Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57
|
|
- Ευρυβία Γαλάνης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57
2 Ακμή ή περίγραμμα (edge) σε μια εικόνα Χ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική αλλαγή της έντασης ή του χρώματος της εικόνας. Το μέγεθος της μεταβολής αυτής αποτελεί το ύψος της ακμής. Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57
3 Ιδανικές ακμές (α) (β) (α) ιδανική βηματική ακμή (step), (β) ράμπα (ramp), (γ) (γ) ακμή τύπου οροφής (roof) Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 3/57
4 .και πραγματικές ακμές (α) τιμή έντασης απόσταση σε pixels (β) (α) Η εικόνα και η γραμμή της οποίας το προφίλ δεικνύεται στο (β) Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 4/57
5 Οι βασικές μέθοδοι εύρεσης ακμών. Με την πρώτη παράγωγο ( Βάθμωση - Gradient). Με την Laplacian 3. Με την Laplacian of Gaussian LoG 4. Mε άλλες μεθόδους (pdf, εντροπία κλπ) Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 5/57
6 Ανίχνευση ακμής με η παράγωγο -Βάθμωση f(x) υπολογίζεται η παράγωγος και ανιχνεύονται τα σημεία με κατωφλιοποίηση x o f'(x) Κατώφλιο και πάχος f''(x) Η ένταση f(x) έχει πρώτη παράγωγο f'(x) και δεύτερη f''(x). Oλα τα σημεία f'(x) πάνω από το κατώφλιο θεωρούνται σημεία ακμής. Αντίθετα ένα μόνο σημείο υπάρχει όπου f''(x) Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 6/57
7 Υπολογισμοί - βάθμωση (gradient) G υπολογίζεται απο τις μερικές παραγώγους της εντάσεως f(x,y) ως προς την οριζόντια και κάθετη μετατόπιση. f (x, y) G{f (x, y)} G G x y f x f y Μέτρο και η γωνία του G G + R [ ] G G / x y θ tan G G x y Μια καλή προσέγγιση G G + A x G y Ισχύει G R G A G R Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 7/57
8 παράδειγμα Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 8/57
9 Υλοποίηση της βάθμωσης Σε διάσταση: f x f (x + ) f (x) ή f x f (x + ) f (x ) Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 9/57
10 Υλοποίηση της βάθμωσης G Είδος τελεστού G x G y F(x-,y+) F(x,y+) F(x+,y+) Roberts - Prewitt Sobel Frei-Chen F(x-,y) F(x,y) F(x+,y) F(x-,y-) F(x,y-) F(x+,y- Για τον τελεστή Sobel η υλοποίηση του Gradient G βασίζεται στίς σχέσεις: G y [f(x-,y+)+f(x,y+)+f(x+,y+)]-[f(x-,y-)+f(x,y-)+f(x+,y-)] G x [f(x+,y-)+f(x+,y)+f(x+,y+)]-[f(x-,y-)+f(x-,y)+ f(x-,y+)] Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57
11 παράδειγμα Roberts Prewitt Sobel Sobelκατακόρυφη Sobelοριζόντια Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57
12 Ανίχνευση ακμής με η παράγωγο διάγραμμα f(x) [.] [f(x)] >κατωφλιο Ναι Edge Χαρτης στο(x ο,y o ) ακμών Όχι (x ο,y o )Δεν είναι σημείο ακμής Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57
13 Πώς ανιχνεύεται η κατεύθυνση Απο την γωνία: θ tan G G x y Ή απο «μάσκες»: East Northeast North Nortwest West Southwest South Southeast Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 3/57
14 Η «ανάγκη» για φιλτράρισμα Ακμή με θόρυβο και η παράγωγος (πάνω) Φιλτραρισμένη ακμή και η παράγωγος (κάτω). Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 4/57
15 Ανίχνευση ακμής με η παράγωγο Λαπλασιανή (Laplacian) f(x) f(x,y) x f + y f x o f'(x) f''(x) Δεν παρουσιάζει τα προβλήματα του μεγάλου εύρους ακμών Η έξοδος των τελεστών αυτών είναι τα σημεία μηδενισμού της ης παραγώγου Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 5/57
16 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 6/57 Laplacian αριθμητική προσέγγιση: + 4 Υλοποίηση f(x,y)f(x+,y)+f(x-,y)+f(x,y+)+f(x,y-)-4f(x,y) F(x-,y+) F(x,y+) F(x+,y+ ) F(x-,y) F(x,y) F(x+,y) F(x-,y-) F(x,y-) F(x+,y-
17 ή 8 ή f(x,y)-mean[f(x,y)] ή median[f(x,y)]-mean[f(x,y)] Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 7/57
