Advances in Digital Imaging and Computer Vision
|
|
- Ζεφύρα Αλεξιάδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Advances in Digital Imaging and Computer Vision Lecture and Lab 7 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1
2 Advanced filtering for image restoration using Fourier Transform Basic special filtering and processing For ERASMUS (and all the rest) please study chapter 5 Image Restoration and Reconstruction (page 311) from Gonzalez and Woods book (3 rd edition). Again read the Fourier Analysis chapter from An Introduction to Digital Image Processing with Matlab Notes for SCM2511 Image Processing 1, Alasdair McAndrew 2
3 Αναφορές An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew Nicolas Tsapatsoulis, Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας, Lecture notes in Digital Image Processing, Image Processing Lectures, Peters, Richard Alan, II, "The Fourier Transform", Lectures on Image Processing, Vanderbilt University, Nashville, TN, April 2008, Available on the web at the Internet Archive, Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition Digital Image Processing, Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley,
4 Η μορφή της εικόνας στο πεδίο συχνοτήτων Αριστερά φαίνεται το συχνοτικό περιεχόμενο του DFT (συγκέντρωση ενέργειας γύρω από το (0,0)) lenna Λογαριθμική απεικόνιση του πλάτους του DFT 4
5 Μετασχηματισμοί στο πεδίο συχνοτήτων Γιατί οι μετασχηματισμοί στο πεδίο των συχνοτήτων είναι χρήσιμοι στην επεξεργασία εικόνας; Βελτίωση εικόνας λαμβάνοντας υπόψιν το συχνοτικό περιεχόμενο Φιλτράρισμα, αφαίρεση θορύβου, κυκλική μετατόπιση, συμπίεση, περιγραφή σχήματος Πλεονεκτήματα: μικρότερη υπολογιστική πολυπλοκότητα / εναλλακτική ερμηνεία 5
6 Παράδειγμα: Οπτικοποίηση ΔΜF με Matlab I=imread('cameraman.tif'); F1=fft2(I); F2=fftshift(fft2(I)); Matlab cfnormal1=mat2gray(log(1+abs(f1))); cfnormal=mat2gray(log(1+abs(f2))); subplot(1,3,1), imshow(i), title('original Image'); subplot(1,3,2), imshow(cfnormal1), title('dft Image'); subplot(1,3,3), imshow(cfnormal), title('dft Image shifted'); 6
7 Φιλτράρισμα στο χώρο της Συχνότητας με ΔΜF 2Δ Input Image f(x,y) Fourier Transform F(u,v) Filter Function H(u,v) Filtering H(u,v) F(u,v) Inverse Fourier Transform Filtered Image g(x,y) Βασικά Βήματα στο φιλτράρισμα στο πεδίο συχνοτήτων Στη χωρική επεξεργασία εικόνας με χρήση μάσκας η μάσκα εφαρμόζεται επαναληπτικά σε όλα τα pixel της εικόνας. Η διαδικασία αυτή είναι γνωστή ως συνέλιξη και συμβολίζεται με *. Για παράδειγμα το αποτέλεσμα g(x,y) της χωρικής επεξεργασίας της εικόνας f(x,y) με τη μάσκα h(x,y) ορίζεται ως: g(x,y) = f(x,y)*h(x,y) Από τις ιδιότητες του μετασχηματισμού Fourier προκύπτει ότι το ίδιο αποτέλεσμα μπορεί να προκύψει με πολλαπλασιασμό των επιμέρους ΔΜF και μετά αντιστροφή στο χωρικό πεδίο: g(x,y) = IDFT{F(u,v) H(u,v)} Nicolas Tsapatsoulis, Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας, Lecture notes in Digital Image Processing
8 Συμμετρία Μετασχηματισμού Fourier Από τις ιδιότητες του DFT προκύπτει ότι ο DFT μιας εικόνας περιέχει πλεονασματικές πληροφορίες, δηλαδή έχουμε τις ίδιες πληροφορίες περισσότερες από μία φορά (συμμετρία). Το επόμενο σχήμα παρουσιάζει τις συμμετρίες που ισχύουν στο μέτρο του DFT μιας εικόνας Συμμετρία ως προς το μέσο (συχνότητα (u,v)=(μ/2,ν/2)) Βλέπε σχήμα στα αριστερά Η κατανομή των συχνοτήτων του DFT φαίνεται στο σχήμα στο κέντρο Πολλές φορές όμως για καλύτερη οπτική απεικόνιση θεωρούμε απεικόνιση με κέντρο των αξόνων το μέσο του πίνακα (εντολή fftshift στη Matlab) - Βλέπε σχήμα στα δεξιά (0, 0) v (0, 0) low freqs v low freqs (0, N-1) (-N/2, -N/2) high v high (-N/2, N/2) u u high freqs u low low freqs low freqs high high (N-1, 0) (N-1, N-1) (N/2, -N/2) (N/2, N/2) Nicolas Tsapatsoulis, Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας, Lecture notes in Digital Image Processing
9 Φιλτράρισμα στο χώρο της Συχνότητας (IΧ) Ορίζοντας κατευθείαν στο χώρο της συχνότητας τους πίνακες H μπορούμε να επεξεργαστούμε συγκεκριμένες περιοχές συχνοτήτων Υψιπερατό φιλτράρισμα => αποκοπή χαμηλών συχνοτήτων (π.χ. χρήση για ανάδειξη ακμών) Χαμηλοπερατό φιλτράρισμα => αποκοπή υψηλών συχνοτήτων (π.χ. χρήση για απαλοιφή θορύβου, λείανση εικόνας) Ζωνοφρακτικό φιλτράρισμα => αποκοπή ενδιάμεσων συχνοτήτων (π.χ. απαλοιφή θορύβου συγκεκριμένων συχνοτήτων όπως σε περιπτώσεις αποκατάστασης εικόνας) H για ζωνοφρακτικό φιλτράρισμα H για υψιπερατό φιλτράρισμα H για χαμηλοπερατό φιλτράρισμα 9
