Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων"

Transcript

1 Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων Μαρία Δ. Πελώνη Μαρία Α. Τσεμεντζή Α.Τ.Ε.Ι. Καβάλας Διαχείριση Πληροφοριών Επιβλέπων: Δρ. Γκούμας Στέφανος Επίκουρος Καθηγητής Καβάλα 2011

2 Περιεχόμενα Περιεχόμενα...2 Περιεχόμενα Εικόνων...5 Περίληψη Εισαγωγή σε Image Processing & Computer Vision Επεξεργασία Εικόνας Υπολογιστική Όραση (Computer Vision) Κίνητρα Εφαρμογή της επεξεργασίας εικόνας σε βιοϊατρικές εικόνες Βελτίωση εικόνας (Filtering & Enchancment) Μετασχηματισμός Fourier μίας Εικόνας Βαθυπερατά Φίλτρα Φίλτρα Μέσης Τιμής Θόλωση (Blurring) Ελάττωση Θορύβου Φίλτρα Gaussian μορφής...20 Σχεδιασμός...20 Ιδιότητες Φίλτρα διάμεσης τιμής Υψιπερατά Φίλτρα Unsharp Masking Επεξεργασία έγχρωμης εικόνας...25 Σελίδα 2 από 104

3 1.13. Ομοιομορφική επεξεργασία (Homomorpic Processing) Ανίχνευση Ακμών Εισαγωγή στην Ανίχνευση Ακμών Τύποι και χαρακτηριστικά ακμών Τελεστές Ανίχνευσης & 1η Παράγωγος...32 Τελεστές Roberts...32 Τελεστές Prewitt...35 Τελεστές Sobel...37 Τελεστές Kirch, Robinson Τελεστές προσέγγισης & 1η παράγωγος Τελεστές Ανίχνευσης & 2η Παράγωγος...40 Λαπλασιανός τελεστής (Laplacian operator) Σχόλια για τον Λαπλασιανό Τελεστή Συμπεριφορά τελεστών σε θορυβώδεις εικόνες Συμεριφορά Τελεστή Roberts σε θόρυβο...43 Συμπεριφορές Άλλων Τελεστών σε θορυβώδεις εικόνες Τελεστές και Θόρυβος Ανίχνευση Ακμών του Canny (Canny Edge Detector)...48 Αλγόριθμος ανίχνευσης ακμών του Canny Συμπεριφορά του ανιχνευτή ακμών του Canny Συμπεριφορά παρουσία θορύβου Σχόλια για τον αλγόριθμο του Canny Ακμές Marr & Hildreth Αλγόριθμος Ανίχνευσης Ακμών Πλεονεκτήματα του Συντελεστή LoG Αποτελέσματα του LoG Τελεστή Σελίδα 3 από 104

4 Bi-Level Laplacian of Gaussian filter...60 Το BLoG σε μία διάσταση...61 Το φίλτρο BLoG σε δύο διαστάσεις...64 Μονοδιάστατο φίλτρο σε δύο διαστάσεις Κατωφλίωση & Ιατρική Απεικόνιση Συστημάτων Τι είναι η κατωφλίωση Ιατρική Απεικόνιση Συστημάτων Είδη Ιατρικών Εικόνων Ψηφιακή Επεξεργασία Εικόνας...71 Βασικές Διαδικασίες Ψηφιακής Επεξεργασίας Εικόνων Κατωφλίωση Ανίχνευση Ακμών σε Ιατρικές Εικόνες Διαχωρισμός περιοχών Εξαγωγή Χαρακτηριστικών Μορφολογικά Χαρακτηριστικά Χαρακτηριστικά Γνωρίσματα Υφής Τοπολογικά Χαρακτηριστικά Επίλογος και Μελλοντικές Επεκτάσεις Βιβλιογραφία...89 ΠΑΡΑΡΤΗΜΑ Α: Βασικοί Αλγόριθμοι Ανίχνευσης Ακμών...92 ΠΑΡΑΡΤΗΜΑ Β: Βασική Εφαρμογή Σελίδα 4 από 104

5 Περιεχόμενα Εικόνων Εικόνα 1: Παράθυρα Συνέλιξης Εικόνας...15 Εικόνα 2: Τιμές συνέλιξης εικόνας στην θέση n1,n Εικόνα 3: Η αρχική εικόνα και η φιλτραρισμένη έξοδος...18 Εικόνα 4: Εξασθένιση του θορύβου με 3x3 Μάσκα μέσης τιμής...19 Εικόνα 5: Εύρεσης διάμεσης τιμής σε πίνακα 3x Εικόνα 6: Έξοδος median φίλτρου με κρουστικό θόρυβο...23 Εικόνα 7: Πίνακες με χαρακτηριστικές τιμές υψιπερατών μασκών...24 Εικόνα 8: Κατεύθυνση και Μέτρο Ακμής...30 Εικόνα 9: Είδη Ακμών σε grayscale εικόνες...31 Εικόνα 10: Εφαρμογή του Τελεστή Roberts...34 Εικόνα 11: Εφαρμογή του Τελεστή Prewitt...35 Εικόνα 12: Εφαρμογή τροποποιημένου Τελεστή Prewitt...36 Εικόνα 13: Εφαρμογή Τελεστή Sobel...37 Εικόνα 14: Εφαρμογή τροποποιημένου Τελεστή Sobel...38 Εικόνα 15: Εφαρμογή Τελεστή Kirch...39 Εικόνα 16: Εφαρμογή Τελεστή Robinson...39 Εικόνα 17: Εφαρμογή Τελεστή Laplace...42 Εικόνα 18: Συμπεριφορά Τελεστή Robinson παρουσία θορύβου...44 Εικόνα 19: Συμπεριφορά τελεστή Prewitt παρουσία Θορύβου...45 Εικόνα 20: Συμπεριφορά τελεστή Sobel παρουσία Θορύβου...45 Εικόνα 21: Συμπεριφορά τελεστή Kirch παρουσία Θορύβου...45 Εικόνα 22: Συμπεριφορά τελεστή Robinson παρουσία Θορύβου...46 Σελίδα 5 από 104

6 Εικόνα 23: Συμπεριφορά τελεστή Laplace παρουσία Θορύβου...47 Εικόνα 24: Δισδιάστατο γκαουσιανό φίλτρο (Canny)...49 Εικόνα 25: Εφαρμογή Αλγόριθμού Ανίχνευσης Ακμών του Canny...52 Εικόνα 26: Συμπεριφορά του Αλγόριθμού του Canny παρουσία θορύβου...53 Εικόνα 27: Δισδιάστατο φίλτρο Laplacian of Gaussian...55 Εικόνα 28: Παρουσίαση του ανεστραμμένου φίλτριου LoG...56 Εικόνα 29: Συμπεριφορά του φίλτρου LoG μεταβάλλοντας την τυπική απόκλιση59 Εικόνα 30: Συμπεριφορά του φίλτρου LoG μεταβάλλοντας το κατώφλι για αποδοχή pixel ως μέρος ακμής...60 Εικόνα 31: Μητρώο Συνέλιξης 7x7 για τυπική απόκλιση σ = Εικόνα 32: Προσέγγιση του μονοδιάστατου λαπλασιανού φίλτρου Εικόνα 33: Ιατρικές εικόνες 2D...70 Εικόνα 34: Ιατρικές εικόνες 3D...70 Εικόνα 35: Ιατρικές εικόνες 4D...71 Εικόνα 36: Πολυδιάστατα ιατρικά δεδομένα...71 Εικόνα 37: Μονόχρωμη ψηφιακή εικόνα βάθους 8-bit...73 Εικόνα 38: Κατωφλίωση Εικόνας με Ιστόγραμμα...76 Εικόνα 39: Απλή Κατωφλίωση Ιατρικής Εικόνας...76 Εικόνα 40: Διπλή Κατωφλίωση Ιατρικής Εικόνας...77 Εικόνα 41: Εύρεση Ακμών σε Ιατρική Εικόνα...78 Εικόνα 42: Διαχωρισμός Περιοχών...79 Εικόνα 43: Μορφολογικά χαρακτηριστικά εικόνας...83 Σελίδα 6 από 104

7 Περίληψη Η παρούσα εργασία περιγράφει την ανάλυση και επεξεργασία μίας βιοϊατρικής ψηφιακής (ή ψηφιοποιημένης) εικόνας. Περιγράφονται αναλυτικά όλες οι τεχνικές που χρησιμοποιούνται σήμερα για την βελτίωση της εικόνας αυτής καθώς και το μαθηματικό τους υπόβαθρο. Περιγράφονται κατόπιν της αρχικής βελτίωσης και συμμόρφωσης της εικόνας αυτής με πρότυπα επεξεργασίας, οι τεχνικές που χρησιμοποιούνται για την αναγνώριση και ταυτοποίηση διάφορων σχημάτων σε αυτές τις εικόνες, τεχνικών αναγνώρισης διαφόρων μερών του ανθρώπινου σώματος, καθώς και προηγμένες τεχνικές «καθαρισμού» και αυτόματης ταυτοποίησης σχημάτων σε αυτές. Περιγράφονται επίσης λεπτομερώς οι τρόποι εξαγωγής από τις εικόνες αυτών ακριβώς των χαρακτηριστικών που θα μπορούσαν να ενδιαφέρουν την ιατρική επιστήμη. Επίσης παρατίθεται ένα λογισμικό χρήσης και επεξεργασίας τέτοιων εικόνων, το οποίο μπορεί χρησιμοποιώντας τις αναφερόμενες τεχνικές να εξάγει χρήσιμη πληροφορία από μία τέτοια βιοϊατρική εικόνα. Σελίδα 7 από 104

8 ι.ι. Εισαγωγή σε Image Processing & Com puter Vision Η ανίχνευση ακμών είναι μια ορολογία που αφορά την επεξεργασία εικόνας και την «οπτική» των υπολογιστών (Computer Vision), ιδιαίτερα όσον αφορά τους τομείς της εξαγωγής χαρακτηριστικών και την δυνατότητα ανίχνευσης, και αναφέρεται σε αλγόριθμους που αποσκοπούν στον εντοπισμό σημείων σε μια ψηφιακή εικόνα στην οποία η φωτεινότητα αλλάζει δραστικά ή πιο σωστά έχει ασυνέχειες [1], [2]. ι.ι. Επεξεργασία Εικόνας Επεξεργασία εικόνας είναι κάθε είδους επεξεργασία σήματος για την οποία είσοδος είναι μια εικόνα ( Πχ. φωτογραφίες ή frames από ένα βίντεο). Έξοδος αυτής της διεργασίας μπορεί να είναι είτε μια εικόνα είτε ένα σύνολο χαρακτηριστικών ή παραμέτρων που σχετίζονται με την εικόνα. Μερικές εφαρμογές της επεξεργασία εικόνας είναι : Ανίχνευση προσώπων: Η ανίχνευση προσώπων είναι μια τεχνολογία των ηλεκτρονικών υπολογιστών που καθορίζει τις θέσεις και τα μεγέθη των ανθρώπινων προσώπων σε ψηφιακές εικόνες. Ανιχνεύει ανθρώπινα πρόσωπα και τα επιμέρους χαρακτηριστικά τους, ενώ αγνοεί οτιδήποτε άλλο, όπως κτίρια, δέντρα και σώματα [3]. Σύστημα προειδοποίησης αλλαγής λωρίδας: Στην ορολογία των οδικών μεταφορών ένα σύστημα προειδοποίησης αλλαγής λωρίδας είναι ένας μηχανισμός σχεδιασμένος να προειδοποιεί τον οδηγό όταν το όχημα αρχίζει να κινείται εκτός της λωρίδας κυκλοφορίας (εκτός και αν υπάρχει κάποιο σήμα) σε ένα αυτοκινητόδρομο [4], [5]. Σελίδα 8 από 104