18 Laplacian -παράδειγμα Το (γ) είναι η απόκριση του (α) σε Laplacian. Ο μηδενισμός δεν εμφανίζεται αλλά φαίνεται καθαρά η θέση του λόγω του θετικού και αρνητικού σημείου. Στο (δ) που αντιστοιχεί στη ράμπα (β) φαίνεται το σημείο μηδενισμού. Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 8/57
19 Laplacian - παράδειγμα Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 9/57
20 Laplacian - παράδειγμα Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57
21 Ιδιότητες της Laplacian. Σε σταθερές περιοχές έχει απόκριση μηδενική. Oι τιμές αυτές δεν αποτελούν σημεία ακμών διότι δεν είναι σημεία μηδενισμού (zero crossing).. Τα ανιχνευόμενα περιγράμματα είναι πάντα κλειστές γραμμές. 3. Είναι ανεξάρτητη της διεύθυνσης. 4. Έχει μεγάλη ευαισθησία στο θόρυβο και αναδεικνύει ακμές που δεν αντιστοιχούν σε χαρακτηριστικά της εικόνας. Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57
22 Laplacian: Βελτίωση «θορύβου» η προσέγγιση f(x,y) Υπολογισμός διακύμανσης σ f(x,y) Υπάρχει σημείο zero crossing ; Ναί σ >Τ Ναί Όχι Όχι Χρησιμοποίηση της διακύμανσης σ (variance) σε συνδυασμό με τον τελεστή της Laplacian γιά ανίχνευση ακμής Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57
23 Laplacian: Βελτίωση «θορύβου» η προσέγγιση Laplacian of Gaussian (LoG) Με την μέθοδο αυτή γίνεται υλοποίηση δύο τελεστών : της Laplacian και της Gaussian. στην αρχική εικόνα εφαρμόζεται Gaussian μάσκα για να φιλτράρει τον θόρυβο G(x,y) f(x,y) και στη συνέχεια εφαρμόζεται Laplacian μάσκα για εύρεση των σημείων μηδενισμού και επομένως των ακμών [G(x,y) f(x,y)] οι διαδικασίες αυτές γίνονται ταυτόχρονα σε ένα βήμα [ G(x,y)] f(x,y)] Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 3/57
24 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 4/57 LoG σ y x e σ y x πσ G
25 LoG -3σ 3σ w 3w Η συναρτήσεις Gaussian (α) και η LoG (β) σε τομή. Η σχέση μεταξύ w και σ είναι w σ. Το μήκος του παραθύρου είναι 3w x 3w. Για παράθυρο 3x3 έχουμε w και σ/( ). Στο (γ) δεικνύεται η μορφή της LoG στον (τρισδιάστατο) χώρο. Οι άξονες x,y είναι βαθμολογημένοι με τιμές της σ. Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 5/57
26 LoG - παράδειγμα σ.5 σ σ Εφαρμογή LoG με τρεις διαφορετικές τιμές του σ. Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 6/57
27 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 7/57 Προσέγγιση της LoG Difference of Gaussian - DoG Μία καλή προσέγγιση της LoG γίνεται με διαφορά δύο Gaussian που έχουν διαφορετικές τυπικές αποκλίσεις σ (Difference of Gaussian - DoG). Η μέθοδος αυτή μειώνει το υπολογιστικό κόστος της LoG. y x y x e e y) DoG(x, πσ πσ σ + σ Η μάσκα αυτή (7x7) υλοποιεί τον τελεστή DoG για λόγο σ /σ.6
28 Ανίχνευση με την μέθοδο Canny. Λείανση της αρχικής εικόνας με Gaussian φίλτρο: S(i,j)G(i,j,σ)*I(i,j). Υπολογίζεται η βάθμωση (σε πολική μορφή): P(i,j) x S(i,j) Q(i,j) y S(i,j) Μ(i,j) θ(i,j) 3. Διαγράφονται τα σημεία που δεν είναι μέγιστα: N(i,j)nms[M(i,j), θ(i,j)] 4. Εφαρμογή διπλού κατωφλίου P + Q tan (P,Q) Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 8/57
29 LoG Canny παράδειγμα LoG σ Canny σ Canny σ Ανίχνευση ακμών με την μέθοδο Canny και αντίστοιχη εφαρμογή του LoG. Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 9/57
30 Ανίχνευση ακμών σε έγχρωμη εικόνα. Χρησιμοποιώντας το κανάλι Υ της εντάσεως αφού γίνει μετασχηματισμός RGB YIQ (ή RGB HSI ). Χρησιμοποιώντας τα τρία κανάλια R,G,B χωριστά. Από τους τρεις χάρτες G R, G B, G G βρίσκεται ο συνολικός χάρτης ακμών G(x,y): G(x, y) 3. Mε διανυσματικές διαδικασίες πχ. VM-Mean G G R + G + G B Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 3/57