10 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition Το ιδεατό χαμηλοπερατό φίλτρο (IDLPF) έχει συνάρτηση μεταφοράς Η (μετασχηματισμό Fourier της μάσκας h) της μορφής: 1, D( u, v) D H( u, v) 0, D( u, v) D 0 0 Η επιλογή της τιμής του D 0 στο ιδεατό χαμηλοπερατό φίλτρο καθορίζει πόση από τη συνολική ισχύ της εικόνας θέλουμε να διατηρήσουμε!! Όπου D(u,v) είναι η απόσταση του σημείου με συχνότητες (u,v) από το σημείο (0,0), και D 0 είναι ένας θετικός αριθμός (συχνά αναφέρεται ως ακτίνα του χαμηλοπερατού φίλτρου) 10
11 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Για να φιλτράρουμε στο πεδίο συχνοτήτων πρώτα δημιουργούμε μια σφαίρα στο κέντρο της εικόνας, η οποία ανάλογα με την ακτίνα της μπορεί να κρατήσει συγκεκριμένες συχνότητες: [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); c=(z<15); figure, surf(double(c)), shading interp, colormap jet figure, imshow(c) D( u, v) Matlab 1, D( u, v) D0 H ( u, v) 0, D( u, v) D0 D 15 0 z 11
12 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Στη συνέχεια διαβάζουμε την εικόνα cameraman.tif στη matlab και υπολογίζουμε τον ΔΜF της εικόνας I με την εντολή fft2 της matlab. Επιπλέον εφαρμόζουμε την εντολή fftshift για να έχουμε στο κέντρο τον DC συντελεστή όπως έχουμε εξηγήσει και προκύπτει ο πίνακας F με τον ΔΜF της εικόνας: I=imread('cameraman.tif'); F=fftshift(fft2(I)); Matlab Στη συνέχεια πολλαπλασιάζουμε τη κυκλική μάσκα c ακτίνας 15 pixel με τον F έτσι ώστε να κρατήσουμε χαμηλές συχνότητες στο κέντρο του F: cf=f.*c; figure, imshow(mat2gray(log(1+abs(cf)))); 12
13 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Τέλος υπολογίζουμε τον διακριτό, αντίστροφο μετασχηματισμό F της cf, δηλαδή της εικόνας με τις φιλτραρισμένες συχνότητες με την εντολή ifft2 της matlab: IcF=ifft2(cF); Επειδή η εικόνα που προκύπτει έχει max(max(icf))= και min(min(icf)) = , αλλά και για δώσουμε μια καλύτερη οπτικοποίηση (η αλληλουχία fft2 και ifft2 οδηγεί σε σφάλματα), επιλέγω να πάρω πρώτα τις απόλυτες τιμές της IcF (αν και είμαστε πίσω στο χωρικό πεδίο) και μετά να χρησιμοποιήσω το mat2gray της matlab για να μετασχηματιστούν όλες οι τιμές από 0 εως 1 και στη συνέχεια να οπτικοποιηθούν: figure, imshow(mat2gray(abs(icf))) Με την εντολή subplot δείχνουμε όλα τα βήματα-αποτελέσματα του χαμηλοπερατού φιλτραρίσματος με ΔΜF: subplot(2,2,1);imshow(i,[]), title('original Image'); subplot(2,2,2);imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,2,3);imshow(mat2gray(log(1+abs(cf)))), title('lowpass mask'); subplot(2,2,4); imshow(mat2gray(abs(icf))), title('filtered Image'); Matlab 13
14 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Matlab 14
15 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); c1=(z<10); c2=(z<35); I=imread('cameraman.tif'); F=fftshift(fft2(I)); cf1=f.*c1; cf2=f.*c2; IcF1=ifft2(cF1); IcF2=ifft2(cF2); 15 Matlab 1, D( u, v) D H ( u, v) 0, D( u, v) D D 0 D( u, v) z 0 0 subplot(2,4,1);imshow(i,[]), title('original Image'); subplot(2,4,2);imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,4,3);imshow(mat2gray(log(1+abs(cf1)))), title('lowpass mask cutoff 10'); subplot(2,4,4);imshow(mat2gray(log(1+abs(cf2)))), title('lowpass mask cutoff 35'); subplot(2,4,6);imshow(mat2gray(abs(icf1))), title('filtered with mask cutoff 10'); subplot(2,4,7);imshow(mat2gray(abs(icf2))), title('filtered with mask cutoff 35'); 15
16 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Matlab 16
17 ΔΜF: Χαμηλοπερατά Φίλτρα Οι συναρτήσεις της matlab fft2 kai ifft2 δίνουν αριθμητικές προσεγγίσεις και περιχέουν, αναπόφευκτα, σφάλματα. Για αυτό το λόγο μετά από τον αντίστροφο ΔΜF χρησιμοποιούμε το imshow στις απόλυτες τιμές του πίνακα (abs) επιδιώκοντας να στρογγυλέψουμε σφάλματα που προκύπτουν κατά τον μετασχηματισμό και την αντιστροφή του. Στο ιδεατό φίλτρο υπάρχουν σφάλματα (με τη μορφή δαχτυλιδιού) από το κέντρο της φιλτραρισμένης εικόνας και προς τα έξω. Αυτά οφείλονται στην απόκριση του ιδεατού φίλτρου λόγω των απότομων ακμών του: Matlab [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); c=(z<15); cf=fftshift(fft2(c)); imshow(mat2gray(log(1+abs(cf)))) b=1./(1+(z./15).^2); figure, imshow(b) cf=fftshift(fft2(b)); imshow(mat2gray(log(1+abs(cf)))) Το πρόβλημα λύνεται με τη χρήση φίλτρων Butterworth που έχουν ομαλή μετάβαση εντάσεων στην περιφέρεια του κύκλου. 17
18 ΔΜF: Χαμηλοπερατά φίλτρα Butterworth Matlab Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition Τα ιδεατά χαμηλοπερατά φίλτρα δεν είναι υλοποιήσιμα με υλικό. Επιπλέον δημιουργούν εικόνες με δακτυλίδια (ringing effect) εξαιτίας της απότομης μεταβολής μεταβολής της Hideal από την τιμή 1 στη τιμή 0. Τα χαμηλοπερατά φίλτρα Butterworth (BLPF) έχουν συνάρτηση μεταφοράς Η της μορφής (n είναι η τάξη του φίλτρου): 1 b=1./(1+(z./10).^2); H ( u, v) 2n 1 D( u, v) D0 18