9 Non-photo realistic rendering (NPR): είναι ένας τομέας της δημιουργίας γραφικών μέσω υπολογιστή που επικεντρώνεται στο να επιτρέπει και να δημιουργεί μια μεγάλη γκάμα εκφραστικών στυλ πάνω στην ψηφιακή τέχνη. Η τεχνική αυτή εφαρμόζεται εκτεταμένα στις σημερινές ταινίες και βιντεοπαιχνίδια με την μορφή σκίασης καρτούν, στην ενδεικτική αρχιτεκτονική και στο πειραματικό animation. Ειδικότερα σε εφαρμογές 3D το αποτέλεσμα της τεχνικής αυτής είναι ένα 3D μοντέλο επεξεργασμένο και τροποποιημένο από το αρχικό πορτραίτο (φωτογραφία) με γεωμετρικές διαστάσεις και χαρακτηριστικά ακριβώς ίδια [6]. Επεξεργασία ιατρικών εικόνων: Σαν ιατρικές εικόνες ή χάρτες εννοούμε όλες εκείνες τις τεχνικές και διεργασίες που υπάρχουν στον κλάδο της ιατρικής για την δημιουργία εικόνων του ανθρώπινου σώματος (ή μέρη του) για κλινικούς σκοπούς (διάγνωση ή εξέταση μιας ασθένειας). Παραδείγματα τέτοιων εικόνων υπάρχουν πολλά (μαγνητικός τομογράφος, ηλεκτροεγκεφαλογράφημα κ.α.) και η σωστή επεξεργασία τους καθίσταται αναγκαία στην σημερινή ψηφιακή εποχή της Ιατρικής Υπολογιστική Όραση (Computer Vision) Ειδικότερα, με τον όρο Computer Vision μιλάμε για την επιστήμη και την τεχνολογία μηχανών που βλέπουν. Ως επιστημονικός κλάδος, ορίζεται η θεωρία κατασκευής τεχνητών συστημάτων που λαμβάνουν πληροφορίες από τις εικόνες. Τα δεδομένα μιας εικόνας μπορούν να έχουν πολλές μορφές όπως είναι μια ακολουθία ενός βίντεο, η λήψη από πολλαπλές κάμερες ή πολυδιάστατα ιατρικά δεδομένα από έναν ιατρικό ανιχνευτή- σαρωτή. Ως τεχνολογικός κλάδος, η «οπτική των υπολογιστών» αναζητά τρόπους να εφαρμοστούν οι θεωρίες και τα μοντέλα της στην κατασκευή συστημάτων με τέτοιου είδους ικανότητα. Τέτοια παραδείγματα είναι και τα εξής [7] : Ο έλεγχος διαδικασιών (Πχ. ένα βιομηχανικό ρομπότ ή ένα αυτόνομο όχημα) Ανίχνευση γεγονότων (Πχ. για την οπτική παρακολούθηση ή την καταμέτρηση ατόμων) Σελίδα 9 από 104

10 Οργανωτικές πληροφορίες (Πχ. για την δημιουργία ευρετηρίου βάσεων δεδομένων εικόνων και αλληλουχιών εικόνων) Μοντελοποίηση δεδομένων ή περιβαλλόντων (Πχ. βιομηχανική επιθεώρηση, ανάλυση ιατρικών εικόνων ή τοπογραφική μοντελοποίηση) Αλληλεπίδραση (Πχ. ως τα δεδομένα εισόδου μιας συσκευής για την αλληλεπίδραση ανθρώπου-μηχανής) Αλλά πεδία είναι η ανασυγκρότηση σκηνών (scene reconstruction), ανίχνευση γεγονότων, εντοπισμού (tracking), αναγνώριση αντικειμένων, εκμάθηση, δημιουργία ευρετηρίων (indexing), εκτίμηση κίνησης και αποκατάσταση εικόνας Κίνητρα Ο σκοπός της ανίχνευση απότομων αλλαγών στην φωτεινότητα μιας εικόνας είναι για να συλλάβουμε τα σημαντικά γεγονότα και αλλαγές που υφίστανται στον κόσμο γύρω μας. Μπορεί να αποδειχθεί ότι σύμφωνα με γενικές υποθέσεις για το μοντέλο σχηματοποίησης μιας εικόνας, ασυνέχειες στην φωτεινότητα μιας εικόνας ενδέχεται να αντιστοιχούν σε [1],[8]: Ασυνέχειες στο βάθος Ασυνέχειες στον προσανατολισμό της επιφάνειας Μεταβολές στις ιδιότητες των υλικών και Διακυμάνσεις στο σκηνικό φωτισμό Στην ιδανική περίπτωση, το αποτέλεσμα της εφαρμογής ενός ανιχνευτή Άκμων σε μια εικόνα μπορεί να οδηγήσει σε ένα σύνολο συνδεόμενων καμπυλών που δείχνουν τα όρια των αντικειμένων, τα όρια των επιφανειακών σημάνσεων καθώς και καμπύλες που αντιστοιχούν στις ασυνέχειες προσανατολισμού επιφάνειας. Έτσι λοιπόν η εφαρμογή ενός ανιχνευτή ακμών σε μια εικόνα μπορεί να μειώσει σημαντικά το ποσό των δεδομένων που υποβάλλονται σε επεξεργασία και μπορεί Σελίδα 10 από 104

11 συνεπώς να φιλτράρει τις πληροφορίες που θεωρούνται μικρής σημασίας, διατηρώντας παράλληλα τις σημαντικές διαρθρωτικές ιδιότητες μιας εικόνας. Εάν το βήμα ανίχνευσης είναι επιτυχές, το μετέπειτα έργο της ερμηνείας των πληροφοριών της αρχικής εικόνας μπορεί να απλουστευθεί σημαντικά. Δυστυχώς όμως δεν είναι πάντα δυνατό να ληφθούν τέτοιου είδους ακμές από πραγματικές εικόνες ακόμα και μέτριας πολυπλοκότητας. Οι ακμές που προέρχονται από μη τετριμμένες εικόνες έχουν συχνά ένα μεγάλο εμπόδιο, τον κατακερματισμό. Οι καμπύλες των ακμών δηλαδή δεν είναι συνδεδεμένες, τμήματα ακμών τα οποία λείπουν καθώς και ψεύτικες ακμές οι οποίες δεν αντιστοιχούν σε ενδιαφέροντα φαινόμενα της εικόνας. Κατά αυτόν τον τρόπο το μετέπειτα έργο της ερμηνείας της εικόνας δυσχεραίνεται [9], [10] Εφαρμογή της επεξεργασίας εικόνας σε βιοϊατρικές εικόνες Η ταχύτατη εξέλιξη και εξάπλωση των τεχνολογιών που χρησιμοποιούνται στην ανάλυση και επεξεργασία των διάφορων ιατρικών εικόνων, οι οποίες θα περιγραφούν αναλυτικά σε επόμενα κεφάλαια, έχουν επιφέρει πραγματική επανάσταση στην Ιατρική επιστήμη. Αυτές οι εικόνες επιτρέπουν σε επιστήμονες και γιατρούς να αποκομίσουν κρίσιμες για την υγεία και την ζωή του ασθενούς, αφού παρέχουν έναν εύκολο και άμεσο τρόπο πρόσβασης στα ενδότερα του ανθρώπινου σώματος και την λεπτομερή επιθεώρηση των ανατομικών λειτουργιών και συμπεριφορών του. Ο ρόλος αυτών των εικόνων, έχει επεκταθεί πολύ περισσότερο από απλή θέαση και οπτικοποίηση των ανατομικών δομών. Έχει γίνει ένα απαραίτητο εργαλείο εγχειρητικού σχεδιασμού, προσομοίωσης και αναπαράστασης των διαδρομών ενδοσωματικών επεμβάσεων, σχεδιασμού χημειοθεραπειών και ραδιοθεραπειών καθώς και εντοπισμού και παρακολούθησης της εξέλιξης ασθενειών. Για παράδειγμα η εξακρίβωση του λεπτομερούς σχήματος και μορφολογίας διάφορων οργάνων του σώματος από έναν χειρουργό, του παρέχει το πλεονέκτημα να σχεδιάσει εκ των προτέρων την καλύτερη μέθοδο Σελίδα 11 από 104

12 προσέγγισης σε κάποιο συγκεκριμένο όργανο. Στην ραδιοθεραπεία, τέτοιες εικόνες βοηθούν να απεικονίσουν την παρεχόμενη δόση ακτινοβολίας σε έναν όγκο με τις μικρότερες δυνατές παράπλευρες ζημιές σε γειτονικούς υγιείς ιστούς. Επειδή ακριβώς η ανάλυση τέτοιων εικόνων επιφέρει έναν συνεχώς αυξανόμενης βαρύτητας ρόλο στην διάγνωση και θεραπεία ασθενειών, η επιστημονική κοινότητα που ασχολείται με αυτό το αντικείμενο προσπαθεί -με την βοήθεια της επιστήμης των υπολογιστών- συνεχώς να βρει καλύτερους τρόπους εξαγωγής ωφέλιμης κλινικά πληροφορίας μέσω των διάφορων τεχνικών απεικόνισης που θα αναλυθούν στα επόμενα κεφάλαια. Αν και οι σύγχρονες συσκευές απεικόνισης παρέχουν εξαιρετικής πιστότητας εικόνες της εσωτερικής ανατομίας του ανθρωπίνου σώματος, παρόλα αυτά η χρήση των υπολογιστών στην ανάλυση της περιεχόμενης στις εικόνες αυτές πληροφορίας ώστε να καταστεί δυνατή η ποσοτικοποίηση αποτελεσματικότητα της περιεχόμενης πληροφορίας με ακρίβεια είναι περιορισμένη. Ακριβή, μετρήσιμα, και ποσοτικοποιημένα δεδομένα πρέπει να μπορούν να εξαχθούν από τέτοιες εικόνες, ώστε να μπορούν να υποστηρίξουν όλο το φάσμα της Ιατρικής επιστήμης, από τον βιοϊατρικό έλεγχο και τις κλινικές λειτουργίες, μέχρι την διάγνωση, την ραδιοθεραπεία και την εγχείρηση. Η αναγνώριση συγκεκριμένων τμημάτων και οργάνων σε τέτοιες εικόνες και η αναπαράσταση τους με βασικές γεωμετρικές δομές (αναπόφευκτο αποτέλεσμα της ψηφιοποιήσης) είναι δύσκολες λόγω του μεγάλου αρχικού όγκου πληροφορίας και της πολυπλοκότητας και διαφοροποιήσης (σε σχήμα και σε είδος) των διάφορων οργάνων του ανθρωπίνου σώματος. Ακόμη οι ελλείψεις στα αρχικά δεδομένα λόγω της αναπόφευκτης δειγματοληψίας αλλά και των χωρικών στρεβλώσεων και του ψηφιακού θορύβου μπορούν να κάνουν τα όρια του σχήματος ενός οργάνου δυσδιάκριτα και ασυνεχή. Η πρόκληση είναι στην εξαγωγή και σωστή αναπαράσταση των δεδομένων που λείπουν, ώστε τελικά να παραχθεί στην εικόνα ένα ολοκληρωμένο και χωρίς ασυνέχειες όργανο ή τμήμα του ανθρώπινου σώματος. Οι παραδοσιακές τεχνικές επεξεργασίας εικόνας σε χαμηλό επίπεδο (επίπεδο bit) λαμβάνουν υπόψη μόνο την γειτονική πληροφορία κα παράγουν δυσδιάκριτα όρια μεταξύ αντικειμένων. Σαν αποτέλεσμα, οι εικόνες που Σελίδα 12 από 104

13 παράγονται με αυτές τις τεχνικές απαιτούν επεξεργασία από ειδικούς σε αυτές. Επιπρόσθετα η επιμέρους ανάλυση οργάνων και σημείων, παρεμποδίζεται από την αναπαράσταση αυτών των οργάνων σε χαμηλή ανάλυση (ορατό pixel) [11]. Σελίδα 13 από 104