31 Κριτήρια σωστής ανίχνευσης Τα σφάλματα στην ανίχνευση των ακμών είναι τα εξής: Παράλειψη σημείων ακμής Λανθασμένη αναγνώριση σημείων που δεν είναι πραγματικές ακμές Μετατόπιση σημείων ακμής (α) (β) (γ) (δ) (α) τμήμα εικόνας με ακμή (β) ιδανική ανίχνευση ακμής (γ) Ενα σημείο που δεν ανιχνεύτηκε και (δ) ανίχνευση σημείων ακμής με μετατόπιση Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 3/57
32 FOM - figure of merit του Pratt To κριτήριο (FOM -figure of merit) σωστής ανίχνευσης που έχει προταθεί από τον Pratt είναι το ακόλουθο: R max[i I,I A ] I A i + αd Μεγάλο R καλύτερη ανίχνευση i Ι Ι ιδανικός αριθμός σημείων, Ι Α ο αριθμός σημείων που ανίχνευσε η μέθοδος. α παράγοντας κλιμάκωσης d i η μετατόπιση του σημείου ακμής από την πραγματική του θέση. Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 3/57
33 Εικόνες για «τεστ» 8 Sobel 6 4 Prewitt Roberts SNR Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 33/57
34 Μια άλλη προσέγγιση O n-διάστατος χώρος των περιοχών (blocks) μίας εικόνας Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 34/57
35 Τα 9 σημεία αποτελούν τις συνιστώσες ενός 9-διάστατου διανύσματος. S[s,s, s 9 ] που έχει ενέργεια: S s + s + s s 9 s s s 3 s 4 s 5 s 6 s 7 s 8 s 9 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 35/57
36 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 36/57 Oρθοκανονική βάση: τα διανύσματα είναι ορθογώνια (άρα ανεξάρτητα) και έχουν μέτρο... Ένα οποιοδήποτε διάνυσμα 3x3 παριστάνεται στο «χώρο» αυτό πχ Μία standard ορθοκανονική βάση 3x3 αποτελείται από τα ακόλουθα 9 διανύσματα:
37 Η βάση Frei-Chen Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 37/57
38 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 38/57 Επιτρέπει την ερμηνεία του πίνακα-διάνυσμα σύμφωνα με τις τιμές των συνιστωσών του. 8 8 W W βάθμωση 8 8 W 3 W 4 κυμάτωση W 5 W 6 γραμμή W περιοχή σταθερ ή W W Laplacian
39 παράδειγμα N συνολική ενέργεια Ν Ν ακμή σταθερή περιοχή N W 4.3 Eνέργεια N W 4.3 Eνέργεια N W3 Eνέργεια 5 N W4 Eνέργεια 8 N W5 Eνέργεια N W6.5 Eνέργεια 6.5 N W7.5 Eνέργεια 6.5 N W8 Eνέργεια N W9 5 Eνέργεια 65 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 39/57
40 Άλλες βάσεις Laws texture energy measures L5 [ ] E5 [ - - ] S5 [ - - ] W5 [ - - ] R5 [ ] Level Edge Spot Wave Ripple 5 masks 5x5 μάσκες 8 9 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 4/57
41 Καταγραφή περιγράμματος Τα σημεία ακμής συνήθως είναι συνδεδεμένα και αποτελούν το περίγραμμα μίας περιοχής (contour). Η απλούστερη περιγραφή ενός περιγράμματος γίνεται με την διατεταγμένη καταγραφή των σημείων (ordered list). (x (x,y ),.(x,y ),..,(x n,y n ),y ) (x,y ) Η πιο συνήθης όμως καταγραφή ενός περιγράμματος γίνεται με τον (x κώδικα αλυσίδας (chain code),y ) (x n,y n ) Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 4/57
42 Κώδικας αλυσίδας (chain code) Προσδιορίζει την διεύθυνση του περιγράμματος σε κάθε σημείο ακμής. Η καταγραφή αρχίζει από ένα σημείο και προχωρά δεξιόστροφα Κάθε σημείο προσδιορίζεται από την διεύθυνσή του σχετικά με το προηγούμενο. Οκτώ (ή τέσσερες) διευθύνσεις είναι επιτρεπτές. Η συνολική καταγραφή του περιγράμματος περιλαμβάνει τις συντεταγμένες του αρχικού σημείου και τις διευθύνσεις των υπολοίπων μέσω του κώδικα αλυσίδας Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 4/57
43 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 43/ Κώδικας αλυσίδας - σχήματα 3 Για στροφή n*45 ο κώδικας γίνεται : (n+αρχ.κώδικας)mod8
44 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 44/57
45 d i { diff( diff( x x i i,x,x i N ) ) αν i αν i Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 45/57
