίστων τετραγώνων αν δεν είναι εκ των προτέρων βέβαιη η γραμμική συσχέτιση των τιμών Ρ και x και αν δεν έχει προηγουμένως σχεδιαστεί το καρτεσιανό διάγραμμα ώστε να αποκλεισθούν τυχόν σημεία που απέχουν από την ευθύγραμμη απεικόνιση.
4 άρα Α = 0,15C 0,0076 και C =,66 ppm. Παράδειγμα: Να βρεθεί η εξίσωση, που προσαρμόζεται στα παρακάτω πειραματικά δεδομένα, μιας φωτομετρικής αναλύσεως, ο συντελεστής r και η συγκέντρωση ενός αγνώστου διαλύματος που έχει απορρόφηση Α=0,35. x(συγκέντρωση C, ppm) 1,00,00 3,00 4,00 5,00 P(Απορρόφηση Α) 0,14 0,40 0,348 0,516 0,61 Η εξίσωση της καμπύλης είναι Υπολογίζουμε τις τιμές xi, Pi, xipi: Α = αc+β n xi Pi xi Pi xipi 1 1,00 0,14 1,00 0, ,14,00 0,40 4,00 0, , ,00 0,348 9,00 0, , ,00 0,516 16,00 0,6656, ,00 0,61 5,00 0, ,060 Σxi=15 ΣPi=1,840 Σxi =55,00 ΣPi =0, ΣxiPi=6,77 α = (5 6,77 ) (15 1,840 ) (5 55) (15) = 0,15 β = (55 1,840 ) (15 6,77 ) (5 55 ) (15 ) = 0,0076 r = 50 6,60 [(5 0, ) (1,840 ) ] = 0,997
5 Τεχνική προσθήκης γνωστής ποσότητας (standard-addition technique) Απαιτεί όχι μόνο γραμμική αλλά και αναλογική σχέση Ρ = αx Εάν x x είναι η τιμή της αναλυτικής πληροφορίας και Ρο η τιμή της μετρούμενης παραμέτρου τότε: Ρο = α x x 1 Η άγνωστη xx αυξάνεται κατά Δx, η μέτρηση επαναλαμβάνεται και θα έχουμε Ρ1 = α x x + Δx Συνδυάζοντας 1 και x x = Ρ ο Δx/ Ρ 1 - Ρ ο Υπολογίζουμε τη τιμή x x χωρίς τη γνώση της α ΟλόγοςΔx / x x πρέπει κατά κανόνα να είναι μεταξύ 0,5 και.
6 Παράδειγμα: 0,ml ορού αραιώνονται στα,00ml (διάλυμα Α) Παρασκευάζεται διάλυμα Β με προσθήκη 5μL LiNO3 (0,050M) σε 1ml του Α Μετρούνται στο Φλογοφασματοφωτόμετρο στα 670,7nm πάρθηκαν τιμές 40 (Α) και 95(Β). Η συγκέντρωση του Λιθίου που προστέθηκε στο Α είναι: C 1 V 1 = C V = 0,005ml x 0,050 = 1 x C C = 0,00015 M κλίση = Cx = Μ
7 Τεχνική πολλαπλής προσθήκης γνωστών ποσοτήτων (multiple standard addition) Βελτιωμένη επέκταση της τεχνικής της απλής προσθήκης Απ ευθείας μέτρηση του αγνώστου δείγματος που ακολουθείται από n μετρήσεις ίσων γνωστών κλασμάτων του δείγματος. Αντί να χρησιμοποιηθούν n ίσα κλάσματα δείγματος τοποθετείται στην κυψελίδα το άγνωστο δείγμα και σ αυτό προστίθενται ίσες ποσότητες προτύπου. Ρο = α x x Ρ 1 = α (x x + Δ x 1 ) Ρ = α (x x + Δ x ) Δ x = Δ x 1.. Ρ n = α (x x + Δ x n ) Δ x =nδ x 1 Ετοιμάζεται γραφική παράσταση των πειραματικών τιμών (Ρο, 0), (Ρ 1, Δx 1 ), (Ρn, nδx 1 ) και χαράζεται η στατιστικά ορθότερη ευθεία γραμμή (μπορεί να χρησιμοποιηθεί η μέθοδος των ελαχίστων τετραγώνων). Προεκβολή της ευθείας θα τμήσει τον άξονα των τετμημένων στο τμήμα των αρνητικών τιμών σε σημείο που αντιστοιχεί στη ζητούμενη τιμή x x.
