Advances in Digital Imaging and Computer Vision
|
|
- Κλείτος Καρράς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Advances in Digital Imaging and Computer Vision Lecture and Lab 6 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1
2 Βασικές έννοιες Μετασχηματισμού Fourier Basic Concepts of Fourier Transform Basic special filtering and processing For ERASMUS (and all the rest) please study chapter 4 (page 199) from Gonzalez and Woods book (3 rd edition). But more importantly the Fourier Analysis chapter from An Introduction to Digital Image Processing with Matlab Notes for SCM2511 Image Processing 1", Alasdair McAndrew 2
3 Αναφορές An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew Nicolas Tsapatsoulis, Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας, Lecture notes in Digital Image Processing, Image Processing Lectures, Peters, Richard Alan, II, "The Fourier Transform", Lectures on Image Processing, Vanderbilt University, Nashville, TN, April 2008, Available on the web at the Internet Archive, Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition Digital Image Processing, Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley,
4 Περιεχόμενα Διάλεξης Διακριτός Μετασχηματισμός Fourier στην εικόνα. Φιλτράρισμα στο πεδίο συχνοτήτων, ΔΜF: Χαμηλοπερατά και Υψιπερατά φίλτρα Παραδείγματα Matlab Για την καλύτερη παρακολούθηση έχουμε 3 ειδών διαφάνειες: Βασική πληροφορία (για προπτυχιακούς), Παραδείγματα Matlab για προπτυχιακούς και προχωρημένα ερευνητικά θέματα (research) Basic Matlab Research 4
5 Η μορφή της εικόνας στο πεδίο συχνοτήτων Αριστερά φαίνεται το συχνοτικό περιεχόμενο του DFT (συγκέντρωση ενέργειας γύρω από το (0,0)) lenna Λογαριθμική απεικόνιση του πλάτους του DFT 5
6 Μετασχηματισμοί στο πεδίο συχνοτήτων Γιατί οι μετασχηματισμοί στο πεδίο των συχνοτήτων είναι χρήσιμοι στην επεξεργασία εικόνας; Βελτίωση εικόνας λαμβάνοντας υπόψιν το συχνοτικό περιεχόμενο Φιλτράρισμα, αφαίρεση θορύβου, κυκλική μετατόπιση, συμπίεση, περιγραφή σχήματος Πλεονεκτήματα: μικρότερη υπολογιστική πολυπλοκότητα / εναλλακτική ερμηνεία 6
7 Διακριτός Μετασχηματισμός Fourier (ΔΜF) 2Δ Αν έχουμε μια εικόνα ΜxΝ: f x, y, 0 x M 1, 0 y N 1 Ο Διακριτός μετασχηματισμός Fourier μας δίνει την F(u, όπου F u, v = M 1 x=0 N 1 y=0 [e 2πi xu M +yv N ] f(x, y) Είναι επίσης ένα πίνακας διαστάσεων ΜxΝ όπου και πάλι: F u, v, 0 u M 1, 0 v N 1 7
8 Διακριτός Μετασχηματισμός Fourier (ΔΜF) 2Δ Στη πραγματικότητα η μέγιστη οριζόντια συχνότητα που μπορεί να περιέχεται σε μια ψηφιακή εικόνα Μ γραμμές x N στήλες είναι Ν/2 (ένας κύκλος τιμών φωτεινότητας ή χρώματος της εικόνας ολοκληρώνεται εντός δύο pixel). Ομοίως η μέγιστη κάθετη συχνότητα που μπορεί να περιέχεται σε μια ψηφιακή εικόνα Μ x N είναι Μ/2. Nicolas Tsapatsoulis, Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας, Lecture notes in Digital Image Processing
9 Διακριτός Μετασχηματισμός Fourier (ΔΜF) 2Δ Ο ΔΜF που προκύπτει είναι ένας πίνακας με μιγαδικούς αριθμούς (a + ib όπου ) οπότε μπορούμε να τον χωρίσουμε σε πραγματικά και φανταστικά μέρη: R(u, = Real F u, v και I(u, = Imag(F(u, ) Ο ΔΜFμίας εικόνας μπορεί να γραφτεί σαν άθροισμα ενός πραγματικού και ενός φανταστικού πίνακα: F u, v = R u, v + i I u, v όπου i = 1 Επειδή εικόνες με μιγαδικές τιμές pixel δεν έχουν κανένα φυσικό νόημα, απεικονίζουμε και δουλεύουμε συνήθως με την Απόλυτη τιμή του ΔΜF: abs(f u, v ) = F(u, = R 2 u, v + I 2 u, v 9