46 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 46/57 Μήκος Τ του περιγράμματος: N i n i T { mod mod i i x x n i αν αν (για κώδικα 8 γειτόνων)
47 Περιγραφή περιγράμματος με DFT (Fourier descriptors) Ένα περίγραμμα: [x(n),y(n)] (x o,y o ),(x,y ),.(x,y ),..,(x N-,y N- ) θεωρούμε ότι παριστάνεται από μιγαδικούς αριθμούς: u(n)x(n)+jy(n)x o +jy o,x +jy., x N- +jy N- Δηλαδή το περίγραμμα μετατρέπεται σε ένα (μιγαδικό) σήμα. (x,y ) (x,y ) (x n,y n ) (x,y ) Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 47/57
48 Κωδικοποιηση με χρήση DFT: Fourier descriptors u(n) N k A(k) N A(k)e N n j πkn N u(n)e j πkn N n N k N Ο συντελεστής A() αναπαριστά το κέντρο βάρους της καμπύλης Περιστροφή της καμπύλης κατά γωνία θ : A r (n)a(n)e iθ «Απόσταση» δυο καμπυλων: z (n),z (n) E N k ( Z ( k ) Z( k ) ) Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 48/57
49 Μετασχηματισμός Hough Ο μετασχηματισμός Hough χρησιμοποιεί παραμετρική περιγραφή απλών γεωμετρικών σχημάτων (καμπυλών). Ελαττώνει την υπολογιστική πολυπλοκότητα της αναζήτησης σχημάτων σε μια δυαδική εικόνα. «Βλέπει» συνολικά όλα τα σημεία μίας καμπύλης Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 49/57
50 Πολυγωνικές προσεγγίσεις Η βέλτιστη γραμμική κατά τμήματα προσέγγιση: επιλέγουμε τις κορυφές του πολυγώνου ώστε το ολικό σφάλμα προσέγγισης να ελαχιστοποιείται Σφάλμα: Μέσο τετραγωνικό Μέγιστο Ε Ε Ν xi di ι max max ι Ν x i d i Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 5/57
51 Παραμετρική περιγραφή ευθείας Α. καρτεσιανές συντεταγμένες y ax+b (α) Ευθεία γραμμή στο επίπεδο της εικόνας, (β) Η αναπαράσταση της στον παραμετρικό χώρο Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 5/57
52 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 5/57
53 Β. Πολικές συντεταγμένες Πολική αναπαράσταση ευθείας γραμμής ρ x cosθ + y sinθ ρ ο,θ ο Α Β Γ Απόσταση ρ Α Β Γ ρ ο Α θ ο α θ (ΟΑ )(ΟΑ)συν(θ ο -α) ρρ ο συν(α-θ ο ). Επειδή ρ ο και θ ο αντιστοιχούν στο σημείο Α και επομένως είναι σταθερά η σχέση ρρ(θ) είναι (συν)ημιτονική Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 53/57
54 παράδειγμα Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 54/57
55 Read in the chessboard image Find edges Άλλο παράδειγμα Perform the Hough transform Find the peaks in the transform Plot the lines on the image Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 55/57
56 Ερωτήσεις - εργασίες 4. Να υλοποιηθεί ανιχνευτής ακμής σε έγχρωμη εικόνα με την διαφορά : VM mean 4. DoG υλοποίηση εφαρμογή 4.3 Δημιουργείστε μία τεχνιτή εικόνα, με αντικείμενα σαφών περιγραμμάτων. Εφαρμώστε ανιχνευτές ακμών και υπολογείστε το FOM (Pratt) 4.4 Να υλοποιηθεί (m-file) η διαδικασία κωδικοποίησης αλυσίδας Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 56/57
Νοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53
Νοέμβριος 5 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /53 Ακμή ή περίγραμμα (edge) σεμιαεικόναχ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική αλλαγή
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας ΚΕΦ4 -1- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION)
-- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION) 4. Εισαγωγικά Ακµή ή περίγραµµα (edge) σε µια εικόνα Χ ij ορίζεται ως το σύνολο των σηµείων στη θέση i,j της εικόνας, όπου παρατηρείται µία σηµαντική αλλαγή της έντασης
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
Διαβάστε περισσότερα6-Aνίχνευση. Ακμών - Περιγράμματος
6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών
Διαβάστε περισσότεραΜάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 10 ο Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει: Με βάση τα εξωτερικά χαρακτηριστικά (ακμές, όρια). Αυτή η περιγραφή προτιμάται όταν μας ενδιαφέρουν