8
9 Τεχνική εσωτερικού προτύπου (internal standard technique) Βασίζεται στο ότι ο λόγος των τιμών της μετρούμενης αναλυτικής παραμέτρου δύο ουσιών ενός διαλύματος είναι πρακτικά ανεξάρτητος από τα χαρακτηριστικά του χρησιμοποιούμενου οργάνου και τις άλλες πειραματικές μεταβλητές (θερμοκρασία, συγκέντρωση αντιδραστηρίων κ.λ.π.). Προϋποτίθεται αναλογική σχέση μεταξύ της μετρούμενης παραμέτρου Ρ και της αναλυτικής πληροφορίας (συγκεντρώσεως) και για τα συστατικά. Θα ισχύει: Ρ Α = α Α x A (1) και Ρ Π = α Π x Π () x A = x Π (α Π / α Α )( Ρ Α / Ρ Π ) Σε σχετικά ανάλογη ποσότητα αγνώστου δείγματος προστίθεται η ίδια ποσότητα εσωτερικού προτύπου x Π, μετρείται ο λόγος Ρ Α / Ρ Π και από την καμπύλη αναφοράς υπολογίζεται η τιμή του αγνώστου δείγματος. Κατασκευάζεται καμπύλη αναφοράς με τις τιμές του λόγου των σημάτων Ρ Α / Ρ Π και τις τιμές x, χρησιμοποιώντας πρότυπα δείγματα με σταθερή x Π και μεταβλητή x Α. Οι μετρήσεις x Α, x Π, Ρ Α και Ρ Π μπορούν να γίνουν είτε στο ίδιο στάδιο (πολαρογραφία, υγρή και αέρια χρωματογραφία), είτε μετά από μεταβολή συνθηκών του οργάνου (αλλαγή μήκος κύματος σε φλογοφωτομετρία). Προϋποθέσεις Να μην υπάρχει στο δείγμα το πρότυπο συστατικό Δυνατότητα μετρήσεως και των δυο σημάτων, δείγματος και εσωτερικού προτύπου.
10 Παράδειγμα: Ο προσδιορισμός της μεθανόλης σε αλκοολούχα σκευάσματα μπορεί να γίνει με αέριο χρωματογράφο χρησιμοποιώντας αιθανόλη ως εσωτερικό πρότυπο. Το άγνωστο διάλυμα καθώς και τα πρότυπα διαλύματα περιέχουν 0,1% (w/v). Τα αποτελέσματα των αναλύσεων έδωσαν: % w/v MeOH Ύψος κορυφής ΜeOH Ύψος κορυφής ΕtOH PMeOH/PEtOH 0,050 18,8 50,0 0,376 0,100 48,1 64,1 0,750 0,150 63,4 55,1 1,480 0,.00 63, 4,7 1,740 0,50 93,6 53,8 1,190 Άγνωστο Χ 58,9 49,4 0,376
11 PMeOH/PEtOH 1,8 1,6 1,4 1, 1 0,8 0,6 0,4 0, 0 0 0,05 0,1 0,15 0, 0,5 0,3 y = 6,916x + 0,0618 R = 0,9939 % Μεθανόλη (w/v) Κατασκευάζεται καμπύλη αναφοράς με τις τιμές του λόγου των σημάτων PMeOH/PEtOH και τις τιμές % w/v MeOH. Με την μέθοδο των ελαχίστων τετραγώνων προσδιορίζεται η εξίσωση της καμπύλης αναφοράς και από την τιμή του λόγου των κορυφών του αγνώστου (y), προσδιορίζεται η άγνωστη συγκέντρωση (% w/v):
Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ
Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Οι Ενόργανες Μέθοδοι Ανάλυσης είναι σχετικές μέθοδοι και σχεδόν στο σύνολο τους παρέχουν την αριθμητική τιμή μιας φυσικής ή φυσικοχημικής ιδιότητας, η
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΤΡΟΦΙΜΩΝ Οδηγός Συγγραφής Εργαστηριακών Αναφορών
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΤΡΟΦΙΜΩΝ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Βασιλεία Ι. Σινάνογλου Ειρήνη Φ. Στρατή Παναγιώτης Ζουμπουλάκης Σωτήρης Μπρατάκος Εξώφυλλο Εργαστηριακό Τμήμα (ημέρα ώρα)
ΧΡΩΜΑΤΟΓΡΑΦΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ HPLC
ΧΡΩΜΑΤΟΓΡΑΦΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ HPLC ΥΓΡΗ ΧΡΩΜΑΤΟΓΡΑΦΙΑ ΥΨΗΛΗΣ ΑΠΟΔΟΣΗΣ (HPLC) ΧΡΩΜΑΤΟΓΡΑΦΙΚΗ ΣΤΗΛΗ / ΣΤΑΤΙΚΗ ΦΑΣΗ Επίπεδη, μήκους 3-25 cm και διαμέτρου 0,5-5 mm. Μικροπορώδη σωματίδια πηκτής διοξειδίου
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Εξώφυλλο Στην πρώτη σελίδα περιέχονται: το όνομα του εργαστηρίου, ο τίτλος της εργαστηριακής άσκησης, το ονοματεπώνυμο του σπουδαστή