19 ΔΜF: Χαμηλοπερατά φίλτρα Butterworth n=1 [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); c1=1./(1+((z.^2)/15^2)); c2=1./(1+((z.^2)/35^2)); I=imread('cameraman.tif'); F=fftshift(fft2(I)); cf1=f.*c1; cf2=f.*c2; IcF1=ifft2(cF1); IcF2=ifft2(cF2); 1 H ( u, v) 1, D (, ) 1 D u v H ( u, v) D 0 0, D H ( u, v) c1, c2 D 0 D( u, Dv () u, D v) ( u, v) 2n zx.^2 y.^ D 0 ( u, v) Matlab D 0 subplot(2,4,1);imshow(i,[]), title('original Image'); subplot(2,4,2);imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,4,3);imshow(mat2gray(log(1+abs(cf1)))), title('lowpass mask cutoff 15'); subplot(2,4,4);imshow(mat2gray(log(1+abs(cf2)))), title('lowpass mask cutoff 35'); subplot(2,4,6);imshow(mat2gray(abs(icf1))), title('filtered with mask LP15'); subplot(2,4,7);imshow(mat2gray(abs(icf2))), title('filtered with mask LP 35'); 19
20 ΔΜF: Χαμηλοπερατά φίλτρα Butterworth n=1 [x,y]=meshgrid(-128:127,-128:127); c1=1./(1+((x.^2+y.^2)/15^2)); c2=1./(1+((x.^2+y.^2)/35^2)); I=imread('cameraman.tif'); F=fftshift(fft2(I)); cf1=f.*c1; cf2=f.*c2; IcF1=ifft2(cF1); IcF2=ifft2(cF2); subplot(2,4,1);imshow(i,[]), title('original Image'); subplot(2,4,2);imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,4,3);imshow(mat2gray(log(1+abs(cf1)))), title('lowpass mask cutoff 15'); subplot(2,4,4);imshow(mat2gray(log(1+abs(cf2)))), title('lowpass mask cutoff 35'); subplot(2,4,6);imshow(mat2gray(abs(icf1))), title('filtered with mask LP15'); subplot(2,4,7);imshow(mat2gray(abs(icf2))), title('filtered with mask LP 35'); Matlab 20
21 21 Τα χαμηλοπερατά φίλτρα Gauss (GLPF) έχουν συνάρτηση μεταφοράς Η της μορφής (D 0 είναι η τυπική απόκλιση του φίλτρου): 2 0 ), ( 0.5 ), ( D v u D e v u H Χαμηλοπερατά Φίλτρα: Φίλτρα Gauss Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition
22 Χαμηλοπερατά Φίλτρα: Φίλτρα Gauss lowpass I=imread('nepaliwoman.jpg');I=I(:,:,1); [m n]=size(i); [x,y]=meshgrid(-n/2:n/2-1, -m/2:m/2-1); z=sqrt(x.^2+y.^2);d0=80; c1=exp( - 0.5*((z./D0).^2); F=fftshift(fft2(I)); cf1=f.*c1; IcF1=ifft2(cF1); subplot(2,2,1),imshow(i,[]), title('original Image'); subplot(2,2,2),imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,2,3),imshow(mat2gray(log(1+abs(cf1)))), title('gaussian mask Do=80'); subplot(2,2,4),imshow(mat2gray(abs(icf1))), title('filtered with Gaussian mask Do=80'); H( u, v) e 0.5 D( u, v) D 0 Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition 2 By Nepali_woman,_Ghyaru.jpg: travelwayoflifederivative work: Bruce1ee - This file was derived from Nepali woman, Ghyaru.jpg:, CC BY-SA 2.0, 22
23 Χαμηλοπερατά Φίλτρα: Φίλτρα Gauss Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition 23
24 ΔΜF: Υψιπερατά Φίλτρα Υψιπερατά φίλτρα είναι φίλτρα τα οποία χρησιμοποιούνται για την ανάδειξη ακμών στις εικόνες Ο απλόυστερος τρόπος για τον υπολογισμό της συνάρτησης μεταφοράς ενός υψιπερατού φίλτρου είναι χρησιμοποιώντας τη σχέση Η high =1-H low όπου Η low η συνάρτηση μεταφοράς του αντίστοιχου χαμηλοπερατού φίλτρου., Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition 24
25 ΔΜF: Υψιπερατά Φίλτρα Με βάση τη προηγούμενη σχέση έχουμε: IHPF (Ideal High Pass Filter): H IHPF = 1 - H ILPF BHPF (Butterworth High Pass Filter): H BHPF = 1 - H BLPF GHPF (Gauss High Pass Filter): H GHPF = 1 - H GLPF Η μορφή των αντίστοιχων φίλτρων φαίνεται στο διπλανό σχήμα Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition 25
26 ΔΜF: Υψιπερατά Φίλτρα-ιδεατά [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); c1=(z>10); c2=(z>35); Matlab I=imread('cameraman.tif'); F=fftshift(fft2(I)); cf1=f.*c1; cf2=f.*c2; IcF1=ifft2(cF1); IcF2=ifft2(cF2); subplot(2,4,1);imshow(i,[]), title('original Image'); subplot(2,4,2);imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,4,3);imshow(mat2gray(log(1+abs(cf1)))), title('highpass mask cutoff 10'); subplot(2,4,4);imshow(mat2gray(log(1+abs(cf2)))), title('highpass mask cutoff 35'); subplot(2,4,6);imshow(mat2gray(abs(icf1))), title('filtered with mask HP10'); subplot(2,4,7);imshow(mat2gray(abs(icf2))), title('filtered with mask HP 35'); 26
27 ΔΜF: Υψιπερατά Φίλτρα-ιδεατά [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); c1=(z>10); c2=(z>35); Matlab I=imread('cameraman.tif'); F=fftshift(fft2(I)); cf1=f.*c1; cf2=f.*c2; IcF1=ifft2(cF1); IcF2=ifft2(cF2); subplot(2,4,1);imshow(i,[]), title('original Image'); subplot(2,4,2);imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,4,3);imshow(mat2gray(log(1+abs(cf1)))), title('highpass mask cutoff 10'); subplot(2,4,4);imshow(mat2gray(log(1+abs(cf2)))), title('highpass mask cutoff 35'); subplot(2,4,6);imshow(mat2gray(abs(icf1))), title('filtered with mask HP10'); subplot(2,4,7);imshow(mat2gray(abs(icf2))), title('filtered with mask HP 35'); 27