14 Σελίδα 14 από 104

15 1.2. Βελτίωση εικόνας (Filtering & Enchancment) Η βελτίωση εικόνας είναι συνήθως μία διαδικασία φιλτραρίσματος δηλ. συνέλιξης με συγκεκριμένη δισδιάστατη μάσκα και στοχεύει στην ανάδειξη χαρακτηριστικών ή ελάττωση θορύβου και άλλων ανεπιθύμητων χαρακτηριστικών. Στη διαδικασία βελτίωσης εικόνας το αποτέλεσμα είναι επίσης εικόνα και όχι κάποιο χαρακτηριστικό. Στο φιλτράρισμα εικόνας σπανιότατα χρησιμοποιούμε IIR (infinite Impulse Response) φίλτρα ενώ αντίθετα FIR (Finite Impulse Response) φίλτρα είναι η συνήθως χρησιμοποιούμενη διαδικασία. Επομένως το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών για το οποίο χρησιμοποιούνται οι όροι : παράθυρο, μάσκα (window, mask, template, kernel). Συνήθως τα παράθυρα είναι τετραγωνικά και οι συντελεστές συμμετρικοί [12]. Δύο τέτοια παράθυρα είναι τα Α, Β που φαίνονται παρακάτω: Εικόνα 1: Παράθυρα Συνέλιξης Εικόνας Αν θεωρήσουμε μία εικόνα x(ni,n2) διαστάσεως ΝxΝ pixels και ένα παράθυρο h(ni,n2) τότε η συνέλιξη ) y(n1,n2) = x (n1,n2) * h (n1,n2) ορίζεται ως εξής: (3.1) Σελίδα 15 από 104

16 Η πράξη αυτή επειδή το h(ni,n2) είναι πεπερασμένου μήκους (3x3, 5x5 κλπ) ουσιαστικά εκφράζει το άθροισμα των γινομένων που προέρχεται από την τιμή των pixels της εικόνας με τους αντίστοιχους συντελεστές του παραθύρου. Το παράθυρο διατρέχει την εικόνα και κάθε φορά υπολογίζεται η παραπάνω τιμή για διαφορετικό σημείο της εικόνας. Δηλαδή: Η συνέλιξη είναι απλά ένα σταθμικό άθροισμα (weighted sum) των στοιχείων της εικόνας (pixel) σε μία περιοχή γύρω από το στοιχείο αναφοράς. Στη Εικόνα lerror! Reference source not found. φαίνεται ένα παράδειγμα συνέλιξης όπου h(n1,n2) είναι οι τιμές p1,p2 κλπ. και τα αντίστοιχα σημεία της εικόνας h(n1,n2) είναι A,B,C κλπ. Στην Εικόνα 2 φαίνεται το αποτέλεσμα της συνέλιξης για την τιμή της εικόνας στη θέση n1,n2 που έχει τιμή Ε. y(n1,n2)=aρ1+βρ2+cρ3,+dρ4,+ερ5+fρ6+gρ7+hρ8+ιρ9: Αξίζει να αναφέρουμε ότι πολλές μάσκες είναι διαχωρίσιμες. Δηλαδή η συνέλιξη με μία δυσδιάστατη μάσκα μπορεί να εκτελεστεί με δύο μάσκες 1ας διάστασης. Τέτοια μάσκα είναι η η οποία διαχωρίζεται στις εξής: Σελίδα 16 από 104

17 1 0-1 & [ 1 2 1] Τέλος πρέπει να αναφέρουμε ότι τα παραπάνω αναφέρονται σε εικόνες σε απόχρωση του γκρι (gray scale) [13], [14], [12] Μετασχηματισμός Fourier μίας Εικόνας Ο μετασχηματισμός Fourier F(u,v) μίας εικόνας f(k,l) ορίζεται ως εξής: (3.2) Οι τιμές υ,ν κοντά. στο 0,0 αντιστοιχούν σε χαμηλές συχνότητες. Η F(u,v) είναι συνεχής συνάρτηση. Μπορούμε να χρησιμοποιήσουμε τον Διακριτό Μετασχηματισμό Fourier, DFT (Discrete Fourier Transformation) ή καλύτερα τον ταχύ μετασχηματισμό Fourier, FFT (Fast Fourier Trasform) για να εκτελέσουμε την πράξη της συνέλιξης στο πεδίο των συχνοτήτων [15], [16], [17] Βαθυπερατά Φίλτρα Τα βαθυπερατά φίλτρα, φιλτράρουν τις υψηλές συχνότητες που βασικά είναι ανεπιθύμητα σήματα - θόρυβος. Εκτός όμως από τον θόρυβο "λειαίνουν" απότομες μεταβολές στην ένταση. Η διαδικασία αυτή συνεπάγεται την θόλωση της εικόνα (blurring) [18], [14]. Τρεις βασικές κατηγορίες βαθυπερατών φίλτρων διακρίνουμε: Φίλτρα μέσης τιμής (mean filter) Φίλτρα μορφής Gaussian (Gaussian filter) Σελίδα 17 από 104

18 Φίλτρα διάμεσης τιμής (median filter) Σημείωση: Τα φίλτρα διάμεσης τιμής δεν είναι γραμμικά Φίλτρα Μέσης Τιμής Η πιο απλή μορφή αυτών είναι τα ονομαζόμενα φίλτρα μέσης τιμής (mean filters, average filters). Μία μάσκα φίλτρου μέσης τιμής 9 σημείων είναι η εξής : h4/> (3.2) Θόλωση (Blurring) Στην Εικόνα 3 φαίνεται το αποτέλεσμα της συνέλιξης με το παράθυρο (2.3). Σαν βασικό οπτικό αποτέλεσμα όλων των βαθυπερατών φίλτρων είναι η θόλωση της αρχικής εικόνας λόγω λείανσης των μεταβολών εντάσεως. Στην εικόνα είναι εμφανής η θόλωση καθώς και η επίδραση του μήκους της μάσκας. Αρχική εικόνα Εφαρμογή φίλτρου Εφαρμογή φίλτρου 3x3 7x7 Εικόνα 3: Η αρχική εικόνα και η φιλτραρισμένη έξοδος Σελίδα 18 από 104

19 Ελάττωση Θορύβου Το φίλτρο μέσης τιμής εξασθενεί τον θόρυβο δηλαδή ελαττώνει την σταθερή απόκλιση του αρχικού θορύβου. Η ελάττωση αυτή είναι αντίστροφη του μήκους του παραθύρου (μάσκας). Αρχική εικόνα Εικόνα με θόρυβο Μασκα 3x3 μέσης τιμής Εικόνα 4: Εξασθένιση του θορύβου με 3x3 Μάσκα μέσης τιμής. Άλλα βαθυπερατά φίλτρα παρόμοια με αυτά της μέσης τιμής μπορούν να σχεδιασθούν λαμβάνοντας υπόψη ότι το κεντρικό σημείο πρέπει να έχει το μεγαλύτερο βάρος, ώστε να είναι συμμετρικά και θετικά και να έχουν άθροισμα συντελεστών =1. Ένα τέτοιο παράθυρο είναι και το επόμενο Σελίδα 19 από 104

20 1.8. Φίλτρα Gaussian μορφής Σχεδιασμός Τα Gaussian φίλτρα είναι γραμμικά φίλτρα με συντελεστές που επιλέγονται από το σχήμα της Gaussian συνάρτησης μηδενικής μέσης τιμής και σ τυπικής απόκλισης που (σε μία διάσταση) έχει την μορφή : 1 e e 3 (3.3) Για την επεξεργασία εικόνας και για εύρεση των συντελεστών του παραθύρου χρησιμοποιούμε την αντίστοιχη (διακριτή) σχέση: g u y e * (3 4) όπου i,j είναι οι συντεταγμένες των σημείων του παραθύρου. Εάν θεωρήσουμε σ = 2 και i,j μεταξύ -1 και 1 λαμβάνουμε την εξής Gaussian μάσκα: 1 <3355(39033 < 3 9 H 0 C Ένας απλός προσεγγιστικός τρόπος για να σχεδιάσουμε μία Gaussian μάσκα με ακέραιούς συντελεστές είναι η χρήση του τρίγωνου του Πασκάλ, ή ισοδύναμα οι συντελεστές του ιδιωνύμου: πχ για n=4 έχουμε το εξής μονοδιάστατο, Gaussian παράθυρο: [ ] Σελίδα 20 από 104

21 Αυτός ο πίνακας μπορεί να χρησιμοποιηθεί για Gaussian φιλτράρισμα αν σκεφθούμε ότι οι δυσδιάστατες Gaussian μάσκες είναι διαχωρίσιμες. Δηλαδή η συνέλιξη με ορθογώνια Gaussian μάσκα αντιστοιχεί με συνέλιξη με μονοδιάστατη οριζόντια και στη συνέχεια με την αντίστοιχη κατακόρυφη [17], [14]. Ιδιότητες Η Gaussian μάσκα είναι ιδιαίτερα χρήσιμη στην επεξεργασία σημάτων και εικόνας διότι έχει πολύ ελκυστικές ιδιότητες. Οι βασικότερες από αυτές είναι οι εξής: Είναι ανεξάρτητη της διεύθυνσης (3.5) Οπου ρ = i + j. Έχει ένα λοβό. Δηλαδή οι συντελεστές ελαττώνονται μονότονα με την απόσταση και είναι πάντα θετικοί. Αυτό έχει μεγάλη σημασία στη διαδικασία φιλτραρίσματος, διότι η έμφαση δίνεται στο κεντρικό pixel και επηρεάζει πολύ λίγο τις (γειτονικές) ακμές. Ο μετασχηματισμός Fourier της Gaussian συνάρτησης είναι επίσης Gaussίan και απεικονίζεται ως εξής: Η παραπάνω σχέση εκφράζει και την σχέση μεταξύ των δύο πεδίων, δηλαδή του χώρου και της συχνότητας. Η Gaussian συνάρτηση είναι διαχωρίσιμη. Δηλαδή η συνέλιξη μίας εικόνας με τετραγωνική Gaussian μάσκα ισοδυναμεί με δύο διαδοχικές συνελίξεις 1ας διάστασης (οριζόντια και κάθετη). Σελίδα 21 από 104

22 Διαδοχική εφαρμογή της Gaussian μάσκας ισοδυναμεί με Gaussian μάσκα μεγαλύτερης διακύμανσης (τεχνικές scale-space). Σε μία διάσταση έχουμε: [17], [19], [20], [14] Φίλτρα διάμεσης τιμής Τα φίλτρα αυτά είναι μη γραμμικά. Μερικά από τα βασικά χαρακτηριστικά τους είναι η διατήρηση των ακμών (στη πράξη γίνεται μικρή λείανση) και η πλήρης εξάλειψη του κρουστικού θορύβου (Impulsive, salt and pepper noise). Επομένως έχουν συμπεριφορά βαθυπερατού φίλτρου όσον αφορά την εξάλειψη του θορύβου και ταυτόχρονα συμπεριφορά υψιπερατού φίλτρου αφού διατηρούν τα χαρακτηριστικά των μεταβολών εντάσεως όπως είναι οι ακμές-περιγράμματα (edges). Συνήθως εφαρμόζονται σε μια εικόνα επαναληπτικά. Διαδοχική εφαρμογή καταλήγει σε μία εικόνα που δεν επιδέχεται επιπλέον μεταβολές. Αυτή είναι σήμα - ρίζα για το συγκεκριμένο φίλτρο διάμεσο τιμής. Η υλοποίηση τους γίνεται με καθορισμό ενός παραθύρου - μάσκας. Έχει μόνο μήκος και όχι συντελεστές. Το παράθυρο αυτό διατρέχει όλη την εικόνα όπως και στα γραμμικά φίλτρα (μέσης τιμής κλπ) και τα pixels που περικλείονται από το παράθυρο σε κάθε θέση της εικόνας διατάσσονται κατά σειρά μεγέθους και επιλέγεται ως έξοδος η μεσαία (median) τιμή. Στην Εικόνα 5 φαίνεται ο τρόπος εξαγωγής της μεσαίας τιμής για ένα παράθυρο 3Χ3. Σελίδα 22 από 104