10 Διακριτός Μετασχηματισμός Fourier 2Δ Μέτρο ή Απόλυτη τιμή: Φαση: F(u, = φ u, v = tan 1 R 2 u, v + I 2 u, v I u, v R(u, = arctan I u, v R(u, Εκθετική μορφή: F u, v = F(u, e iφ(u, Ισχύς του φάσματος του σήματος σε κάθε συχνότητα (Power spectrum): P u, v = F(u, 2 10
11 Ποιοτικές Ιδιότητες Μετασχηματισμού Fourier Μερικές φορές είναι εύκολο να χάσουμε την έννοια του DFT και του περιεχομένου συχνότητας της εικόνας για χάρη των μαθηματικών. Ο DFT αποτελεί μια περιγραφή των περιεχόμενων συχνοτήτων σε μια εικόνα Κοιτάζοντας το DFT ή το φάσμα μιας εικόνας (απεικόνιση του μέτρου του DFT της εικόνας), μπορούμε να προσδιορίσουμε πολλά στοιχεία σχετικά με την εικόνα. Οι φωτεινές περιοχές στην DFT εικόνα αντιστοιχούν στις συχνότητες οι οποίες έχουν μεγάλο μέτρο (ισχύ) στην πραγματική εικόνα. Μεγάλες τιμές κοντά στο κέντρο του (μετατοπισμένου) DFT αντιστοιχούν σε μεγάλες ομαλές περιοχές της εικόνας ή σε ισχυρά φωτεινό φόντο. Από τη στιγμή που οι εικόνες είναι θετικές (τιμές φωτεινότητας ή χρώματος στο διάστημα [0 255]), κάθε εικόνα έχει μια μεγάλη κορυφή στο (u, = (0, 0) που είναι ανάλογη με τη μέση φωτεινότητα της εικόνας Οι λεπτομέρειες της εικόνας αντιστοιχούν σε μεγάλες συχνότητες! Nicolas Tsapatsoulis, Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας, Lecture notes in Digital Image Processing
12 Διακριτός Μετασχηματισμός Fourier (ΔΜF) 2Δ Για τον υπολογισμό του ΔΜF μιας εικόνας, χρησιμοποιούμε συνήθως τον αλγόριθμο FFT (Fast Fourier Transform). O FFT είναι ένας αποδοτικός, υπολογιστικά, αλγόριθμος ο οποίος βοηθάει το φιλτράρισμα να μπορεί να γίνει πολύ πιο γρήγορα σε σχέση με το χωρικό πεδίο. Είναι ένας από τους πλέον δημοφιλείς και χρησιμοποιούμενους αλγορίθμους. Στη Matlab ο δισδιάστατος DFT, μιας εικόνας f, υπολογίζεται με την εντολή F = fft2(f). 12
13 Διακριτός Μετασχηματισμός Fourier με Matlab fft2: Μας δίνει τον ΔΜF ενός πίνακα ifft2 : Μας δίνει τον αντίστροφο ΔΜF ενός πίνακα fftshift: Μετασχηματίζει τον ΔΜΦ ώστε ο DC συντελεστής να είναι στο κέντρο της εικόνας Για μιγαδικούς το abs(x) μας δίνει το μέτρο των μιγαδικών στοιχείων του πίνακα X. Το imshow(mat2gray(abs(cf))) μας δείχνει τα μέτρα των τιμών χωρίς να γίνει scaling 13
14 Οπτικοποίηση ΔΜF με Matlab Ο ΔΜF είναι πίνακας μιγαδικών οπότε απεικονίζουμε το μέτρο του με την εντολή abs της matlab. Ο συντελεστής DC (άθροισμα όλων) έχει τεράστια τιμή σε σχέση με τις υπόλοιπες του ΔΜF. Συνήθως κάνουμε πρώτα την μετατόπιση που περιγράψαμε πριν. Για να οπτικοποιήσουμε ένα ΔΜF στη Matlab ο ποιο συνηθισμένος τρόπος είναι να πάρουμε πρώτα το λογάριθμο του ΔΜF και στη συνέχεια να γίνει οτπικοποίηση. Επειδή θα έχουμε πολύ υψηλές τιμές θα χρησιμοποιήσουμε την εντολή mat2gray για να τις φέρουμε από 0 έως 1. 14
15 Παράδειγμα: Οπτικοποίηση ΔΜF με Matlab I=imread('cameraman.tif'); F1=fft2(I); F2=fftshift(fft2(I)); Matlab cfnormal1=mat2gray(log(1+abs(f1))); cfnormal=mat2gray(log(1+abs(f2))); subplot(1,3,1), imshow(i), title('original Image'); subplot(1,3,2), imshow(cfnormal1), title('dft Image'); subplot(1,3,3), imshow(cfnormal), title('dft Image shifted'); 15