28 Αποκατάσταση Εικόνας Σχηματικό διάγραμμα της διαδικασίας αλλοίωσης και αποκατάστασης: f(x, y) είναι η αρχική εικόνα στην οποία επεμβαίνουν ο θόρυβος n(x, y) και η συνάρτηση αλλοίωσης Η δημιουργώντας την εικόνα g(x, y). Σκοπός μας είναι να μπορέσουμε να αποκαταστήσουμε όσο το δνατόν περισσότερο την εικόνα f (x, y) εκτιμώντας την εικόνα f (x, y)) με χρήση τεχνικών-φιλτρων αποκατάστασης. g(x, y) Θόρυβος n(x,y) f (x, y) Φίλτρα Αποκατάστασης Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition Συνάρτηση αλλοίωσης H f(x, y) 28
29 Αποκατάσταση Εικόνας Αν η συνάρτηση αλλοίωσης H είναι μια γραμμική διαδικασία ανεξάρτητη θέσης, τότε η αλλοιωμένη εικόνα μπορεί να υποτεθεί ότι είναι: g x, y = h x, y f x, y + n(x, y) Με δεδομένο ότι η συνέλιξη στο χωρικό πεδίο ισοδυναμεί με πολλαπλασιασμό στο πεδίο συχνοτήτων η ισοδύναμη αναπαράσταση στο πεδίο συχνοτήτων θα δίνεται από τη σχέση: G(u, v) = H(u, v) F(u, v) + N(u, v) 29
30 Περιοδικός Θόρυβος Ο περιοδικός θόρυβος σε μια εικόνα προκύπτει συνήθως από ηλεκτρικές ή ηλεκτρομηχανικές παρεμβολές κατά τη διάρκεια της απόκτησης εικόνας. Είναι ο μόνος τύπος χωρικά εξαρτώμενος τύπος θορύβου που θα εξετάσουμε. Ο περιοδικός θόρυβος μπορεί να μειωθεί σημαντικά μέσω φιλτραρίσματος στο πεδίο των συχνοτήτων. 30
31 Περιοδικός Θόρυβος Οι παράμετροι του περιοδικού θορύβου τυπικά υπολογίζεται από την επιθεώρηση του φάσματος Fourier της εικόνας. Όπως σημειώνεται στην προηγούμενη ενότητα, ο περιοδικός θόρυβος τείνει να παράγει αιχμές συχνότητας που συχνά μπορεί να ανιχνευθούν ακόμα και με οπτική ανάλυση. Μια άλλη προσέγγιση είναι να συμπεράνουμε την περιοδικότητα των συνιστωσών θορύβου απευθείας από την εικόνα, αλλά αυτό είναι δυνατό μόνο σε απλές περιπτώσεις. 31
32 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων Ο περιοδικός θόρυβος μπορεί να αναλυθεί και να φιλτράρεται αρκετά αποτελεσματικά χρησιμοποιώντας τεχνικές στο πεδίο των συχνοτήτων. Η βασική ιδέα είναι ότι ο περιοδικός θόρυβος εμφανίζεται σαν συμπυκνωμένες εκρήξεις ενέργειας στο μετασχηματισμό Fourier, σε θέσεις που αντιστοιχούν στις συχνότητες της περιοδικής παρεμβολής. Η προσέγγιση είναι να χρησιμοποιούμε ένα επιλεκτικό φίλτρο (π.χ. bandreject, ζωνοφρακτικό) για την απομόνωση του θορύβου {για βασική μείωση περιοδικού θορύβου}. 32
33 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων Στην επόμενη διαφάνεια βλέπουμε bandreject φίλτρα για την ιδανική περίπτωση (ideal), Butterworth, και Gaussian bandreject φίλτρα. D(u, v) είναι η απόσταση του σημείου (u,v) από το κέντρο του συχνοτικού ορθογωνίου (P γραμμές, Q στήλες), όπως δίνεται από την εξίσωση: In matlab: D u, v = u P v Q 2 2 D u, v = [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); figure, surf(z), shading interp, colormap bone 1 2 ή u 2 + v μετα απο fftshift 33
34 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων D(u, v) είναι η απόσταση του σημείου (u,v) από το κέντρο του συχνοτικού ορθογωνίου όπως δίνεται (στην περίπτωση που μεταφέρουμε το DC του ΔΜΦ στο κέντρο της εικόνας) από την εξίσωση: D u, v = u 2 + v In matlab: [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); figure, surf(z), shading interp, colormap bone 34
35 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων Φίλτρα Bandreject. W είναι η απόσταση της μπάντας, D είναι η απόσταση D(u, v) από το κέντρο του φίλτρου, D 0 η συχνότητα αποκοπής και n η τάξη του φίλτρου Butterworth. Δείχνουμε το D αντί για D(u, v) Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition 35
36 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων Για να πάρουμε ένα ζωνοπερατό (bandpass) φίλτρο από ένα ζωνοφρακτικό (bandreject) κλανουμε ότι και για να πάρουμε ένα υψηλοπερατό (highpass) από ένα χαμηλοπερατό (lowpass) δηλ: HBP(u, v) = 1 HBR(u, v) 36
37 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων (a) Image corrupted by sinusoidal noise (b) Spectrum of (a). Χρησιμοποιώντας το αντίστοιχο ζωνοπερατό φίλτρο (bandpass) και με αντίστροφο ΔΜF παίρνουμε αντί για την φιλτραρισμένη εικόνα, μια εικόνα που προσεγγίζει το μοτίβο του θορύβου στην αρχική εικόνα (α): (c) Butterworth bandreject filter (white represents 1). (d) Result of filtering. Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition 37