23 = διάμεση τιμή Εικόνα 5: Εύρεσης διάμεσης τιμής σε πίνακα 3x3 Στην Εικόνα 5 η έξοδος του φίλτρου διάμεσης τιμής είναι=20. Και προκύπτει ως η 5η τιμή στη αύξουσα διάταξη των τιμών των pixel του παραθύρου. Εάν εφαρμόζαμε φίλτρο μέσης τιμής (3.3) η έξοδος θα ήταν 1/9( )= Στην Εικόνα 6 δίνεται ένα παράδειγμα εφαρμογής του φίλτρου. Αξίζει να παρατηρηθεί ότι ο κρουστικός θόρυβος είναι 10% και εξαλείφεται εντελώς. Αρχική εικόνα Εικόνα με κρουστικό θόρυβο 10% Έξοδος median filter Εικόνα 6: Έξοδος median φίλτρου με κρουστικό θόρυβο. Σελίδα 23 από 104

24 ι.ιο. Υψιπερατά Φίλτρα Τα υψιπερατά φίλτρα εξασθενούν τις χαμηλές και τονίζουν τις υπάρχουσες υψηλές συχνότητες σε μία εικόνα. Δηλαδή έχουν αντίθετο αποτέλεσμα από τα βαθυπερατά φίλτρα (μέσης τιμής, Gaussian κλπ). Επομένως τονίζουν τις μεταβολές της εικόνας (contrast), δίνουν έμφαση στις λεπτομέρειες και ταυτόχρονα ενισχύουν τον θόρυβο. Τα αντίστοιχα παράθυρα έχουν μία θετική τιμή στο κέντρο και στην πλειοψηφία αρνητικούς τους υπόλοιπους συντελεστές. Μερικές χαρακτηριστικές μάσκες για παράθυρα 3x3 είναι οι εξής: Ο Ο 1 Ο Ο -1 (φ im ) " 1 1 1" (δ) Εικόνα 7: Πίνακες με χαρακτηριστικές τιμές υψιπερατών μασκών Η τελευταία (δ) από τις μάσκες στην Εικόνα 7 είναι η πλέον συνηθισμένη και έχει το επί πλέον χαρακτηριστικό ότι δεν ενισχύει (ούτε εξασθενεί) σταθερές περιοχές αφού το άθροισμα των συντελεστών είναι = 0. Αξίζει να επισημάνουμε ότι σε μερικές περιπτώσεις εφαρμογής υψιπερατού φίλτρου μπορεί να προκύψουν και αρνητικές τιμές, οπότε χρειάζεται σχετική διόρθωση. Σελίδα 24 από 104

25 ι.ιι. Unsharp Masking Στη διαδικασία αυτή γίνεται ψηφιακή εξομοίωση επεξεργασίας που κάποτε γινόταν από τους φωτογράφους στα φιλμ. Αναλυτικότερα, από ένα κλάσμα α της αρχικής εικόνας ^ι,ι< 2 ) αφαιρείται το αποτέλεσμα εξόδου βαθυπερατού φίλτρου ή_(<ι,<2). Και η έξοδος g(kl,<2 ) είναι: (3.7) Αν θεωρήσουμε ότι η αρχική εικόνα f (^,<2) αναλύεται σε ένα τμήμα Υψιπερατό Μ <υ<2) και ένα άλλο βαθυπερατό ή_,^ι,^) τότε η εικόνα g(kl,<2) : εάν α=1 είναι ένα υψιπερατό φίλτρο, ενώ εάν είναι_ α>ι τότε ένα βαθυπερατό τμήμα της εικόνας προστίθεται στο αποτέλεσμα και αναδεικνύει χαμηλές συχνότητες μαζί με τις υψηλές που προέρχονται από το υψιπερατό φίλτρο Μ<ι,<2) Οι δύο διαδικασίες που περιλαμβάνονται στην (3.7) υλοποιούνται από την ακόλουθη μάσκα [14], [12], [21]: w _ _ όπου w = 9α Επεξεργασία έγχρωμης εικόνας Η επεξεργασία έγχρωμης εικόνας γίνεται είτε με βαθμωτές είτε με διανυσματικές διαδικασίες. Σελίδα 25 από 104

26 Στις βαθμωτές διαδικασίες επεξεργασίας εφαρμόζονται οι μέθοδοι που περιγράφηκαν προηγούμενα για γκρίζες (gray scale) εικόνες με δύο τρόπους: [α] ξεχωριστά σε κάθε κανάλι της εικόνας, [β] στη συνιστώσα φωτεινότητας (Υ) αφού διαχωριστεί η εικόνα σε συνιστώσες φωτεινότητας (Υ) - χρωματικότητας (I,Q). Ο πλέον γνωστός μετασχηματισμός είναι ο RGB--> YIQ. Μπορεί επίσης να χρησιμοποιηθεί και ο μετασχηματισμός RGB--> HIS. Το μειονέκτημα της διαδικασίας [α] είναι η παραγωγή τυχαίων χρωμάτων που δεν υπάρχουν στην αρχική εικόνα που είναι όμως αρκετά κοντά (στον RGΒ χώρο) σε χρώματα που υπάρχουν στην εικόνα. Τα μειονεκτήματα αυτά δεν εμφανίζονται στη [β] διαδικασία. Στις διανυσματικές διαδικασίες οι τρεις τιμές R,G,B θεωρούνται συνιστώσες ενός διανύσματος και οι μέθοδοι που χρησιμοποιούνται είναι βέβαια μέθοδοι διανυσματικής ανάλυσης. Μία κλασική τέτοια μέθοδος είναι η διαδικασία του διανυσματικού διάμεσου Ομοιομορφική επεξεργασία (Homomorpic Processing) Η διαδικασία αυτή χρησιμοποιείται στην περίπτωση που μία εικόνα με μεγάλη δυναμική περιοχή αποτυπώνεται σε ένα μέσο (film, χαρτί) με μικρή δυναμική περιοχή. Αποτέλεσμα είναι η ελάττωση της αντίθεσης, ιδιαίτερα στις σκοτεινές ή στις πολύ φωτεινές περιοχές. Η διαδικασία που περιγράφεται. στη συνέχεια ουσιαστικά ελαττώνει την αρχική δυναμική περιοχή και αυξάνει την τοπική αντίθεση πριν αρχίσει η επεξεργασία ή η αποτύπωση. Σύμφωνα με ένα απλοποιημένο μοντέλο μία εικόνα f(n^n2) σχηματίζεται σε δύο στάδια: παραγωγή υπό την φωτεινή πηγή και ανάκλαση από το αντικείμενο. Σελίδα 26 από 104

27 Επομένως μπορεί να θεωρήσουμε ότι η εικόνα ^Πι,η2) έχει δύο συνιστώσες που αντιστοιχούν στην φωτεινή πηγή ί(ηι,η2) και στην ανάκλαση -Γ(ηι,η2) : ί(ηι,η2) = ί(ηι,η2) Κ η ^ ) Από τις δύο αυτές συνιστώσες θεωρούμε ότι η μεγάλη δυναμική περιοχή οφείλεται βασικά στο ί(ηι,η2) και έχει μικρές εναλλαγές - αντίθεση. Αντίθετα ο όρος Γ(ηι,η2) δημιουργεί τις λεπτομέρειες της εικόνας. Επομένως επιδιώκουμε μείωση του ί(ηι,η2) και αύξηση του Κηυη2). Σαν πρώτο βήμα γίνεται διαχωρισμός των δύο συνιστωσών με λογαρίθμηση. Στη συνέχεια φιλτράρεται η έξοδος με βαθυπερατό και υψιπερατό φίλτρο. Επειδή η συνιστώσα ί(ηι,η2) έχει φασματικό περιεχόμενο στις χαμηλές συχνότητες θεωρούμε ότι θα αποτελεί το κύριο τμήμα της εξόδου του βαθυπερατού φίλτρου. Αντίστοιχα η Γ(ηι,η2) θα είναι η έξοδος του υψιπερατού φίλτρου. Μετά τον διαχωρισμό αυτό μπορούμε να ενισχύσουμε την μία συνιστώσα πολλαπλασιάζοντας με συντελεστή β>1ι [20], [14]. Σελίδα 27 από 104

28 1.3. Ανίχνευση Ακμών Εισαγωγή στην Ανίχνευση Ακμών Ως ακμή ορίζεται το όριο μεταξύ περιοχών με σχετικά διακριτές τιμές χρωματικών πυκνοτήτων. Υποθέτουμε ότι οι περιοχές είναι αρκετά ομοιογενείς ώστε η μεταβολή των χρωματικών πυκνοτήτων να είναι αρκετή για τον προσδιορισμό της μετάβασης μεταξύ περιοχών. Με τον όρο ακμές για μια ασπρόμαυρη εικόνα, αναφερόμαστε σε αλλαγές της φωτεινότητας μεταξύ γειτονικών περιοχών της. Αλλαγές της φωτεινότητας συνήθως αντιστοιχούν σε διαφοροποίηση ιδιοτήτων της απεικόνισης τρισδιάστατων αντικειμένων όπως αλλαγές της υφής, του βάθους, όρια αντικειμένων, διαφορετικό φωτισμό και αντανάκλαση. Έτσι με την ανίχνευση ακμών μπορούμε να αντλήσουμε πληροφορίες για φυσικές ιδιότητες για τα εικονιζόμενα πραγματικά αντικείμενα. Η βασική ιδέα πίσω από όλες τις μεθόδους ανίχνευσης ακμών είναι ο υπολογισμός ενός τελεστή τοπική παραγώγου. Η πρώτη παράγωγος σε οποιοδήποτε σημείο της εικόνας υπολογίζεται με τη βοήθεια του μέτρου του διανύσματος της κλίσης και η δεύτερη παράγωγος υπολογίζεται με χρήση του τελεστή Laplace. 'Ενα στοιχείο εικόνας ανήκει στο περίγραμμα μιας δομής αν η δισδιάστατη πρώτη ή δεύτερη παράγωγός του είναι μεγαλύτερη από κάποιο προκαθορισμένο κατώφλι. Μια ευρύτατα χρησιμοποιούμενη μέθοδος ανίχνευσης ακμών βασίζεται στη χρήση της κλίσης της εικόνας που υπολογίζεται με τη βοήθεια των μερικών παραγώγων Πρώτης τάξης πε κάθε θέση εικονοστοιχείου εικόνας. Όπως αναφέρθηκε προηγουμένως, οι παράγωγοι αυτές μπορούν να υλοποιηθούν ψηφιακά με διάφορους τρόπους. Ωστόσο, οι τελεστές Snbel παρέχουν το πλεονέκτημα της ταυτόχρονης διαφόρισης και εξομάλυνσης. Επειδή οι παράγωγοι ενισχύουν το θόρυβο, η εξομάλυνση που επιτυγχάνεται με χρήση των τελεστών Sobel είναι ιδιαίτερα σημαντική. Οι μέθοδοι αυτές βασίζονται στην παρατήρηση ότι Σελίδα 28 από 104