Διαβάστε περισσότεραΕ.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Διαβάστε περισσότερα7.5 Ενδιάμεσο επίπεδο επεξεργασίας εικόνας
7.5 Ενδιάμεσο επίπεδο επεξεργασίας εικόνας 7.5.1 Εισαγωγή Kάθε σύστημα επεξεργασίας εικόνας έχει ένα συγκεκριμένο σκοπό λειτουργίας. Παραδείγματος χάριν, διαφορετικές απαιτήσεις θα έχει μια βιομηχανία
Διαβάστε περισσότεραΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επεξεργασία Ιατρικών Εικόνων
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
Διαβάστε περισσότεραΑ.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ
Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ ΚΑΒΑΛΑ 2009 Περίληψη Η παρακάτω πτυχιακή εργασία περιλαμβάνει
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ
Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)
Διαβάστε περισσότεραΚατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση
ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία
Διαβάστε περισσότεραΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.
1 ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011 2 Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. Ενδεδειγμένες και αξιόπιστες μέθοδοι αποτύπωσης Εμπειρικές Τοπογραφικές
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46
Ψηφιακή Επεξεργασία Εικόνας Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4 th part 12/3/2018 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Βασικές έννοιες επεξεργασίας Φιλτράρισμα στο χωρικό
Διαβάστε περισσότεραΜέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων
Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων Μαρία Δ. Πελώνη Μαρία Α. Τσεμεντζή Α.Τ.Ε.Ι. Καβάλας Διαχείριση Πληροφοριών Επιβλέπων: Δρ. Γκούμας Στέφανος Επίκουρος
Διαβάστε περισσότεραMatlab command: corner
Matlab command: corner http://www.mathworks.com/help/images/ref/corner.html Μια εισαγωγή-outube: http://www.outube.com/watch?v=vkwdzwerfc4 Οκτώβριος 013 Σ. Φωτόπουλος ΨΕΕ Harris Corner detector ΔΠΜΣ ΗΕΠ
Διαβάστε περισσότεραD. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. 1/45 Τι είναι ο SIFT-Γενικά Scale-invariant feature transform detect and
Διαβάστε περισσότεραΕιδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χαρακτηριστικά Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα
Διαβάστε περισσότεραΜετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Διαβάστε περισσότεραΑκαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν
Διαβάστε περισσότεραΜη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50
Μη γραμμικά Φίλτρα Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ /50 Φίλτρα διάμεσης τιμής (median,order statistic) Μη γραμμικά φίλτρα μέσης τιμής Μορφολογικά φίλτρα Ομομορφικά φίλτρα Πολυωνυμικά φίλτρα Σ. Φωτόπουλος
Διαβάστε περισσότεραΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας
Διαβάστε περισσότεραΕργαστήριο ADICV2. Image filtering. Κώστας Μαριάς
Εργαστήριο ADICV2 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab Στη συνέχεια θα
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕ Α BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 Η ΦΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ
Διαβάστε περισσότεραΜάθημα: Μηχανική Όραση
Μάθημα: Μηχανική Όραση Εργασία 2: Advances in Digital Imaging and Computer Vision Ομάδα χρηστών 2 : Τσαγκαράκης Νίκος, Καραμήτρος Κώστας Εισαγωγή Σκοπός της άσκησης, είναι να εξοικειωθούμε με κάποιες βασικές
Διαβάστε περισσότεραΒελτίωση - Φιλτράρισμα εικόνας
Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται
Διαβάστε περισσότερα. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit.