ΑΣΚΗΣΗ 6 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΓΚΕΝΤΡΩΣΕΩΝ ΜΙΓΜΑΤΟΣ ΥΠΕΡΜΑΓΓΑΝΙΚΩΝ ΚΑΙ ΔΙΧΡΩΜΙΚΩΝ ΙΟΝΤΩΝ ΜΕ ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΥΠΕΡΙΩΔΟΥΣ ΟΡΑΤΟΥ
1 ΑΣΚΗΣΗ 6 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΓΚΕΝΤΡΩΣΕΩΝ ΜΙΓΜΑΤΟΣ ΥΠΕΡΜΑΓΓΑΝΙΚΩΝ ΚΑΙ ΔΙΧΡΩΜΙΚΩΝ ΙΟΝΤΩΝ ΜΕ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Σκοπός ΥΠΕΡΙΩΔΟΥΣ ΟΡΑΤΟΥ Ο αντικειμενικός σκοπός της άσκησης αυτής είναι ο ταυτόχρονος προσδιορισμός
ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ)
ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ) «Οι σύγχρονες τεχνικές βιο-ανάλυσης στην υγεία, τη γεωργία, το περιβάλλον και τη διατροφή» ΑΝΑΛΥΤΙΚΕΣ ΧΗΜΕΙΚΕΣ ΤΕΧΝΙΚΕΣ
ΠΡΟΣΑΡΤΗΜΑ IΙΙ (III-1.1) όπου x i η τιµή της µέτρησης i και Ν ο αριθµός των µετρήσεων.
ΠΡΟΣΑΡΤΗΜΑ IΙΙ IΙΙ-1. Αξιολόγηση Αναλυτικών εδοµένων ύο όροι που χρησιµοποιούνται ευρύτατα στη διερεύνηση της αξιοπιστίας των δεδοµένων είναι η επαναληψιµότητα (precson) και η ακρίβεια (accurac). Επαναληψιµότητα
ΜΙΧΑΗΛΚΟΥΠΠΑΡΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝΕΝΟΡΓΑΝΗΑΝΑΛΥΣΗ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ
ΜΙΧΑΗΛΚΟΥΠΠΑΡΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝΕΝΟΡΓΑΝΗΑΝΑΛΥΣΗ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ 1 ΕΙΣΑΓΩΓΗΣΤΗΝΕΝΟΡΓΑΝΗΑΝΑΛΥΣΗ ΟΡΟΛΟΓΙΑ ΑναλυτικήΤεχνική: Γενικήπεριγραφήτης εφαρμογήςενόςφυσικοχημικούφαινομένου (π.χ. στηναπορρόφησηακτινοβολίαςαπό
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ. Σινάνογλου Ι. Βασιλεία
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Σινάνογλου Ι. Βασιλεία Βασικές έννοιες Αναλυτικό Πρόβλημα Επιλογή Αναλυτικής Μεθόδου Πρωτόκολλο Ανάλυσης, προετοιμασία Ευαισθησία Μεθόδου Εκλεκτικότητα Όριο ανίχνευσης (limit
Απορρόφηση του φωτός Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών
Ο11 Απορρόφηση του φωτός Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών 1. Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί α) στην μελέτη του φαινομένου της εξασθένησης του φωτός καθώς αυτό διέρχεται
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία
1 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία Ιωάννης Πούλιος Αθανάσιος Κούρας Ευαγγελία Μανώλη ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 54124
Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Δημήτριος Νικολόπουλος, Καθηγητής Περιβαλλοντική και Ιατρική Φυσική Εξίσωση και κλίση ευθείας Έστω ότι έχουμε δυο σταθερές α και
Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις
1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή
www.onlneclassroom.gr www.onlneclassroom.gr Α. Το διάγραμμα διασποράς των μεταβλητών διαθέσιμο εισόδημα (Χ) και κατανάλωσης (Υ), όπως σχηματίστηκε στο excel, είναι 3000 Δ ιάγραμμα Δ ιασ π οράς 500 Δ ηλω
Έλεγχος και Διασφάλιση Ποιότητας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΕΛΕΓΧΟΣ ΕΠΙΔΟΣΗΣ / ΔΙΑΚΡΙΒΩΣΗ Περιλαμβάνει έλεγχο: ΣΥΣΤΗΜΑΤΟΣ HPLC (1) Συστήματος παροχής διαλυτών
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις
1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή
Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ 2
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Άσκηση η : Φασματοφωτομετρικός Προσδιορισμός Σακχάρων σε Τοματοχυμό Μετρήσεις Πειράματος Πίνακας Τιμών 1 Διάλυμα Απορρόφηση Τυφλό 0 Πρότυπο Α ( γλυκόζη) 0,008 Πρότυπο Β (5 γλυκόζη)
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΡΙΑΔΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@hem.auth.gr url:
Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,
Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.
ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.
3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο
Στατιστική, Άσκηση 2. (Κανονική κατανομή)
Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται
ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II
4-1 ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II Θέμα ασκήσεως: Ποτενσιομετρική τιτλοδότηση, προσδιορισμός κανονικού δυναμικού ηλεκτροδίου, πειραματική επαλήθευση της εξισώσεως Nernst. Αρχή μεθόδου: Μετρείται η ΗΕΔ γαλβανικού
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Μ.ΠΗΛΑΚΟΥΤΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
ΓΡΑΦΙΚΕΣ ΣΚΟΠΟΣ Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή συμπερασμάτων σχετικά με την ποιοτική
Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις
2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 6: Ισορροπία φάσεων συστήματος πολλών συστατικών αμοιβαία διαλυτότητα Βασιλική Χαβρεδάκη Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 5 3. Επεξεργασία Μετρήσεων...
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης
Στατιστική Ι. Ανάλυση Παλινδρόμησης
Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι
ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ)
ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ) «Οι σύγχρονες τεχνικές βιο-ανάλυσης στην υγεία, τη γεωργία, το περιβάλλον και τη διατροφή» 1 ΕΙΣΑΓΩΓΗ Η Χημική Ανάλυση
Εργαστηριακή άσκηση μαθήματος «Σύγχρονες Αναλυτικές Τεχνικές»
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΤΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Εργαστηριακή άσκηση μαθήματος «Σύγχρονες Αναλυτικές Τεχνικές» Προσδιορισμός Diuron σε θαλασσινό νερό με υγροχρωματογραφία διαδοχική φασματομετρία
ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:
f = c p + 2 (1) f = 3 1 + 2 = 4 (2) x A + x B + x C = 1 (3) x A + x B + x Γ = 1 3-1
ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΩΝ ΣΥΣΤΑΤΙΚΩΝ ΑΜΟΙΒΑΙΑ ΙΑΛΥΤΟΤΗΤΑ Θέµα ασκήσεως Προσδιορισµός καµπύλης διαλυτότητας σε διάγραµµα φάσεων συστήµατος τριών υγρών συστατικών που το ένα ζεύγος παρουσιάζει περιορισµένη
Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 1
ΒΑΘΜΟΛΟΓΙΑ ΟΜΑΔΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ Υπολογισμός της περιεκτικότητας του ξιδιού σε οξικό οξύ με την κλασική μέθοδο. ΣΧΟΛΕΙΟ 1 ο ΓΕΛ ΑΜΠΕΛΟΚΗΠΩΝ ΤΜΗΜΑ Γ θετ ΗΜΕΡΟΜΗΝΙΑ
Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
Απαντήσεις στις ασκήσεις του κεφαλαίου 4 του βιβλίου Χημική Κινητική του ΕΑΠ
Απαντήσεις στις ασκήσεις του κεφαλαίου 4 του βιβλίου Χημική Κινητική του ΕΑΠ Ασκηση 4.1 Η κινητική εξίσωση της αντίδρασης: βρέθηκε οτι είναι Αντιδράσεις πρώτης τάξης 2A = Προϊόντα r = k[a] Να υπολογίσετε
ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
Ορισμός Αναλυτικής Χημείας
Ορισμός Αναλυτικής Χημείας Αναλυτική Χημεία ορίζεται ως ο επιστημονικός κλάδος, που αναπτύσσει και εφαρμόζει μεθόδους, όργανα και στρατηγικές, για να δώσει πληροφορίες σχετικά με τη σύσταση και φύση υλικών
ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)
6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,
Ή άνάλυση, πού είναι άναγκαία γιά τόν έπίσημο έλεγχο τοϋ βινυλοχλωριδίου τό όποιο μεταδίδεται στά τρόφιμα άπό ύλικά καί άντικείμενα, πραγματοποιείται
'Αριθ. L 167/ 6 Επίσημη Εφημερίδα τών Εύρωπαϊκών Κοινοτήτων 24. 6. 81 ΟΔΗΓΙΑ ΤΗΣ ΕΠΙΤΡΟΠΗΣ τής 29ης 'Απριλίου 1981 περί καθορισμοΰ τής κοινοτικής μεθόδου άναλύσεως γιά τόν έπίσημο έλεγχο του βινυλοχλωριδίου
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος
1. ROSIN-RAMMLERRAMMLER
ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΝΟΜΗΣ ΜΕΓΕΘΟΥΣ ΤΕΜΑΧΙΩΝ. OSIN-AMMLEAMMLE 2. GATES-GAUDIN-SCHUHMANN Τσακαλάκης Κώστας, Καθηγητής Ε.Μ.Π.-2008 Κατανομή osi mmler - - k 00 = e ή = 00 k e 00 % e k = αθροιστικό παραμένον σε
π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΚΑΤΕΥΘΥΝΣΗΣ 1. Για τα διανύσματα α, β δίνεται ότι α =1, β = και u α β, v α - β.να υπολογίσετε: π (α,β). Έστω τα διανύσματα α. το εσωτερικό γινόμενο α β β. τα μέτρα u, v των διανυσμάτων
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
1ο τεταρτημόριο x>0,y>0 Ν Β
ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.
Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών Προκαταρκτικός Διαγωνισμός Ανατολικής Αττικής. Φυσική
Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 017-18 Προκαταρκτικός Διαγωνισμός Ανατολικής Αττικής Φυσική Σχολείο: Ονόματα των μαθητών της ομάδας: 1) ) 3) Οι στόχοι του πειράματος 1. Η μέτρηση της επιτάχυνσης
ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ
ΕΝΟΤΗΤΑ 1.4. 5 ο ΜΑΘΗΜΑ ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Σκοπός της ενότητας Σκοπός της ενότητας είναι ο ορισμός εφαπτομένης της γραφικής παράστασης μιας συνάρτησης σε κάποιο σημείο της,
F x h F x f x h f x g x h g x h h h. lim lim lim f x
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)
(1) v = k[a] a [B] b [C] c, (2) - RT
Χηµική Κινητική Αντικείµενο της Χηµικής Κινητικής είναι η µελέτη της ταχύτητας µιας αντιδράσεως, ο καθορισµός των παραγόντων που την επηρεάζουν και η εύρεση ποσοτικής έκφρασης για τον κάθε παράγοντα, δηλ.
CH COOC H H O CH COOH C H OH
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 2 ΧΗΜΙΚΗΣ ΚΙΝΗΤΙΚΗΣ (ΧΚ2) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΚΙΝΗΤΙΚΗ
1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 4: Μερικός γραμμομοριακός όγκος Αθανάσιος Τσεκούρας Τμήμα Χημείας . Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 4. Τελικά αποτελέσματα... 7 Σελίδα
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Οπτική Πολωσιμετρία
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Οπτική Πολωσιμετρία Ιωάννης Πούλιος Αθανάσιος Κούρας Λίντα Μανώλη ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 54124 ΘΕΣΣΑΛΟΝΙΚΗ
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.