29 στην περιοχή των ορίων των αντικειμένων, το πλάτος της κλίσης των χρωματικών πυκνοτήτων έχει πολύ χαμηλότερη τιμή από ότι μακριά από τα όρια. Κατά συνέπεια. το σύνολο των εικονοστοιχείων ενός οργάνου στα οποία το πλάτος της κλίσης έχει σημαντική τιμή, αναπαριστούν το σύνολο των εικονοστοιχείων του ζητούμενου περιγράμματος του οργάνου. Δυστυχώς όμως, στην πράξη, το σύνολο των εικονοστοιχείων που προσδιορίζεται με αυτό τον τρόπο περιλαμβάνει και άλλα στοιχεία του δεν ανήκουν στη δομή ενώ μπορεί να αποτύχει ακόνη και στην ανίχνευση εικονοστοιγείων που ανήκουν στη δομή. Για την αντιμετώπιση αυτού του προβλήματος, έχει αναπτυχθεί μια σειρά τεχνικών βελτιστοποιήσης για την ελαχιστοποίηση των εικονοστοιχείων του πειργράμματος που λείπουν και των εικονοστοιχείων που δεν ανήκουν στο περίγραμμα. Μία τέτοια προσέγγιση έγγειται στην απόδοση μίας τιμής κόστους σε κάθε υποψήφιο εικονοστοιχείο του περιγράμματος και την ανίχνευση του συνόλου εκείνου των εικονοστοιχείων που ελαχιστοποιούν αυτό το κόστος για να αποτελέσουν έτσι το τελικό περίγραμμα. Η ανίχνευση ακμών μιας εικόνας παρουσιάζει αρκετές δυσκολίες. Οι ακμές μπορεί να χαρακτηρίζονται από προοδευτικές ή ακόμα και πολύ μικρές αλλαγές στην φωτεινότητα της εικόνας. Η παρουσία θορύβου σε μια εικόνα μπορεί να οδηγήσει στην ανίχνευση εσφαλμένων ακμών αλλοιώνοντας τα όρια των αντικειμένων. Ο διαφορετικός φωτισμός και η σκίαση μπορεί να ανιχνευτούν σαν ψευδοακμές ενώ δεν αντιστοιχούν σε φυσική ακμή. Ακόμα και αντικείμενα διαφορετικής κλίμακας πιθανό να βρίσκονται στην ίδια εικόνα. Σε συστήματα βιολογικής όρασης υπάρχουν νευροβιολογικές και ψυχοφυσικές ενδείξεις ότι στα πρώτα στάδια επεξεργασίας της οπτικής πληροφορίας γίνεται κάποιο είδος ανίχνευσης ακμών. Αυτή η επεξεργασία μοιάζει με ζωνοπερατά επιλεκτικά φίλτρα ή ισοδύναμα με συνέλιξη της οπτικής πληροφορίας με νευρικές αποκρίσεις. Αυτά τα φίλτρα έχουν μοντελοποιηθεί με κάποιες διαφορές από Gabor ή Gaussian φίλτρα [22], [23]. Η ανίχνευση ακμών αποτελεί την βάση για μετέπειτα επεξεργασία μια εικόνας ή ακολουθίας εικόνων με αλγορίθμους υπολογιστικής όρασης, όπως ανάλυση υφής, Σελίδα 29 από 104

30 τμηματοποίησης, ανίχνευσης κίνησης, στερέοψης και αναγνώρισης προτύπων. Γι' αυτό πρέπει να δίνει αξιόπιστα αποτελέσματα και να υλοποιείται αποδοτικά [24]. r p f f t Τύποι και χαρακτηριστικά ακμών Υπολογιστικά οι ακμές (αλλαγές στην συνάρτηση της έντασης) για συνεχείς συναρτήσεις μπορούν να υπολογιστούν με τον υπολογισμό της πρώτης παραγώγου και εντοπισμό των τοπικών μέγιστων. Μια δεύτερη μέθοδος με πλεονεκτήματα σε αξιοπιστία στηρίζεται στις διελεύσεις της δεύτερης παραγώγου από το μηδέν (zero crossing). Φυσικά επειδή έχουμε συναρτήσεις δύο μεταβλητών (x,y συντεταγμένη) θα υπολογίζουμε τις μερικές παραγώγους. Μια μεταβολή της συνάρτησης της εικόνας μπορεί να περιγραφεί με την βάθμωση (gradient) προς την κατεύθυνση της μέγιστης μεταβολής. Μια ακμή είναι ιδιότητα του κάθε εικονοστοιχείου ξεχωριστά και υπολογίζεται από την συμπεριφορά της συνάρτησης της εικόνας σε μια περιοχή γειτονικών εικονοστοιχείων. Πρόκειται για διανυσματική μεταβλητή με μέτρο και κατεύθυνση (βλέπε Εικόνα 8) [24], [25], [26] : Εικόνα 8: Κατεύθυνση και Μέτρο Ακμής Το μέτρο της ακμής μας δείχνει πόσο μεγάλη είναι μεταβολή της συνάρτησης φωτεινότητας (ισχυρή, αδύναμη ακμή) και η κατεύθυνση μας δίνει τον προσανατολισμό της ακμής στην εικόνα, και υπολογίζονται ως εξής. Για το μέτρο της ακμής, Σελίδα 30 από 104

31 Και για την κατεύθυνση της ακμής Τέλος υπάρχουν διάφορα είδη ακμών. Μερικά από αυτά εικονίζονται στην Εικόνα 9: Εικόνα 9: Είδη Ακμών σε grayscale εικόνες Η ακμή τύπου στέγης ανταποκρίνεται σε λωρίδες ίδιας έντασης στην εικόνα, και η ακμή τύπου γραμμής αναφέρεται σε μικρότερο εύρος. Η βηματική ακμή είναι η διαχωριστική επιφάνεια δύο αντικειμένων ή ενός αντικειμένου και του περιβάλλοντα χώρου. Η θορυβώδης ακμή είναι μια βηματική ακμή αλλά με τα εικονοστοιχεία να λαμβάνουν ανομοιόμορφες τιμές φωτεινότητας κατά τη μετάβαση μεταξύ των δύο επιπέδων. Σελίδα 31 από 104

32 Όταν δεν μας ενδιαφέρει η κατεύθυνση παρά μόνο το μέτρο των ακμών τότε με ανίχνευση των διελεύσεων της δεύτερης παραγώγου από το μηδέν επιτυγχάνουμε καλύτερα αποτελέσματα σε αξιοπιστία και υπολογιστικό κόστος. Ο υπολογισμός της δεύτερης παραγώγου επιτυγχάνεται χρησιμοποιώντας μικρά μητρώα συνέλιξης που λειτουργούν σαν ψηφιακοί πυρήνες λαπλασιανών φίλτρων. Υπολογίζουμε δηλαδή, ί.ίφίηιτι'α?! = ν 2 Ι(χ, >Τ) Οι διάφοροι ανιχνευτές ακμών συνήθως σχεδιάζονται και είναι αποτελεσματικοί για ένα είδος ακμών. Στην συνέχεια της ανάλυσής μας θα ασχοληθούμε με τις βηματικές ακμές που είναι οι πιο συνηθισμένες και προσφέρουν τις περισσότερες πληροφορίες για μια εικόνα [24], [25], [27] Τελεστές Ανίχνευσης & 1 η Παράγωγος Ιστορικά η πρώτη απόπειρα ανίχνευσης ακμών, που διήρκεσε περίπου 30 χρόνια (δεκαετία 50 έως δεκαετία 70), έγινε υπολογίζοντας διακριτές προσεγγίσεις των μερικών παραγώγων κατά κατεύθυνση για την υπό επεξεργασία εικόνα. Αυτό γίνεται με την συνέλιξη της εικόνας και ενός μικρού μητρώου που στόχο έχει να ενισχύσει την ένταση των ακμών. Το πιο παλιό από αυτά τα μητρώα προτάθηκε από τον Roberts και αναλύεται παρακάτω [24]: Τελεστές Roberts Τα μητρώα που προτείνει ο Roberts για τον υπολογισμό της πρώτης παραγώγου της συνάρτησης φωτεινότητας της εικόνας είναι τα εξής: Γ ια μια εικόνα που έχει: Σελίδα 32 από 104

33 «11 «12 «13 «21 «22 «23 «31 «32 «33 Τα μητρώο Κ1μσυνελισσόμενο με την εικόνα δίνει στην έξοδο ' ( - Ι ) α ι ι (0)ίΚ 12 «13 κλι «22 «11 «22 «13 ( 0 ) α 21 ( 1 ) α 22 «23 «32 «21 «33 «22 - «31 «32 «33-,,..! Αντίστοιχα για το μητρώο παίρνουμε: [ < Η ι ( ~ ί ) ητ2 «13 κ ίϊη, «21 «12 «22 «13 Ί ί 1 )«21 (0)«22 «23 «31 «22 «32 _ «23 - «31 «32 «33-.. Τώρα με χρήση κάποιας νόρμας μπορούμε να υπολογίσουμε το μέτρο των ακμών και με χρήση κατωφλίωσης να αποφανθούμε για τις ακμές της εικόνας. Οι πιο συνηθισμένες νόρμες που χρησιμοποιούνται είναι οι εξής: \ f J ~ \ f y \ (2) (ΐ/; ι /, ) (3) Με χρήσης της νόρμας 2 για παράδειγμα προκύπτει ο πίνακας του μέτρου των ακμών. Τα στοιχεία του υπολογίζονται ως εξής: Εά3 βί,; = Ιΐίΐ,β - /( / +!,; + 1) + \ΐ{ί,} + ΐ) + /( ί+!,;') Μετά τον υπολογισμό του μέτρου της ακμής με την κατάλληλη νόρμα, με την τεχνική της κατωφλίωσης ανιχνεύουμε τα τοπικά μέγιστα της φωτεινότητας της εικόνας και αποφασίζουμε τι θα δεχθούμε ως ακμές. Η κατωφλίωση θα οδηγήσει τα εικονοστοιχεία με τιμή έντασης μικρότερη από το κατώφλι στην δυαδική τιμή «0» Σελίδα 33 από 104

34 και αυτά με μεγαλύτερες τιμές στην δυαδική τιμή «1» (εικονοστοιχείο ακμής). Το αποτέλεσμα του αλγόριθμου φαίνεται στην Εικόνα 10Error! Reference source not found. που ακολουθεί για μια πολύ απλή εικόνα εισόδου, μια σκακιέρα: Εικόνα 10: Εφαρμογή του Τελεστή Roberts Η εικόνα (Ι) είναι η αρχική μας εικόνα προς επεξεργασία. Στις (ΙΙ) και (ΙΙΙ) βλέπουμε το αποτέλεσμα της συνέλιξης με τους δύο τελεστές Roberts. Στην ουσία αυτό που κάνουν οι δύο τελεστές είναι να ενισχύουν τις ακμές της εικόνας κατά τις κατευθύνσεις 45ο και 135ο. Στην εικόνα (!V) βλέπουμε το τελικό αποτέλεσμα του αλγόριθμου χρησιμοποιώντας μια από τις νόρμες που προαναφέρθηκαν για τον υπολογισμό του μέτρου της ακμής και τέλος εφαρμόζοντας το κατώφλι που επιλέγουμε για της επιλογή των περιοχών που συνιστούν ακμή [25], [26], [27], [28]. Σελίδα 34 από 104

35 Τελεστές Prewitt Οι τελεστές Prewitt προσεγγίζουν την μερική παράγωγο πρώτης τάξης κατά κατεύθυνση για την εικόνα. Υπάρχουν 8 διαφορετικές κατευθύνσεις για τις οποίες μπορούμε να υπολογίσουμε την μερική παράγωγο, δύο όμως αρκούν για να εντοπίσουμε τις ακμές στην περίπτωση που μας ενδιαφέρει μόνο το μέτρο της ακμής. Η διαδικασία εντοπισμού των ακμών παραμένει ίδια με αυτή για τον τελεστή Roberts και τα αποτελέσματα ακολουθούν στην!. ILU. Εικόνα 11: Εφαρμογή του Τελεστή Prewitt Τα ενδιάμεσα αποτελέσματα συνέλιξης της εικόνας με τους δύο τελεστές δίνουν διαφορετικά αποτελέσματα σε σχέση με αυτά που πήραμε από τους τελεστές Roberts όμως το τελικό αποτέλεσμα των ακμών είναι το ίδιο. Αυτό συμβαίνει γιατί τα μητρώα Roberts που χρησιμοποιήσαμε προηγούμενα ενισχύουν τις ακμές της εικόνας κατά διαφορετική κατεύθυνση απ' ότι γίνεται με τους τελεστές Prewitt που εδώ ενισχύουν τις ακμές στις κατευθύνσεις 0ο και 90ο. Σελίδα 35 από 104