Α ΤΕΙ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: A ΧΕΙΜΕΡΙΝΟ 2011-2012 ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ ΚΑΙ ΗΧΟΣ (7-2-2012) Διάρκεια εξέτασης: 2.0 ώρες (08:00 10:30)
Διαβάστε περισσότεραΓραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διαλέξεις #-# Σύνθεση Δ Μετασχηματισμών Ομογενείς Συντεταγμένες Παραδείγματα Μετασχηματισμών
Διαβάστε περισσότεραΕνότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα
Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Βασικές Έννοιες Διεργασίες στο πεδίο του χώρου f(x, y) : εικόνα εισόδου g(x, y) : εικόνα εισόδου g x, y = T f(x, y) T : τελεστής που εφαρµόζεται
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Διαβάστε περισσότεραΣυμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Εισαγωγικές Ένvοιες ΙI Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕιδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Σύνθεση Πανοράµατος Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Διαβάστε περισσότεραΤι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)
TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών
Διαβάστε περισσότεραΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΕΙΚΟΝΑΣ (ΓΙΑ ΤΗΝ ΑΝΑ ΕΙΞΗ ΟΥΣΙΩ ΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΕΙΚΟΝΑΣ) ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ
ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΕΙΚΟΝΑΣ (ΓΙΑ ΤΗΝ ΑΝΑ ΕΙΞΗ ΟΥΣΙΩ ΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΕΙΚΟΝΑΣ) Τµήµα από το µάθηµα ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΒΙΒΛΙΟΓΡΑΦΙΑ Η καλύτερη προσέγγιση της ύλης του µαθήµατος 1.R.C.
Διαβάστε περισσότεραΜέθοδοι Αναπαράστασης Περιγραµµάτων
KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μέθοδοι Αναπαράστασης Περιγραµµάτων Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας
Διαβάστε περισσότερα14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ
SECTION 4 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 4. Γενικοί Ορισµοί Η θέση ενός σηµείου P στον τρισδιάστατο Ευκλείδειο χώρο µπορεί να καθορισθεί µε ορθογώνιες καρτεσιανές συντεταγµένες (x y οι οποίες µετριώνται
Διαβάστε περισσότεραΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 1 η Σειρά Ασκήσεων Πλαίσια, γεωμετρικοί μετασχηματισμοί και προβολές 1. Y B (-1,2,0) A (-1,1,0) A (1,1,0)
Διαβάστε περισσότεραΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ Π. ΑΣΒΕΣΤΑΣ Επ. Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕΙ Αθήνας Email: pasv@teiath.gr ΠΕΡΙΕΧΟΜΕΝΑ Αναπαράσταση εικόνας Ιστόγραμμα Εξισορρόπηση ιστογράμματος Κατωφλίωση
Διαβάστε περισσότεραΕνδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
Διαβάστε περισσότεραΕνότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ)
Ενότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ) Διδιάστατο Θεώρηµα Συνέλιξης Διδιάστατη Κυκλική Συνέλιξη: 4/0./0 f x, y h x, y = ( ( f m, n h(x m, y n) 523 123 Διδιάστατο Θεώρηµα Συνέλιξης: f x, y h x,
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο
Διαβάστε περισσότεραΑντικείμενα και γεωμετρικοί μετασχηματισμοί
Αντικείμενα και γεωμετρικοί μετασχηματισμοί Τα βασικά γεωμετρικά αντικείμενα και οι μεταξύ τους σχέσεις μπορούν να περιγραφούν με τρεις βασικές γεωμετρικές οντότητες: σημεία, βαθμωτά μεγέθη, διανύσματα
Διαβάστε περισσότεραΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ
Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ -A.1 - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 Copyright ΕΜΠ
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Παρουσιάση πλάτους
Διαβάστε περισσότεραΛύσεις στο Επαναληπτικό Διαγώνισμα 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου
Διαβάστε περισσότεραΘέση και Προσανατολισμός
Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου
Διαβάστε περισσότεραα) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ
ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ SKETCHPAD ΜΕΡΟΣ Α Μιλώντας για ένα λογισµικό δυναµικής γεωµετρίας καλό θα ήταν να διακρίνουµε αρχικά 3 οµάδες εργαλείων µε τα οποία µπορούµε να εργαστούµε µέσα στο συγκεκριµένο περιβάλλον.