38 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων %Μπορούμε εύκολα να δημιουργήσουμε περιοδικό θόρυβο από την επικάλυψη %μιας εικόνας με μια τριγωνομετρική συνάρτηση: cm=imread('cameraman.tif'); %Η δεύτερη γραμμή απλά δημιουργεί ένα ημιτονοειδές σήμα και ρυθμίζει την τιμή %του να είναι στο εύρος 0-2 [x,y]=meshgrid(1:256,1:256); s=1+sin(x+y/1.5); figure, surf(s), shading interp, colormap bone %Με την επόμενη γραμμή προσθέτουμε στην εικόνα το ημιτονικό σήμα και %διαιρούμε με 4 ώστε να έχουμε πίνακα double με εύρος cp=(double(cm)/128+s)/4; cpf=fftshift(fft2(cp)); subplot(1,3,1), imshow(cm) subplot(1,3,2), imshow(cp) subplot(1,3,3), imshow(mat2gray(log(1+abs(cpf)))) An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew 38
39 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων sqrt(( ).^2+(128-88).^2) Η αρχική εικόνα (αριστερά), η εικόνα με περιοδικό θόρυβο και ο αντίστοιχος ΔΜF (δεξιά) Οι επιπλέον δύο αιχμές μακριά από το κέντρο αντιστοιχεί στο θόρυβο που μόλις προσθέσαμε. Μικρές περίοδοι ημιτόνων αντιστοιχούν υψηλής συχνότητας παρεμβολές (μεγάλη αλλαγή σε μια μικρή απόσταση), και είναι ως εκ τούτου πιο μακριά από το κέντρο του μετατοπίστηκε μετασχηματισμό. figure, imshow(mat2gray(log(1+abs(cpf)))) Θα αφαιρέσουμε τώρα αυτές τις επιπλέον αιχμές, και μετά θα αντιστρέψουμε στο χωρικό πεδίο. Αν βάλουμε pixval και να κινηθεί γύρω από την εικόνα, διαπιστώνουμε ότι οι αιχμές έχουν συντεταγμένες ~ (156,170) και (102,88) και οι δύο έχουν απόσταση ~ 48 από το κέντρο (128,128). Με βάση αυτό φτιάχνουμε (επόμενη διαφάνεια) το Band reject filter. An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew 39
40 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων %Band reject filtering. Δημιουργούμε ένα φίλτρο που %αποτελείται από αυτά με ένα δαχτυλίδι από μηδενικά %που βρίσκονται σε μια ακτίνα 49 από το κέντρο: [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); br=(z < 46 z > 50); figure,imshow(br) %όπου το z είναι η μήτρα που αποτελείται από %αποστάσεις από το κέντρο. Αυτό το συγκεκριμένο %δαχτυλίδι θα έχει ένα πάχος αρκετά μεγάλο για να %καλύψει τις αιχμές. Στη συνέχεια, όπως και πριν, το %πολλαπλασιάζουμε με τον ΔΜF: cpfbr=cpf.*br; figure, imshow(mat2gray(log(1+abs(cpfbr)))) An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew 40
41 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων με φίλτρα Butterworth %Οπτικοποίηση τελικών αποτελεσμάτων cpfbr=cpf.*br; IF=ifft2(cpfbr); subplot(1,4,1), imshow(cm), title('original') subplot(1,4,2), imshow(cp), title('original with periodic noise') subplot(1,4,3), imshow(mat2gray(log(1+abs(cpf)))), title('fourier Filter') subplot(1,4,4), imshow(mat2gray(abs(if))), title('filtered Image') 41
42 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων με φίλτρα Butterworth cm=imread('cameraman.tif'); [x,y]=meshgrid(1:256,1:256); s=1+sin(x+y/1.5); cp=(double(cm)/128+s)/4; cpf=fftshift(fft2(cp)); %[m n]=size(cp); %[x,y]=meshgrid(-n/2:n/2-1,-m/2:m/2-1); [x,y]=meshgrid(-128:127,-128:127); D2= (x.^2+y.^2); DW=150;n=3; br=1./(1+( (DW)./(D2-48.^2)).^2*n);figure,imshow(br,[]) cpfbr=cpf.*br; IF=ifft2(cpfbr); subplot(1,4,1), imshow(cm), title('original') subplot(1,4,2), imshow(cp), title('original with periodic noise') subplot(1,4,3), imshow(mat2gray(log(1+abs(cpfbr)))), title('fourier Filter') subplot(1,4,4), imshow(mat2gray(abs(if))), title('filtered Image') An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew 42
43 Αφαιρώντας Περιοδικό Θόρυβο στο πεδίο συχνοτήτων με φίλτρα Butterworth 43
44 Home work Based on the code we analytically worked out together(given in camerarestore.m) and the images text.bmp and moonlanding.png: Restore the image text.bmp so that the letters look and read better. You can e.g try to get rid off low frequencies and then perform histogram equalization with the command histeq Restore the image moonlanding.png so that you can better visualize the image content. Use Butterworth n=3 filter with Do=50. 44
45 Thank you for your attention! 45
Εργαστήριο ADICV. Fourier transform, frequency domain filtering and image restoration. Κώστας Μαριάς 3/4/2017
Εργαστήριο ADICV Fourier transform, frequency domain filtering and image restoration Κώστας Μαριάς 3/4/2017 Fourier Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab ΠΑΡΑΔΕΙΓΜΑΤΑ ΦΙΛΤΡΩΝ ΔΙΑΚΡΙΤΟΣ
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 6 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1 Βασικές έννοιες Μετασχηματισμού Fourier Basic Concepts of Fourier