36 Κάτι αντίστοιχο θα συνέβαινε αν χρησιμοποιούσαμε δυο άλλα μητρώα prewitt που προκύπτουν με απλή περιστροφή αυτών που δώσαμε παραπάνω. Προϋπόθεση είναι όμως τα δυο μητρώα να είναι κάθετα μεταξύ τους. Για παράδειγμα, τα δύο αυτά μητρώα ο Οδηγούν στις τροποποιημένες εικόνες όπως απεικονίζονται στην Εικόνα 12: Εικόνα 12: Εφαρμογή τροποποιημένου Τελεστή Prewitt Το τελικό αποτέλεσμα για τις ακμές είναι ακριβώς το ίδιο με τις δύο προηγούμενες μήτρες που χρησιμοποιήθηκαν, κάτι αναμενόμενο αφού το μέτρο των ακμών της εικόνας παραμένει ίδιο [26], [28]. Σελίδα 36 από 104

37 Τελεστές Sobel Και οι τελεστές Sobel, όπως και οι επόμενοι που θα αναφέρουμε, προσεγγίζουν την πρώτη μερική παράγωγο κατά κατεύθυνση. Και αυτά τα μητρώα συνέλιξης (convolution kernels) είναι τρία επί τρία, και η διαδικασία για την ανίχνευση των ακμών ίδια με αυτή που χρησιμοποιήθηκε παραπάνω. Και σε αυτή την περίπτωση υπάρχουν οκτώ διαφορετικές κατευθύνσεις που μπορούμε να ανιχνεύσουμε ακμές [25], [29]:. Δύο από αυτά τα μητρώα συνέλιξης είναι : Εικόνα 13: Εφαρμογή Τελεστή Sobel Και περιστρέφοντας τα στοιχεία των παραπάνω μητρώων παίρνουμε τα δυο εναλλακτικά Το αποτέλεσμα για το μέτρο των περιμέναμε. ακμών όμως και πάλι είναι το ίδιο όπως Σελίδα 37 από 104

38 Εικόνα 14: Εφαρμογή τροποποιημένου Τελεστή Sobel Τελεστές Kirch, Robinson Και οι τελεστές Kirch και Robinson προσεγγίζουν την πρώτη παράγωγο. Τα μητρώα τους επίσης υπολογίζουν κατευθυντικές παραγώγους και έχουν τις ίδιες ιδιότητες με αυτές που έχουμε προαναφέρει. Οι πυρήνες τους είναι οι ακόλουθοι Σελίδα 38 από 104

39 (I) source image (II) robinson operator Εικόνα 15: Εφαρμογή Τελεστή ΚίΓοή Και αντίστοιχα για τον robinson convolution kernel: Εικόνα 16: Εφαρμογή Τελεστή Robinson Σελίδα 39 από 104

40 1.17. Τελεστές προσέγγισης & 1η παράγωγος Εκτός του τελεστή robinson όλοι οι άλλοι έχουν διαστάσεις 3 επί 3. Παρά το μικρό τους μέγεθος εισάγουν αρκετά μεγάλη πολυπλοκότητα. Για τον υπολογισμό ενός pixel εξόδου χρειάζονται 6 πολλαπλασιασμοί και 5 προσθέσεις για κάθε μια από τις κατευθύνσεις που υπολογίζουμε την πρώτη παράγωγο. Μια επιπλέον πρόσθεση χρειάζεται για να πάρουμε το τελικό μέτρο της ακμής. Συνολικά 12 πολλαπλασιασμοί και 11 προσθέσεις, για ένα και μόνο εικονοστοιχείο. Φυσικά παραγοντοποιώντας μπορούμε να μειώσουμε τους πολλαπλασιασμούς σε 2 καθώς όλα τα μητρώα έχουν μόλις 2 μη μηδενικές τιμές για τα στοιχεία τους. Μια επίσης σημαντική παρατήρηση είναι ότι το άθροισμα των στοιχείων του κάθε μητρώου είναι πάντα μηδέν. Έτσι πάντα όταν βρίσκεται σε εσωτερική περιοχή ενός αντικειμένου (φωτεινότητα σταθερή) η έξοδος είναι πάντα μηδέν. Όταν βρεθούμε όμως σε ακμή η έξοδος παίρνει μεγάλες τιμές. Αυτή είναι η ενίσχυση της ακμής και με αυτό τον τρόπο λειτουργούν τα μητρώα συνέλιξης που προσεγγίζουν την πρώτη παράγωγο [26], [27] Τελεστές Ανίχνευσης & 2η Παράγωγος Όπως αναφέρθηκε και στην εισαγωγή του ίδιου κεφαλαίου, ένας εναλλακτικός τρόπος εύρεσης ακμών είναι με τον εντοπισμό των διελεύσεων της δεύτερης παραγώγου από το μηδέν (zero crossing). Οι εικόνες είναι συναρτήσεις δυο μεταβλητών κι έτσι η λαπλασιανή υπολογίζει το μέτρο (magnitude) της δεύτερης παραγώγου, και χωρίς να δίνει πληροφορία για την κατεύθυνση της ακμής. Αυτό όμως δεν μας δημιουργεί πρόβλημα αναφορικά με την εύρεση των ακμών, καθώς αυτό που μας ενδιαφέρει στις περισσότερες εφαρμογές είναι το μέτρο των ακμών και μόνο. Σελίδα 40 από 104

41 Λαπλασιανός τελεστής (Laplacian operator) Για μια συνεχή συνάρτηση η λαπλασιανή δίνεται από τον τύπο: Laplacian = V21(x,y ) Για μια διακριτή συνάρτηση όπως είναι μια εικόνα, μπορεί να προσεγγιστεί από μικρά μητρώα συνέλιξης. Τα πιο δημοφιλή είναι: Ι ι 1* Ό 1 θ' Η διαφορά των δύο μητρώων είναι η συσχετιστικότητα με τα γειτονικά εικονοστοιχεία. Το πρώτα λέμε ότι έχει συσχετιστικότητα 8, δηλαδή η έξοδος μετά την πράξη της συνέλιξης εξαρτάται από τα 8 γειτονικά εικονοστοιχεία του εξεταζόμενου. Ενώ για τον το δεύτερο μητρώο η συσχετιστικότητα είναι 4 καθώς εκτός του κεντρικού εικονοστοιχείου μόνο 4 ακόμη έχουν μη μηδενικές τιμές. Στην Εικόνα 17 που ακολουθεί βλέπουμε το αποτέλεσμα της συνέλιξης μεταξύ εικόνας και των μητρώων. Σελίδα 41 από 104

42 Εικόνα 17: Εφαρμογή Τελεστή Laplace Και με τους δύο πυρήνες οι ακμές ανιχνεύονται πανομοιότυπα [17] [30]. Σχόλια για τον Λαπλασιανό Τελεστή Με την χρήση αυτού του τελεστή μειώνουμε την πολυπλοκότητα υπολογισμού των ακμών σε σχέση με του τελεστές που προσεγγίζουν την πρώτη παράγωγο που προαναφέραμε. Με χρήση του τελεστή 8 συσχετιστικότητας, για κάθε εικονοστοιχείο ακμών χρειαζόμαστε 9 πολλαπλασιασμούς και 8 προσθέσεις, ενώ για το μητρώο με συσχετιστικότητα 4 ο αριθμός πέφτει σε 5 πολλαπλασιασμούς και 4 προσθέσεις. Φυσικά με παραγοντοποίηση και στις δύο περιπτώσεις η απαίτηση για πολλαπλασιαστές πέφτει στους 2. Σε μερικές περιπτώσεις όμως ο λαπλασιανός τελεστής υπολείπεται αξιοπιστίας των τελεστών πρώτης παραγώγου. Εδώ έχουμε ένα trade-off μεταξύ πολυπλοκότητας και αξιοπιστίας που πρέπει να το αξιολογήσουμε [17], [1]. Σελίδα 42 από 104

43 Συμπεριφορά τελεσ τώ ν σε θορυβώδεις εικόνες. Στα πραγματικά συστήματα είναι πολύ πιθανό να συναντήσουμε θόρυβο στις υπό επεξεργασία εικόνες. Παρακάτω εισάγουμε τεχνητά λευκό θόρυβο καθώς και salt & pepper στην αρχική εικόνα, για να δούμε την συμπεριφορά των τελεστών παρουσία θορύβου. Συμεριφορά Τελεστή Roberts σε θόρυβο Στην εικόνα που ακολουθεί βλέπουμε ότι ο τελεστής Roberts ανιχνεύει πάρα πολλά ψευδή εικονοστοιχεία που θεωρεί ότι συνιστούν ακμές λόγω του θορύβου salt & pepper, και με την παρουσία λευκού θορύβου αποτυγχάνει τελείως να ανιχνεύσει ακμές: Εικόνα 18: Συμπεριφορά Τελεστή Robinson παρουσία θορύβου Σελίδα 43 από 104

44 Συμπεριφορές Άλλων Τελεστών σε θορυβώδεις εικόνες Παρόμοια συμπεριφορά παρουσιάζουν αναφέραμε στην προηγούμενη ενότητα. και οι υπόλοιποι τελεστές που Εικόνα 19: Συμπεριφορά τελεστή Prewitt παρουσία Θορύβου Σελίδα 44 από 104

45 Εικόνα 20: Συμπεριφορά τελεστή Sobel παρουσία Θορύβου (I) salt 5. pepper (II) white nolise (IV) white noise edges Εικόνα 21: Συμπεριφορά τελεστή Kirch παρουσία Θορύβου Σελίδα 45 από 104

46 Εικόνα 22: Συμπεριφορά τελεστή Robinson παρουσία Θορύβου Εικόνα 23: Συμπεριφορά τελεστή Laplace παρουσία Θορύβου Τελεστές και Θόρυβος Όλοι οι τελεστές δεν έχουν την επιθυμητή συμπεριφορά παρουσία θορύβου και ειδικά για τον λευκό θόρυβο. Οι τελεστές Robinson, Kirch και Laplacian δεν πλησιάζουν καν τις πραγματικές ακμές, ακόμα και για μια τόσο απλή εικόνα. Ο λόγος που συμβαίνει αυτό είναι ότι οι μητρώα συνέλιξης που χρησιμοποιήσαμε, στην ουσία αποτελούν ψηφιακά υψιπερατά φίλτρα. Έτσι, ενισχύουν τον υψίσυχνο θόρυβο οδηγώντας την έξοδο μακριά από τα επιθυμητά αποτελέσματα. Μια λύση είναι να χρησιμοποιήσουμε μη γραμμικά φίλτρα πριν την Σελίδα 46 από 104

47 συνέλιξη της εικόνας με τα μητρώα ανίχνευσης ακμών. Για παράδειγμα ο salt & pepper θόρυβος μπορεί να εξαλειφθεί με ένα φίλτρο μέσης τιμής, όμως δεν θα έχει την ίδια επίδραση και για τον λευκό θόρυβο. Καταλαβαίνουμε πως δεν είναι μια λύση που θα δίνει πάντα αξιόπιστα αποτελέσματα. Μια πολύ αποτελεσματική λύση πρότεινε ο Canny, χρησιμοποιώντας φιλτράρισμα με ένα γκαουσιανό φίλτρο, και κατόπιν χρησιμοποιεί κανονικά τα μητρώα συνέλιξης που προαναφέραμε. Θα περιγράψουμε τον αλγόριθμό του στην ακόλουθη ενότητα Ανίχνευση Ακμών του Canny (Canny Edge Detector) Ο αλγόριθμος που πρότεινε ο Canny για ανίχνευση ακμών σε εικόνες θεωρείται ο βέλτιστος που μπορούμε να ακολουθήσουμε για ανίχνευση ακμών παρουσία λευκού θορύβου. Για την υλοποίησή του απαιτούνται συγκεκριμένα βήματα όπως αναφέρει στο [31]. Πρόθεση του Canny ήταν να βελτιώσει τους ήδη υπάρχοντες αλγόριθμους όταν ερευνούσε την περιοχή της ανίχνευσης ακμών. Για να το πετύχει αυτό όρισε κάποια κριτήρια για να αξιολογήσει την αποτελεσματικότητα των αλγόριθμων αυτών. Πρώτο και πιο προφανές κριτήριο ήταν η ελαχιστοποίηση του σφάλματος. Είναι πολύ σημαντικό να ανιχνεύονται όλες οι πραγματικές ακμές (πραγματική είναι μια ακμή που υφίσταται και στον τρισδιάστατο πραγματικό κόσμο), και ταυτόχρονα να μην ανιχνεύονται ακμές που δεν υπάρχουν, ή να έχουμε «διπλές» αποκρίσεις σε μια ακμή. Δεύτερο κριτήριο ήταν οι ακμές να είναι σωστά τοποθετημένες τοπικά. Η απόσταση μεταξύ της πραγματικής ακμής και της ακμής που εντοπίζει ο αλγόριθμος πρέπει να ελαχιστοποιηθεί. Επίσης η ακμή πρέπει να ορίζεται σαφώς και όχι να παίρνει εκτεταμένες διαστάσεις. Σελίδα 47 από 104