Διαβάστε περισσότεραΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εισαγωγή Σχηματισμός Εικόνας
Διαβάστε περισσότεραΜετασχηματισμοί Μοντελοποίησης (modeling transformations)
Μετασχηματισμοί Δ Μετασχηματισμοί Μοντελοποίησης (modeling trnformtion) Καθορισμός μετασχηματισμών των αντικειμένων Τα αντικείμενα περιγράφονται στο δικό τους σύστημα συντεταγμένων Επιτρέπει την χρήση
Διαβάστε περισσότεραΑνακατασκευή εικόνας από προβολές
Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους
Διαβάστε περισσότερα14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.
14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 13 η εβδομάδα (16/01/2017 & 19/01/2017) Ασυμπτωτική διεύθυνση και ασυμπτωτικό
Διαβάστε περισσότεραΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ Ορισμός. Αν τα και είναι τα μοναδιαία διανύσματα των αξόνων και αντίστοιχα η συνάρτηση που ορίζεται από τη σχέση όπου (συνιστώσες) είναι
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραII.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών
Διαβάστε περισσότεραΚινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού
Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων» Οδηγίες: Σχετικά με την παράδοση της εργασίας θα πρέπει: Το κείμενο
Διαβάστε περισσότεραHMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 5 6 Principal component analysis EM for Gaussian mixtures: μ k, Σ k, π k. Ορίζουμε το διάνυσμα z (διάσταση Κ) ώστε K p( x θ) = π ( x μ, Σ ) k = k k k Eκ των υστέρων
Διαβάστε περισσότεραΜε τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:
ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:
Διαβάστε περισσότεραΒελτίωση - Φιλτράρισμα εικόνας
Βελτίωση - Φιλτράρισμα εικόνας Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ /76 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά συνέλιξη y(n, n ) = x(n, n )*
Διαβάστε περισσότεραΚεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς
Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε
Διαβάστε περισσότερα14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες.
14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες. 13 η εβδομάδα (20/01/2017) Έγιναν οι ασκήσεις 31, 32, 33, 34, 36 και 37 11 η 12 η εβδομάδα
Διαβάστε περισσότεραΔ13b. Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Εκτίμηση ποιότητας Εικόνας Ι Αντικειμενική Αξιολόγηση Χρήση μετρικών εκτίμησης ποιότητας Βασίζονται στη σύγκριση μεταξύ εικονοστοιχείων αρχικής και ανασυσταμένης εικόνας Υποκειμενική
Διαβάστε περισσότεραΜάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί εξιόστροφο σύστημα Θετικές περιστροφές ως προς τους άξονες συντεταγμένων x, y, z Αριστερόστροφο Σύστημα Αναπαράσταση
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 3. Δισδιάστατα σήματα και συστήματα #2
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 2015-16 Παρουσίαση Νο. 3 Δισδιάστατα σήματα και συστήματα #2 Πληροφορία πλάτους-φάσης (1/4) Ο μετασχηματισμός Fourier διακριτού χρόνου είναι μιγαδική
Διαβάστε περισσότεραΣυμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 5-6 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Σημειακή Επεξεργασία Εικόνας Point processing All/Erasmus students:
Διαβάστε περισσότεραΔιανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
Διαβάστε περισσότεραΔιάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι
Διαβάστε περισσότεραΣυμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Στοιχεία Επεξεργασίας Σήματος Δρ. Ν. Π. Σγούρος 2 Εργοδικές Διαδικασίες Η μέση τιμή διαφόρων στιγμιότυπων της διαδικασίας (στατιστική μέση τιμή) ταυτίζεται με τη χρονική μέση
Διαβάστε περισσότεραΣημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM)"
ΑΤΕΙ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM" Εαρινό εξάμηνο 5 Χ. Οικονομάκος . Γενικά Χρήση γεωμετρικών μετασχηματισμών στα προγράμματα
Διαβάστε περισσότερα1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1
1 Πολυώνυμα και συσχετικός χώρος Ορισμός 3.1 Ενα μονώνυμο N στις μεταβλητές x 1, x 2,..., x n είναι ένα γινόμενο της μορφής x m 1 2...x m n n, όπου όλοι οι εκθέτες είναι φυσικοί αριθμοί. Ο βαθμός του μονωνύμου
Διαβάστε περισσότεραΤεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας
Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.