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4b 24/4/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Μετασχηματισμός Fourier Εφαρμογές 2 Περιοδικός Θόρυβος
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 5 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1 Βασικές έννοιες Μετασχηματισμού Fourier Basic Concepts of Fourier
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4 3/4/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Μετασχηματισμός Fourier Εικόνας 2 Περιεχόμενα Διάλεξης Μετασχηματισμός
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Φιλτράρισμα στο πεδίο των Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Φίλτρο: μια διάταξη ή
Διαβάστε περισσότεραΒελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας
ΤΨΣ 150 Ψηφιακή Επεξεργασία Εικόνας Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Εκτίµηση Απόκρισης Περιεχόµενα Βιβλιογραφία
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4 th part 12/3/2018 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Βασικές έννοιες επεξεργασίας Φιλτράρισμα στο χωρικό
Διαβάστε περισσότεραΕργαστήριο ADICV2. Image filtering. Κώστας Μαριάς
Εργαστήριο ADICV2 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab Στη συνέχεια θα
Διαβάστε περισσότεραΜετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Διαβάστε περισσότεραΕργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017
Εργαστήριο ADICV1 Image Boundary detection and filtering Κώστας Μαριάς 13/3/2017 Boundary Detection 2 Γείτονες και περίγραμμα εικόνας Ορίζουμε ως V το σύνολο των τιμών εντάσεων εικόνας για να ορίσουμε
Διαβάστε περισσότεραΚεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73
Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73 Σχήμα 6.61 Μορφή της συνάρτησης για διάφορες τιμές του a. (α) (β) Σήμα 6.6 Παράδειγμα εφαρμογής: (α) Αρχική εικόνα. (β) Τελική εικόνα για a 0.0. 6.74 N. ΠΑΠΑΜΑΡΚΟΣ:
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Επεξεργασία στο πεδίο της συχνότητας Φασματικές τεχνικές Γενικά Τεχνικές αναπαράστασης και ανάλυσης
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Διάλεξη 5 Κώστας Μαριάς kmarias@staff.teicrete.gr 24/4/2017 1 Αναφορές An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew N. Papamarkos,
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 3 27/3/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Σημειακή Επεξεργασία Εικόνας (point processing), μετασχηματισμοί
Διαβάστε περισσότεραΕνότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ)
Ενότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ) Διδιάστατο Θεώρηµα Συνέλιξης Διδιάστατη Κυκλική Συνέλιξη: 4/0./0 f x, y h x, y = ( ( f m, n h(x m, y n) 523 123 Διδιάστατο Θεώρηµα Συνέλιξης: f x, y h x,
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 5-6 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Σημειακή Επεξεργασία Εικόνας Point processing All/Erasmus students:
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Διαβάστε περισσότεραΕργαστήριο ADICV2 Labs 2-6
Εργαστήριο ADICV2 Labs 2-6 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab
Διαβάστε περισσότεραΙατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:
Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Περιοδικά
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 009-0 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x α Ψηφιακή
Διαβάστε περισσότεραReferences. Chapter 10 The Hough and Distance Transforms
References Chapter 10 The Hough and Distance Transforms An Introduction to Digital Image Processing with MATLAB https://en.wikipedia.org/wiki/circle_hough_transform Μετασχηματισμός HOUGH ΤΕΧΝΗΤΗ Kostas
Διαβάστε περισσότεραΕργαστήριο ADICV3. Image filtering, Point Processing and Histogram Equalisation. Κώστας Μαριάς 20/3/2017
Εργαστήριο ADICV3 Image filtering, Point Processing and Histogram Equalisation Κώστας Μαριάς 20/3/2017 Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab Σκοπός εργαστηρίου Θα φτιάξουμε
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 06-7 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x t, t,
Διαβάστε περισσότεραΑνάλυση ΓΧΑ Συστημάτων
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 9 με Μετασχηματισμούς Κεφ. 5 (εκτός 5.7.4 και 5.3 μόνο από διάλεξη) Ένα ΓΧΑ σύστημα καθορίζεται πλήρως από Κρουστική απόκριση (impulse response)
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Δισδιάστατα σήματα
Διαβάστε περισσότεραΠαρουσίαση Νο. 6 Αποκατάσταση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Εισαγωγή (1/2) Αναίρεση υποβάθμισης που μπορεί να οφείλεται: Στο οπτικό σύστημα (θόλωμα λόγω κακής εστίασης, γεωμετρικές παραμορφώσεις...)