48 Βασιζόμενος σε αυτά τα κριτήρια ο Canny κατέληξε σε έναν αλγόριθμο όπου αρχικά στην εικόνα εφαρμόζεται ένα γκαουσιανό ψηφιακό φίλτρο (gaussian). Αυτό στοχεύει στην ελαχιστοποίηση της επίδρασης του θορύβου, και η διαδικασία ονομάζεται ομαλοποίηση της εικόνας (smoothing). Η ψηφιακή μορφή του φίλτρου είναι ένα τετραγωνικό μητρώο συνέλιξης. Όσο μεγαλώνει η διάσταση του φίλτρου και η τυπική απόκλιση (σ) της γκαουσιανής δυσδιάστατης κατανομής, τόσο περισσότερο εξομαλύνεται η εικόνα και μειώνεται η επίδραση του λευκού θορύβου. Οι τιμές του γκαουσιανού φίλτρου δίνονται από την σχέση [14], [32]: G ( x, y ) -(*z+yz) e -ί*z+ys) Σ ν * Σ γ ^ 2»* και έχει την μορφή του σχήματος στην Εικόνα 24: Εικόνα 24: Δισδιαστατο γκαουσιανό φίλτρο (Canny) Στην συνέχεια εφαρμόζεται τελεστής διαφόρισης στην εξομαλυμένη εικόνα. Μια βηματική ακμή χαρακτηρίζεται από την τοποθεσία της, την διεύθυνσή της και το Σελίδα 48 από 104

49 μέτρο της. Ανιχνεύεται με την κατευθυντική παράγωγο της εικόνας (directional operator). Αν υποθέσουμε ότι G είναι ένα δυσδιάστατο φίλτρο γκαουσιανής κατανομής και θέλουμε να υπολογίσουμε την συνέλιξη της εικόνας με την πρώτη παράγωγο κατά κατεύθυνση η. G j = ^ = S v G V) Η διεύθυνση η πρέπει να είναι κάθετη στην κατεύθυνση της ακμής, παρόλο που αυτή η διεύθυνση δεν είναι δυνατόν να είναι γνωστή από την αρχή, μπορούμε να την προσεγγίσουμε για την εικόνα f ως εξής: Οι ακμές τότε βρίσκονται από τα τοπικά μέγιστα της συνέλιξης μεταξύ της εικόνας f και του κατευθυνόμενου διαφορικού τελεστή Gn. Και συνδυάζοντας αυτή την σχέση με την (111) παίρνουμε Από αυτή την εξίσωση προκύπτουν τα τοπικά μέγιστα σε κάθετη διεύθυνση από αυτή των ακμών. Ο τελεστής αυτός αναφέρεται στην βιβλιογραφία σαν non-maxima suppression. Με βάση μια ελάχιστη τιμή του μέτρου των ακμών ( Gn * f ) (V) αποφασίζουμε την ύπαρξη ή όχι της ακμής. Για να αποφύγουμε την ανίχνευση ανύπαρκτων ακμών χρησιμοποιούμε κατωφλίωση με υστέρηση. Αν εντοπίσουμε κάποια περιοχή με ένταση ακμών πάνω από ένα ισχυρό κατώφλι τις λαμβάνουμε σαν ακμές. Σελίδα 49 από 104

50 Χαμηλότερες εντάσεις από αυτό το κατώφλι αγνοούνται εκτός και αν είναι γειτονικά συνδεδεμένες με περιοχές μεγάλης έντασης και ξεπερνούν ένα ελάχιστο κατώφλι. Τότε αυτές μάλλον είναι ακμές εξασθενημένες από τον θόρυβο και μετρούνται κανονικά. Αλγόριθμος ανίχνευσης ακμών του Canny Βήματα: Συνέλιξη της εικόνας με γκαουσιανή κατανομή τυπικής απόκλισης Προσέγγιση τοπικών κατευθυνόμενων ακμών με την εξίσωση (ΙΝ) Εύρεση των περιοχών που συνιστούν ακμές με την χρήση της (IV) Υπολογισμός της έντασης των ακμών με την εξίσωση (V) Κατωφλίωση των ακμών με υστέρηση [31], [32] Συμπεριφορά το υ ανιχνευτή ακμών του Canny Στον ανιχνευτή ακμών που πρότεινε ο Canny μας δίνεται η δυνατότητα, ανάλογα με την τιμή της τυπικής απόκλισης που διαλέγουμε για το γκαουσιανό φίλτρο, να ανιχνεύσουμε λεπτομερείς ή γενικότερες ακμές. Στην εικόνα που ακολουθεί μπορούμε να παρατηρήσουμε την επίδραση της αύξησης της τυπικής απόκλισης στην ανίχνευση ακμών μιας εικόνας για τιμές από 0.5 έως 3. Σελίδα 50 από 104

51 Εικόνα 25: Εφαρμογή Αλγόριθμού Ανίχνευσης Ακμών του Canny Η διαφορά στο αποτέλεσμα του αλγόριθμου για διάφορες τιμές τυπικής απόκλισης οφείλεται στο ότι μεγαλώνοντας η τιμή της τυπικής απόκλισης του φίλτρου τόσο περισσότερο ομαλοποιεί την εικόνα και ακμές με πλάτος μικρότερο (τύπου γραμμής και στέγης) από αυτό του πυρήνα της συνέλιξης ουσιαστικά εξαλείφονται από το φίλτρο. Συμπεριφορά παρουσία θορύβου Όπως αναφέρθηκε και σε προηγούμενη παράγραφο σημαντικότερο πλεονέκτημα του ανιχνευτή ακμών που προτάθηκε από τον Canny είναι η συμπεριφορά του παρουσίας λευκού θορύβου. Στην εικόνα που ακολουθεί εφαρμόζουμε το αλγόριθμο του Canny σε δυο εικόνες που έχουμε εισάγει salt & pepper και λευκό θόρυβο. Σελίδα 51 από 104

ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ)

ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ) -- ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ) 3. Εισαγωγή Η βελτίωση εικόνας είναι συνήθως διαδικασία φιλτραρίσµατος δηλ. συνέλιξης µε συγκεκριµµένη διδιάσταση µάσκα και στοχεύει στην ανάδειξη χαρακτηριστικών ή ελάττωση

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή

Διαβάστε περισσότερα

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επεξεργασία Ιατρικών Εικόνων

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα

Διαβάστε περισσότερα

6-Aνίχνευση. Ακμών - Περιγράμματος

6-Aνίχνευση. Ακμών - Περιγράμματος 6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική

Διαβάστε περισσότερα

Υλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ Υλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με

Διαβάστε περισσότερα

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές

Διαβάστε περισσότερα

Παρουσίαση του μαθήματος

Παρουσίαση του μαθήματος Παρουσίαση του μαθήματος Εργαστήριο 1 Ενότητες Μαθήματος 1. Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Τι είναι ψηφιακή εικόνα. Τι σημαίνει Επεξεργασία εικόνας. Ανάλυση εικόνας σε συχνότητα ( Μετασχηματισμός Fourier σε εικόνα)

Διαβάστε περισσότερα

Βελτίωση - Φιλτράρισμα εικόνας

Βελτίωση - Φιλτράρισμα εικόνας Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται

Διαβάστε περισσότερα

Νοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53

Νοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53 Νοέμβριος 5 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /53 Ακμή ή περίγραμμα (edge) σεμιαεικόναχ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική αλλαγή

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση

Διαβάστε περισσότερα

Advances in Digital Imaging and Computer Vision

Advances in Digital Imaging and Computer Vision Advances in Digital Imaging and Computer Vision Lecture and Lab 4 th part 12/3/2018 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Βασικές έννοιες επεξεργασίας Φιλτράρισμα στο χωρικό

Διαβάστε περισσότερα

Μάθημα: Μηχανική Όραση

Μάθημα: Μηχανική Όραση Μάθημα: Μηχανική Όραση Εργασία 2: Advances in Digital Imaging and Computer Vision Ομάδα χρηστών 2 : Τσαγκαράκης Νίκος, Καραμήτρος Κώστας Εισαγωγή Σκοπός της άσκησης, είναι να εξοικειωθούμε με κάποιες βασικές

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Παρουσίαση Νο. 5 Βελτίωση εικόνας

Παρουσίαση Νο. 5 Βελτίωση εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει

Διαβάστε περισσότερα

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Oι οπτικές επιδράσεις, που μπορεί να προκαλέσει μια εικόνα στους χρήστες, αποτελούν ένα από τα σπουδαιότερα αποτελέσματα των λειτουργιών γραφικών με Η/Υ. Τον όρο της οπτικοποίησης

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ4 -1- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION)

Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ4 -1- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION) -- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION) 4. Εισαγωγικά Ακµή ή περίγραµµα (edge) σε µια εικόνα Χ ij ορίζεται ως το σύνολο των σηµείων στη θέση i,j της εικόνας, όπου παρατηρείται µία σηµαντική αλλαγή της έντασης

Διαβάστε περισσότερα

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Επεξεργασία Εικόνας Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή

Διαβάστε περισσότερα

Ασκήσεις Επεξεργασίας Εικόνας

Ασκήσεις Επεξεργασίας Εικόνας Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ

Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ ΚΑΒΑΛΑ 2009 Περίληψη Η παρακάτω πτυχιακή εργασία περιλαμβάνει

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail: Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Περιοδικά

Διαβάστε περισσότερα

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χαρακτηριστικά Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα

Διαβάστε περισσότερα

ΕΠΕΞΕΡΓΑΣΙΑ & ΑΝΑΛΥΣΗ ΙΑΤΡΙΚΩΝ ΣΗΜΑΤΩΝ

ΕΠΕΞΕΡΓΑΣΙΑ & ΑΝΑΛΥΣΗ ΙΑΤΡΙΚΩΝ ΣΗΜΑΤΩΝ BIOMIG Medical Image Processing, Algorithms and Applications http://biomig.ntua.gr ΕΠΕΞΕΡΓΑΣΙΑ & ΑΝΑΛΥΣΗ ΙΑΤΡΙΚΩΝ ΣΗΜΑΤΩΝ Εισαγωγή στην MRI και στην fmri ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ

Διαβάστε περισσότερα

7.5 Ενδιάμεσο επίπεδο επεξεργασίας εικόνας

7.5 Ενδιάμεσο επίπεδο επεξεργασίας εικόνας 7.5 Ενδιάμεσο επίπεδο επεξεργασίας εικόνας 7.5.1 Εισαγωγή Kάθε σύστημα επεξεργασίας εικόνας έχει ένα συγκεκριμένο σκοπό λειτουργίας. Παραδείγματος χάριν, διαφορετικές απαιτήσεις θα έχει μια βιομηχανία

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Φιλτράρισμα στο πεδίο των Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Φίλτρο: μια διάταξη ή

Διαβάστε περισσότερα

ΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:

ΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων: KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές

Διαβάστε περισσότερα

ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ Π. ΑΣΒΕΣΤΑΣ Επ. Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕΙ Αθήνας Email: pasv@teiath.gr ΠΕΡΙΕΧΟΜΕΝΑ Αναπαράσταση εικόνας Ιστόγραμμα Εξισορρόπηση ιστογράμματος Κατωφλίωση

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 19: Φίλτρα (IV) Σχεδιασμός φίλτρων FIR Είδαμε ότι για φίλτρα IIR συνήθως σχεδιάζουμε ένα φίλτρο ΣΧ και μετασχηματίζουμε Για φίλτρα FIR θα δούμε

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 1. Εισαγωγή

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 1. Εισαγωγή Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 2015-16 Παρουσίαση Νο. 1 Εισαγωγή Τι είναι η εικόνα; Οτιδήποτε μπορούμε να δούμε ή να απεικονίσουμε Π.χ. Μια εικόνα τοπίου αλλά και η απεικόνιση

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση

Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

Σημαντικές χρονολογίες στην εξέλιξη της Υπολογιστικής Τομογραφίας

Σημαντικές χρονολογίες στην εξέλιξη της Υπολογιστικής Τομογραφίας Σημαντικές χρονολογίες στην εξέλιξη της Υπολογιστικής Τομογραφίας 1924 - μαθηματική θεωρία τομογραφικής ανακατασκευής δεδομένων (Johann Radon) 1930 - κλασσική τομογραφία (A. Vallebona) 1963 - θεωρητική

Διαβάστε περισσότερα

Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα

Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Βασικές Έννοιες Διεργασίες στο πεδίο του χώρου f(x, y) : εικόνα εισόδου g(x, y) : εικόνα εισόδου g x, y = T f(x, y) T : τελεστής που εφαρµόζεται

Διαβάστε περισσότερα

Παρουσίαση Νο. 6 Αποκατάσταση εικόνας

Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Εισαγωγή (1/2) Αναίρεση υποβάθμισης που μπορεί να οφείλεται: Στο οπτικό σύστημα (θόλωμα λόγω κακής εστίασης, γεωμετρικές παραμορφώσεις...)