Διαβάστε περισσότερα«ΠΥΘΑΓΟΡΑΣ II: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΠΑΝΕΠΙΣΤΗΜΙΑ»
«ΠΥΘΑΓΟΡΑΣ II: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΠΑΝΕΠΙΣΤΗΜΙΑ» ΣΧΟΛΗ: ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ (ΣΑΤΜ) Ε.Μ.Π. ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ: ΑΡΓΙΑΛΑΣ ΔΗΜΗΤΡΗΣ ΤΙΤΛΟΣ ΥΠΟΕΡΓΟΥ: ΑΝΑΠΤΥΞΗ ΠΡΟΗΓΜΕΝΩΝ ΤΕΧΝΙΚΩΝ
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανύσματα Ευθείες - Επίπεδα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διάνυσμα ή Διανυσματικό μέγεθος (Vector) Μέγεθος που
Διαβάστε περισσότεραΚλασικη ιαφορικη Γεωµετρια
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία
Διαβάστε περισσότεραΧρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 10 : Κωδικοποίηση καναλιού Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Απόσταση και βάρος Hamming Τεχνικές και κώδικες ανίχνευσης &
Διαβάστε περισσότεραΠαρουσίαση Νο. 6 Αποκατάσταση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Εισαγωγή (1/2) Αναίρεση υποβάθμισης που μπορεί να οφείλεται: Στο οπτικό σύστημα (θόλωμα λόγω κακής εστίασης, γεωμετρικές παραμορφώσεις...)
Διαβάστε περισσότεραΜάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
Διαβάστε περισσότεραΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Διαβάστε περισσότεραETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια
Διαβάστε περισσότεραΓραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση 12 η. Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση 12 η Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων Εισαγωγή (1) Το χρώμα είναι ένας πολύ σημαντικός παράγοντας περιγραφής, που συχνά απλουστεύει κατά
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Επεξεργασία στο πεδίο της συχνότητας Φασματικές τεχνικές Γενικά Τεχνικές αναπαράστασης και ανάλυσης
Διαβάστε περισσότεραΜέθοδοι Αναπαράστασης Περιοχών
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μέθοδοι Αναπαράστασης Περιοχών ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Χαρακτηριστικά χώρου Χαρακτηριστικά από µετασχηµατισµό
Διαβάστε περισσότερα( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Διαβάστε περισσότεραΒ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 18/1/016 ΕΩΣ 05/01/017 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη 7 Δεκεμβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Αν ( xy, )
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Φιλτράρισμα στο πεδίο των Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Φίλτρο: μια διάταξη ή
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1
ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς
Διαβάστε περισσότεραMATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής
MATLAB Εισαγωγή στο SIMULINK Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής Εισαγωγή στο Simulink - Βιβλιοθήκες - Παραδείγματα Εκκίνηση BLOCKS click ή Βιβλιοθήκες Νέο αρχείο click ή Προσθήκη block σε αρχείο
Διαβάστε περισσότεραΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση
Διαβάστε περισσότεραΣυμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;
Διαβάστε περισσότερα