Ευθείες και παράγωγοι
Ευθείες και παράγωγοι Όταν κατασκευάζουμε τη γραφική παράσταση μιας συνάρτησης, μπορούμε συχνά να σχεδιάζουμε ευθείες, οι οποίες περνούν «ξυστά» από τη γραφική παράσταση. Με άλλα λόγια, δεν την τέμνουν,
Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ ΥΓΡΟΥ Liquid Liquid Extraction
Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ ΥΓΡΟΥ Liquid Liquid Extraction ΕΚΧΥΛΙΣΗ ΙΣΟΡΡΟΠΙΑΣ ΓΙΑ ΜΕΡΙΚΩΣ ΑΝΑΜΙΞΙΜΑ ΣΥΣΤΗΜΑΤΑ Περιοχές
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Αναλυτική Μέθοδος- Αναλυτικό Πρόβλημα. Ανάλυση, Προσδιορισμός και Μέτρηση. Πρωτόκολλο. Ευαισθησία Μεθόδου. Εκλεκτικότητα. Όριο ανίχνευσης (limit of detection, LOD).
ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.
ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις
Ισοζύγια (φορτίου και μάζας) Εισαγωγική Χημεία
Ισοζύγια (φορτίου και μάζας) Εισαγωγική Χημεία 03-4 Κατά την διάλυση C moles/l άλατος ΜΑ, το οποίο διΐσταται πλήρως στο νερό: Ισοζύγια μάζας Ισοζύγιο φορτίου Ισοζύγιο πρωτονίων Να υπολογισθούν οι συγκεντρώσεις
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Ερωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:
ΑΡΧΕΣ ΧΗΜΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΑΡΧΕΣ ΧΗΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Αναλυτική χημεία είναι ο κλάδος της χημείας που ασχολείται με τον χημικό χαρακτηρισμό της ύλης Προκειμένου να εκτελέσουμε μια χημική ανάλυση ακολουθούνται τα παρακάτω βήματα: ΔΙΑΤΥΠΩΣΗ
Φυσική Οπτική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Απορρόφηση του φωτός Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Οπτική (Ε) Ενότητα 8: Απορρόφηση του φωτός Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών Αθανάσιος Αραβαντινός Τμήμα
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα
5.3 Υπολογισμοί ισορροπίας φάσεων υγρού-υγρού
5.3 Υπολογισμοί ισορροπίας φάσεων υγρού-υγρού Η αρχική εξίσωση που χρησιμοποιείται για τους υπολογισμούς της ΙΦΥΥ είναι η ικανοποίηση της βασικής θερμοδυναμικής απαίτησης της ισότητας των τάσεων διαφυγής
6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ακριβώς ένα στοιχείο
4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0
ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 5. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 Ορισμοί Ονομάζουμε συνάρτηση την διαδικασία με την οποία σε κάθε τιμή της μεταβλητής αντιστοιχίζουμε μια μόνο τιμή της μεταβλητής. Ονομάζουμε
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων
Ασκήσεις Άλγεβρας. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 265 ασκήσεις και τεχνικές σε 24 σελίδες. εκδόσεις. Καλό πήξιμο
Ασκήσεις Άλγεβρας Κώστας Γλυκός B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 65 ασκήσεις και τεχνικές σε 4 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 1 3 / 1 0 / 0 1 6
ΦΑΙΝΟΜΕΝΑ ΠΡΟΣΡΟΦΗΣΕΩΣ ΠΡΟΣΡΟΦΗΣΗ ΟΥΣΙΑΣ ΑΠΟ ΔΙΑΛΥΜΑΤΑ
ΦΑΙΝΟΜΕΝΑ ΠΡΟΣΡΟΦΗΣΕΩΣ ΠΡΟΣΡΟΦΗΣΗ ΟΥΣΙΑΣ ΑΠΟ ΔΙΑΛΥΜΑΤΑ Έννοιες που πρέπει να γνωρίζετε Ισορροπία φάσεων, εξίσωση Clauiu-Clapeyron Θέμα ασκήσεως Προσρόφηση ουσίας από αραιά διαλύματα. Προσδιορισμός ισόθερμων
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
Διάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
Τοξικολογία Τροφίμων. Έλεγχος υπολειμμάτων με τη μέθοδο ELISA
Τοξικολογία Τροφίμων Έλεγχος υπολειμμάτων με τη μέθοδο ELISA Στόχοι ενότητας Εξοικείωση με το kit προσδιορισμού αφλατοξίνης Μ1 σε δείγμα γάλακτος Κατανόηση των κρίσιμων σημείων εφαρμογής της συγκεκριμένης
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΕ ΝΕΡΟ ΓΕΝΙΚΑ Με το πείραμα αυτό μπορούμε να προσδιορίσουμε δύο βασικές παραμέτρους που χαρακτηρίζουν ένα
ΜΑΘΗΜΑ ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις
ΜΑΘΗΜΑ. ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις Θεωρία Σχόλια Ασκήσεις ΘΕΩΡΙΑ. Ορισµός του συνόλου τιµών, κατάλληλος για τις
ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα :
Πρότυπο Πρότυπα ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Η Φυσική για να ερμηνεύσει τα φαινόμενα, δημιουργεί τα πρότυπα ή μοντέλα. Τα πρότυπα αποτελούνται από ένα πλέγμα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Ανάλυση μετρήσεων εικονικού πειράματος. Τελική εργασία εργαστηρίου φυσικής ΙΙ. Μέτρηση κατανομής ηλεκτρικού πεδίου.