Διαβάστε περισσότερα

DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης

DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης DIP_01 Εισαγωγή στην ψηφιακή εικόνα ΤΕΙ Κρήτης Πληροφορίες Μαθήματος ιαλέξεις Πέμπτη 12:15 15:00 Αιθουσα Γ7 ιδάσκων:. Κοσμόπουλος Γραφείο: Κ23-0-15 (ισόγειο( κλειστού γυμναστηρίου) Ωρες γραφείου Τε 16:00

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 11: Εφαρμογές DFT Ταχύς Μετασχηματισμός Fourier (FFT) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Διακριτός Μετασχηματισμός Fourier Υπολογισμός Γραμμικής Συνέλιξης

Διαβάστε περισσότερα

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εισαγωγή Σχηματισμός Εικόνας

Διαβάστε περισσότερα

Τηλεπισκόπηση. Τηλεπισκόπηση. Τηλεπισκόπηση. Τηλεπισκόπηση. Τηλεπισκόπηση 24/6/2013

Τηλεπισκόπηση. Τηλεπισκόπηση. Τηλεπισκόπηση. Τηλεπισκόπηση. Τηλεπισκόπηση 24/6/2013 ΨΗΦΙΑΚΗ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Η ψηφιακή ανάλυση ασχολείται κυρίως με τέσσερις βασικές λειτουργίες: διόρθωση, βελτίωση, ταξινόμηση, και Κ. Ποϊραζίδης μετασχηματισμό. Η βελτίωση ασχολείται με την τροποποίηση των

Διαβάστε περισσότερα

Μάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ

ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ 2.2.2.3ζ ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΓΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ Εγχειρίδιο χρήσης λογισμικού ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ: ΣΤΡΟΥΘΟΠΟΥΛΟΣ ΧΑΡΑΛΑΜΠΟΣ ΣΕΡΡΕΣ, ΜΑΙΟΣ 2007 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης DIP_04 Σημειακή επεξεργασία ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός μιας τέτοιας τεχνικής μπορεί να είναι: η βελτιστοποίηση της οπτικής εμφάνισης μιας εικόνας όπως την αντιλαμβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας

Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας Ενότητα 11: Επεξεργασία εικόνας Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Σημειακή επεξεργασία και μετασχηματισμοί Κατηγορίες μετασχηματισμού εικόνων Σημειακοί μετασχηματισμοί

Διαβάστε περισσότερα

Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57

Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57 Ακμή ή περίγραμμα (edge) σε μια εικόνα Χ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier

Διαβάστε περισσότερα

Μάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 10 ο Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει: Με βάση τα εξωτερικά χαρακτηριστικά (ακμές, όρια). Αυτή η περιγραφή προτιμάται όταν μας ενδιαφέρουν

Διαβάστε περισσότερα

E [ -x ^2 z] = E[x z]

E [ -x ^2 z] = E[x z] 1 1.ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτήν την διάλεξη θα πάμε στο φίλτρο με περισσότερες λεπτομέρειες, και θα παράσχουμε μια νέα παραγωγή για το φίλτρο Kalman, αυτή τη φορά βασισμένο στην ιδέα της γραμμικής

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕ Α BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 Η ΦΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη ΙΙ. Ενότητα 2: Αντίληψη. Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Τεχνητή Νοημοσύνη ΙΙ. Ενότητα 2: Αντίληψη. Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τεχνητή Νοημοσύνη ΙΙ Ενότητα 2: Αντίληψη Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Αντίληψη 2 Περιεχόμενα ενότητας Αντίληψη 3 Αντίληψη

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Επεξεργασία στο πεδίο της συχνότητας Φασματικές τεχνικές Γενικά Τεχνικές αναπαράστασης και ανάλυσης

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 Α. Σχεδίαση Ψηφιακών Φίλτρων Β. Φίλτρα FIR Σχετικές εντολές του Matlab: fir, sinc, freqz, boxcar, triang, hanning, hamming, blackman, impz, zplane, kaiser. Α. ΣΧΕΔΙΑΣΗ

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Εισαγωγή Τι είναι η εικόνα; Μια οπτική αναπαράσταση με την μορφή μιας συνάρτησης f(x, y) όπου η

Διαβάστε περισσότερα

Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων

Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,

Διαβάστε περισσότερα

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5γ. Σημειώσεις μαθήματος: E mail:

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5γ. Σημειώσεις μαθήματος: E mail: Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Πολλές

Διαβάστε περισσότερα

Τηλεπισκόπηση - Φωτοερμηνεία

Τηλεπισκόπηση - Φωτοερμηνεία ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 10: Ραδιομετρική Ενίσχυση Χωρική Επεξεργασία Δορυφορικών Εικόνων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας

Διαβάστε περισσότερα

ΧΡΗΣΗ ΝΕΩΝ ΟΠΤΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΤΙΓΡΑΦΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΣΤΕΦΑΝΙΑ ΧΛΟΥΒΕΡΑΚΗ 2014

ΧΡΗΣΗ ΝΕΩΝ ΟΠΤΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΤΙΓΡΑΦΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΣΤΕΦΑΝΙΑ ΧΛΟΥΒΕΡΑΚΗ 2014 ΧΡΗΣΗ ΝΕΩΝ ΟΠΤΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΤΙΓΡΑΦΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΣΤΕΦΑΝΙΑ ΧΛΟΥΒΕΡΑΚΗ 2014 ΧΡΗΣΗ ΝΕΩΝ ΟΠΤΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΤΙΓΡΑΦΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ Η χρήση

Διαβάστε περισσότερα

Ενότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ)

Ενότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ) Ενότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ) Διδιάστατο Θεώρηµα Συνέλιξης Διδιάστατη Κυκλική Συνέλιξη: 4/0./0 f x, y h x, y = ( ( f m, n h(x m, y n) 523 123 Διδιάστατο Θεώρηµα Συνέλιξης: f x, y h x,

Διαβάστε περισσότερα

Βελτίωση - Φιλτράρισμα εικόνας

Βελτίωση - Φιλτράρισμα εικόνας Βελτίωση - Φιλτράρισμα εικόνας Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ /76 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά συνέλιξη y(n, n ) = x(n, n )*

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές αποκατάστασης

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 009-0 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x α Ψηφιακή

Διαβάστε περισσότερα

. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit.

. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit. Α ΤΕΙ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: A ΧΕΙΜΕΡΙΝΟ 2011-2012 ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ ΚΑΙ ΗΧΟΣ (7-2-2012) Διάρκεια εξέτασης: 2.0 ώρες (08:00 10:30)

Διαβάστε περισσότερα

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 22: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 7: Σχεδιασμός Φίλτρων!"#!"#! "#$% Σημειώσεις διαλέξεων στο: http://www.eg.ucy.ac.cy/chadcha/

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.

ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. 1 ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011 2 Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. Ενδεδειγμένες και αξιόπιστες μέθοδοι αποτύπωσης Εμπειρικές Τοπογραφικές

Διαβάστε περισσότερα

2.0 ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ-ΟΡΟΛΟΓΙΕΣ

2.0 ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ-ΟΡΟΛΟΓΙΕΣ 2.0 ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ-ΟΡΟΛΟΓΙΕΣ Η σάρωση ενός εγγράφου εισάγει στον υπολογιστή μια εικόνα, ενώ η εκτύπωση μεταφέρει στο χαρτί μια εικόνα από αυτόν. Για να αντιληφθούμε επομένως τα χαρακτηριστικά των σαρωτών

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) Εισαγωγή Μέχρι στιγμής έχουμε δει το Μετασχηματισμό Fourier Διακριτού

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Ιατρική Πληροφορική. Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ.Ε.

Ιατρική Πληροφορική. Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ.Ε. Ιατρική Πληροφορική Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ.Ε. Οι διάφορες τεχνικές απεικόνισης (imaging modalities) της ανθρώπινης ανατομίας περιγράφονται κατά DICOM ως συντομογραφία

Διαβάστε περισσότερα

Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab

Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab ΑΣΚΗΣΗ 8 Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab 1. Περιγραφή του προτύπου DICOM Η ψηφιακή επεξεργασία ιατρικής εικόνας ξεκίνησε παράλληλα με την ανάπτυξη ενός προτύπου για τη μεταφορά

Διαβάστε περισσότερα

Μη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50

Μη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50 Μη γραμμικά Φίλτρα Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ /50 Φίλτρα διάμεσης τιμής (median,order statistic) Μη γραμμικά φίλτρα μέσης τιμής Μορφολογικά φίλτρα Ομομορφικά φίλτρα Πολυωνυμικά φίλτρα Σ. Φωτόπουλος

Διαβάστε περισσότερα

Ευαιθησιομετρία Sensitometry ΑΚΤΙΝΟΛΟΓΙΑ Ι-6

Ευαιθησιομετρία Sensitometry ΑΚΤΙΝΟΛΟΓΙΑ Ι-6 Ευαιθησιομετρία Sensitometry ΑΚΤΙΝΟΛΟΓΙΑ Ι-6 Ακτινοβολία Χ και φιλμ Οι ακτίνες- X προκαλούν στο ακτινολογικό φιλμ κατανομή διαφορετικών ΟΠ επειδή Η ομοιόμορφη δέσμη που πέφτει πάνω στο ΑΘ εξασθενεί σε

Διαβάστε περισσότερα

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση εικόνας σε οµοιόµορφες περιοχές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2013-2014 JPEG 2000 Δρ. Ν. Π. Σγούρος 2 JPEG 2000 Βασικά χαρακτηριστικά Επιτρέπει συμπίεση σε εξαιρετικά χαμηλούς ρυθμούς όπου η συμπίεση με το JPEG εισάγει μεγάλες παραμορφώσεις Ενσωμάτωση

Διαβάστε περισσότερα

1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα

1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1. Σύστημα Συντεταγμένων Το σύστημα συντεταγμένων που έχουμε συνηθίσει από το σχολείο τοποθετούσε το σημείο (0,0) στο σημείο τομής των δυο αξόνων Χ και Υ.

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: 401 Πράσινο Άλσος Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Ηλ. Ταχ.: : gmitsis@ucy.ac.cy Ιωάννης Τζιώρτζης

Διαβάστε περισσότερα

Εργαστήριο ADICV2. Image filtering. Κώστας Μαριάς

Εργαστήριο ADICV2. Image filtering. Κώστας Μαριάς Εργαστήριο ADICV2 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab Στη συνέχεια θα

Διαβάστε περισσότερα