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό
Διαβάστε περισσότεραΠαρουσίαση του μαθήματος
Παρουσίαση του μαθήματος Εργαστήριο 1 Ενότητες Μαθήματος 1. Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Τι είναι ψηφιακή εικόνα. Τι σημαίνει Επεξεργασία εικόνας. Ανάλυση εικόνας σε συχνότητα ( Μετασχηματισμός Fourier σε εικόνα)
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab XXX Introduction to Python Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Image Processing and Computer Vision with
Διαβάστε περισσότεραΜάθημα: Μηχανική Όραση
Μάθημα: Μηχανική Όραση Εργασία 2: Advances in Digital Imaging and Computer Vision Ομάδα χρηστών 2 : Τσαγκαράκης Νίκος, Καραμήτρος Κώστας Εισαγωγή Σκοπός της άσκησης, είναι να εξοικειωθούμε με κάποιες βασικές
Διαβάστε περισσότεραΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ
ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Τα φίλτρα είναι ηλεκτρικά δικτυώματα που αφήνουν να περνούν απαραμόρφωτα ηλεκτρικά σήματα μέσα σε συγκεκριμένες ζώνες συχνοτήτων και ταυτόχρονα μηδενίζουν κάθε άλλο ηλεκτρικό
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το
Διαβάστε περισσότεραΕιδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Επεξεργασία Εικόνας Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Διαβάστε περισσότεραΠαρουσίαση Νο. 5 Βελτίωση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ
Εργαστήριο Ηλεκτρακουστικής Ι Άσκηση 1 - Σελίδα 1 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1. ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ/ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αρχικά, για την καλύτερη κατανόηση
Διαβάστε περισσότεραΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Διακριτού Χρόνου Σειρές Fourier Περιοδική Επέκταση Σήµατος Πεπερασµένης Χρονικής Διάρκειας.
Διαβάστε περισσότεραΟλοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων
Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα
Διαβάστε περισσότερα3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές
ΗΜΥ 429 9. Γρήγορος Μετασχηματισμός Fourier Εφαρμογές 1 Ζεύγη σημάτων Συνάρτηση δέλτα: ΔΜΦ δ[ n] u[ n] u[ n 0.5] (συχνότητα 0-0.5) Figure από Scientist s and engineer s guide to DSP. 2 Figure από Scientist
Διαβάστε περισσότερα1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Διαβάστε περισσότερα4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Διαβάστε περισσότεραΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ενότητα #3: Φίλτρα Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΟ μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
Διαβάστε περισσότερα17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση
ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[
Διαβάστε περισσότεραΡαδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier
Διαβάστε περισσότεραΒιοϊατρική τεχνολογία
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 3: Επεξεργασία σημείων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά
Διαβάστε περισσότεραHMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ Γρήγορος Μετασχηματισμός Fourier Το ζεύγος εξισώσεων που ορίζουν το
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 11: Εφαρμογές DFT Ταχύς Μετασχηματισμός Fourier (FFT) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Διακριτός Μετασχηματισμός Fourier Υπολογισμός Γραμμικής Συνέλιξης
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνων
Ψηφιακή Επεξεργασία Εικόνων Εικόνα : αναπαράσταση των πραγμάτων Επεξεργασία : βελτίωση, ανάλυση, αντίληψη Βασικές έννοιες και μεθοδολογίες ψηφιακής επεξεργασίας εικόνων Θεμελιώδη θέματα για την περιοχή
Διαβάστε περισσότεραHMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 19: Φίλτρα (IV) Σχεδιασμός φίλτρων FIR Είδαμε ότι για φίλτρα IIR συνήθως σχεδιάζουμε ένα φίλτρο ΣΧ και μετασχηματίζουμε Για φίλτρα FIR θα δούμε
Διαβάστε περισσότερα1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.
1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. Α) Β) Ε) F) G) H) Ι) 2) Αν το διακριτό σήμα x(n) είναι όπως στην
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Εισαγωγή Τι είναι η εικόνα; Μια οπτική αναπαράσταση με την μορφή μιας συνάρτησης f(x, y) όπου η
Διαβάστε περισσότεραΤηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 10: Ραδιομετρική Ενίσχυση Χωρική Επεξεργασία Δορυφορικών Εικόνων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας
Διαβάστε περισσότεραΕπεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 0: Εισαγωγή στο µάθηµα 2 Διαδικαστικά Παράδοση: Παρασκευή 16:00-18:30 Διδάσκων: E-mail:
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER
ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2. ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1.1 Εισαγωγή 1.1 1.2 Συμβολισμοί και μονάδες 1.3 1.3 Φορτίο, τάση και ενέργεια 1.5 Φορτίο και ρεύμα 1.5 Τάση 1.6 Ισχύς και Ενέργεια 1.6 1.4 Γραμμικότητα 1.7 Πρόσθεση
Διαβάστε περισσότεραΕνότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα
Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Βασικές Έννοιες Διεργασίες στο πεδίο του χώρου f(x, y) : εικόνα εισόδου g(x, y) : εικόνα εισόδου g x, y = T f(x, y) T : τελεστής που εφαρµόζεται
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision. Image Registration and Transformation
Advances in Digital Imaging and Computer Vision Image Registration and Transformation Γεωμετρικοί Μετασχηματισμοί Εικόνας και Ευθυγράμμιση Image Transformation and Registration Κώστας Μαριάς Αναπληρωτής
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές αποκατάστασης
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου
ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 2η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ 2η ΕΡΓΑΣΙΑ ΣΠΟΥΔΑΣΤΕΣ:
Διαβάστε περισσότεραΔιακριτός Μετασχηματισμός Fourier
Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται
Διαβάστε περισσότεραΝοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53
Νοέμβριος 5 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /53 Ακμή ή περίγραμμα (edge) σεμιαεικόναχ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική αλλαγή
Διαβάστε περισσότερα2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier
2.1 2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 Εισαγωγή Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια της μεθόδου Fourier συνίσταται στο ότι μία κυματομορφή μιας οποιασδήποτε
Διαβάστε περισσότεραπεριεχομενα Πρόλογος vii
Πρόλογος vii περιεχομενα ΜΕΡΟΣ ΠΡΩΤΟ: Κυκλώματα Συνεχούς Ρεύματος... 2 ΚΕΦΑΛΑΙΟ 1: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 3 1.1 Εισαγωγή...4 1.2 Συστήματα και Μονάδες...5 1.3 Φορτίο και Ρεύμα...6 1.4 Δυναμικό...9 1.5 Ισχύς
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σηµάτων. ηµήτριος Βαρσάµης Καθηγητής Εφαρµογών
Ψηφιακή Επεξεργασία Σηµάτων ηµήτριος Βαρσάµης Καθηγητής Εφαρµογών Πεδίο Συχνοτήτων Απόκριση συχνότητας LTI συστήµατος µε συνάρτηση µεταφοράς Hz). Σε ένα LTI σύστηµα µε συνάρτησηµεταφοράς Hz), εφόσον ο
Διαβάστε περισσότεραΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 Α. Σχεδίαση Ψηφιακών Φίλτρων Β. Φίλτρα FIR Σχετικές εντολές του Matlab: fir, sinc, freqz, boxcar, triang, hanning, hamming, blackman, impz, zplane, kaiser. Α. ΣΧΕΔΙΑΣΗ
Διαβάστε περισσότεραΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 3
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 3 Διακριτός Μετασχηματισμός Fourier (DFT) Ο διακριτός μετασχηματισμός Fourier (DFT) αποτελεί το βασικό εργαλείο της Σχετικές εντολές του Matlab: fft, abs, rand, randn,
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Διαβάστε περισσότεραΣυστήματα Πολυμέσων. Ενότητα 8: Συμπίεση Εικόνας κατά JPEG Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συμπίεση Εικόνας κατά JPEG 2000 Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότερα1. Φίλτρα διέλευσης χαμηλών συχνοτήτων 2. Φίλτρα διέλευσης υψηλών συχνοτήτων 3. Ζωνοπερατά φίλτρα
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιαννίνν ΦΙΛΤΡΑ 5 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρση. Φίλτρα διέλευσης χαμηλών συχνοτήτν. Φίλτρα διέλευσης υψηλών συχνοτήτν 3. Ζνοπερατά
Διαβάστε περισσότεραFast Fourier Transform
Fast Fourier Transform Παναγιώτης Πατσιλινάκος ΕΜΕ 19 Οκτωβρίου 2017 Παναγιώτης Πατσιλινάκος (ΕΜΕ) Fast Fourier Transform 19 Οκτωβρίου 2017 1 / 20 1 Εισαγωγή Στόχος Προαπαιτούμενα 2 Η ιδέα Αντιστροφή -
Διαβάστε περισσότεραΣήματα και Συστήματα ΙΙ
Σήματα και Συστήματα ΙΙ Ενότητα 3: Διακριτός και Ταχύς Μετασχηματισμός Fourier (DTF & FFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής
Διαβάστε περισσότεραΛογαριθµικοί Ενισχυτές
Λογαριθµικοί Ενισχυτές I D ontrol Sytem Laboratory Σε πολλές εφαρμογές το δυναμικό εύρος (dynamic range), δηλαδή το μέγεθος του σήματος, είναι πολύ μεγάλο για τις ικανότητες ορισμένων chip (π.χ. ΤΕ, κλπ)
Διαβάστε περισσότεραΔιάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)
Διαβάστε περισσότεραH ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες
H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ στις τηλεπικοινωνίες Διάταξη συστήματος ψηφιακής επικοινωνίας Γεννήτρια σήματος RF, (up-coverter Ενισχυτής Προενισχυτής- dow-coverter- Ψηφιοποιητής σήματος RF Μονάδα ψηφ.
Διαβάστε περισσότεραΣήματα και Συστήματα ΙΙ
Σήματα και Συστήματα ΙΙ Ενότητα 2: Μετασχηματισμός Fourier Διακριτού Χρόνου (DTFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος
Διαβάστε περισσότεραHMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας
HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και
Διαβάστε περισσότεραΒελτίωση - Φιλτράρισμα εικόνας
Βελτίωση - Φιλτράρισμα εικόνας Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ /76 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά συνέλιξη y(n, n ) = x(n, n )*
Διαβάστε περισσότερα27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 2 Βασικά μέρη συστήματος ΨΕΣ Φίλτρο αντι-αναδίπλωσης
Διαβάστε περισσότεραΑποκατάσταση Εικόνας
ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Αποκατάσταση Εικόνας Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας Ορισµός & Παραδείγµατα
Διαβάστε περισσότεραΒελτίωση - Φιλτράρισμα εικόνας
Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται
Διαβάστε περισσότεραΤοµογραφία Μετασχηµατισµός Radon
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τοµογραφία Μετασχηµατισµός Radon Βιοϊατρική Τεχνολογία ιδάσκων: Σεργιάδης Γεώργιος Τοµογραφία
Διαβάστε περισσότερα15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής
15/3/9 Από το προηγούμενο μάθημα... Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 3 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής» Φλώρος
Διαβάστε περισσότεραΔιάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient
Διαβάστε περισσότεραΜετασχηµατισµός FOURIER ιακριτού χρόνου DTFT
Σ. Φωτόπουλος ΨΕΣ Κεφάλαιο 3 ο DTFT -7- Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT (discrete time Fourier transform) 3.. Εισαγωγικά. 3.. Είδη µετασχηµατισµών Fourier Με την ονοµασία Μετασχηµατισµοί Fourier
Διαβάστε περισσότεραKεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ.
Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRASFORM / x X x X x X x 3 x DFT X 3 X x 5 X 5 x 6 X 6 x 7 X 7 / DFT - Ορισμοί αναφέρεται σε μία πεπερασμένου μήκους ακολουθία σημείων
Διαβάστε περισσότεραΑσκήσεις Επεξεργασίας Εικόνας
Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών
Διαβάστε περισσότερα