Ανάλυση μετρήσεων εικονικού πειράματος. Τελική εργασία εργαστηρίου φυσικής ΙΙ. Βασικά στοιχεία εργασίας. Ονοματεπώνυμο φοιτητή : Ευστάθιος Χατζηκυριακίδης. Αριθμός μητρώου : Ημερομηνία εκτέλεσης : 03/06/2008-07/06/2008.
ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ
ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Γραφικές παραστάσεις Μαρία Κατσικίνη E-mail: katsiki@auth.gr Web: users.auth.gr/katsiki Παρουσίαση αποτελεσμάτων με τη μορφή πινάκων Πίνακας : χρόνος και ταχύτητα του κινητού
2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ
63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ http://www.physicslab.tuc.gr https://www.eclass.tuc.gr/courses/sci123/ Επιμέλεια παρουσίασης: Ά.Καλλιατάκη,
ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
Σημεία τομής της ευθείας αx+βy=γ με τους άξονες
ΣΥΝΑΡΤΗΣΗ y=αx+β Η ευθεία με εξίσωση y=αx+β. ΣΥΝΑΡΤΗΣΗ y=αx+β Η γραφική παράσταση της y = αx + β, β 0 είναι µια ευθεία παράλληλη της ευθείας µε εξίσωση y = αx, που διέρχεται από το σημείο β του άξονα y'y.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ http://www.physicslab.tuc.gr https://www.eclass.tuc.gr/courses/sci123/ Επιμέλεια παρουσίασης: Ά.Καλλιατάκη,
Η συνάρτηση y = αχ 2 + βχ + γ
Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση : Προσδιορισμός μοριακής μάζας με ζεσεοσκοπία Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 4 Σελίδα 1. Θεωρία
ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΦΩΤΟΜΕΤΡΙΑΣ ΚΑΙ ΧΡΩΜΑΤΟΜΕΤΡΙΚΩΝ ΑΝΑΛΥΣΕΩΝ
ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΦΩΤΟΜΕΤΡΙΑΣ ΚΑΙ ΧΡΩΜΑΤΟΜΕΤΡΙΚΩΝ ΑΝΑΛΥΣΕΩΝ Σύνοψη Στο κεφάλαιο αυτό γίνεται εισαγωγή στις πιο ευρύτερα χρησιμοποιούμενες μεθόδους στη κλινική χημεία, τις φωτομετρικές ή αλλιώς
10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη
ΤΕΧΝΙΚΕΣ ΙΑΧΩΡΙΣΜΟΥ - ΥΓΡΗ ΧΡΩΜΑΤΟΓΡΑΦΙΑ ΥΨΗΛΗΣ ΑΠΟ ΟΣΗΣ
ΤΕΧΝΙΚΕΣ ΙΑΧΩΡΙΣΜΟΥ - ΥΓΡΗ ΧΡΩΜΑΤΟΓΡΑΦΙΑ ΥΨΗΛΗΣ ΑΠΟ ΟΣΗΣ Γενικά Η χρωµατογραφία είναι µια από τις σηµαντικότερες τεχνικές διαχωρισµού και µέθοδος ποιοτικής και ποσοτικής ανάλυσης, που βρίσκει εφαρµογές