16 Φιλτράρισμα στο χώρο της Συχνότητας με ΔΜF 2Δ Input Image f(x,y) Fourier Transform F(u, Filter Function H(u, Filtering H(u, F(u, Inverse Fourier Transform Filtered Image g(x,y) Βασικά Βήματα στο φιλτράρισμα στο πεδίο συχνοτήτων Στη χωρική επεξεργασία εικόνας με χρήση μάσκας η μάσκα εφαρμόζεται επαναληπτικά σε όλα τα pixel της εικόνας. Η διαδικασία αυτή είναι γνωστή ως συνέλιξη και συμβολίζεται με *. Για παράδειγμα το αποτέλεσμα g(x,y) της χωρικής επεξεργασίας της εικόνας f(x,y) με τη μάσκα h(x,y) ορίζεται ως: g(x,y) = f(x,y)*h(x,y) Από τις ιδιότητες του μετασχηματισμού Fourier προκύπτει ότι το ίδιο αποτέλεσμα μπορεί να προκύψει με πολλαπλασιασμό των επιμέρους ΔΜF και μετά αντιστροφή στο χωρικό πεδίο: g(x,y) = IDFT{F(u, H(u,} Nicolas Tsapatsoulis, Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας, Lecture notes in Digital Image Processing
17 Συμμετρία Μετασχηματισμού Fourier Από τις ιδιότητες του DFT προκύπτει ότι ο DFT μιας εικόνας περιέχει πλεονασματικές πληροφορίες, δηλαδή έχουμε τις ίδιες πληροφορίες περισσότερες από μία φορά (συμμετρία). Το επόμενο σχήμα παρουσιάζει τις συμμετρίες που ισχύουν στο μέτρο του DFT μιας εικόνας Συμμετρία ως προς το μέσο (συχνότητα (u,=(μ/2,ν/2)) Βλέπε σχήμα στα αριστερά Η κατανομή των συχνοτήτων του DFT φαίνεται στο σχήμα στο κέντρο Πολλές φορές όμως για καλύτερη οπτική απεικόνιση θεωρούμε απεικόνιση με κέντρο των αξόνων το μέσο του πίνακα (εντολή fftshift στη Matlab) - Βλέπε σχήμα στα δεξιά (0, 0) v (0, 0) low freqs v low freqs (0, N-1) (-N/2, -N/2) high v high (-N/2, N/2) u u high freqs u low low freqs low freqs high high (N-1, 0) (N-1, N-1) (N/2, -N/2) (N/2, N/2) Nicolas Tsapatsoulis, Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας, Lecture notes in Digital Image Processing
18 Φιλτράρισμα στο χώρο της Συχνότητας (IΧ) Ορίζοντας κατευθείαν στο χώρο της συχνότητας τους πίνακες H μπορούμε να επεξεργαστούμε συγκεκριμένες περιοχές συχνοτήτων Υψιπερατό φιλτράρισμα => αποκοπή χαμηλών συχνοτήτων (π.χ. χρήση για ανάδειξη ακμών) Χαμηλοπερατό φιλτράρισμα => αποκοπή υψηλών συχνοτήτων (π.χ. χρήση για απαλοιφή θορύβου, λείανση εικόνας) Ζωνοφρακτικό φιλτράρισμα => αποκοπή ενδιάμεσων συχνοτήτων (π.χ. απαλοιφή θορύβου συγκεκριμένων συχνοτήτων όπως σε περιπτώσεις αποκατάστασης εικόνας) H για ζωνοφρακτικό φιλτράρισμα H για υψιπερατό φιλτράρισμα H για χαμηλοπερατό φιλτράρισμα 18
19 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition Το ιδεατό χαμηλοπερατό φίλτρο (IDLPF) έχει συνάρτηση μεταφοράς Η (μετασχηματισμό Fourier της μάσκας h) της μορφής: 1, D( u, D H( u, 0, D( u, D 0 0 Η επιλογή της τιμής του D 0 στο ιδεατό χαμηλοπερατό φίλτρο καθορίζει πόση από τη συνολική ισχύ της εικόνας θέλουμε να διατηρήσουμε!! Όπου D(u, είναι η απόσταση του σημείου με συχνότητες (u, από το σημείο (0,0), και D 0 είναι ένας θετικός αριθμός (συχνά αναφέρεται ως ακτίνα του χαμηλοπερατού φίλτρου) 19
20 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Για να φιλτράρουμε στο πεδίο συχνοτήτων πρώτα δημιουργούμε μια σφαίρα στο κέντρο της εικόνας, η οποία ανάλογα με την ακτίνα της μπορεί να κρατήσει συγκεκριμένες συχνότητες: [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); c=(z<15); figure, surf(double(c)), shading interp, colormap jet figure, imshow(c) D( u, Matlab 1, D( u, D0 H ( u, 0, D( u, D0 D 15 0 z 20
21 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Στη συνέχεια διαβάζουμε την εικόνα cameraman.tif στη matlab και υπολογίζουμε τον ΔΜF της εικόνας I με την εντολή fft2 της matlab. Επιπλέον εφαρμόζουμε την εντολή fftshift για να έχουμε στο κέντρο τον DC συντελεστή όπως έχουμε εξηγήσει και προκύπτει ο πίνακας F με τον ΔΜF της εικόνας: I=imread('cameraman.tif'); F=fftshift(fft2(I)); Matlab Στη συνέχεια πολλαπλασιάζουμε τη κυκλική μάσκα c ακτίνας 15 pixel με τον F έτσι ώστε να κρατήσουμε χαμηλές συχνότητες στο κέντρο του F: cf=f.*c; figure, imshow(mat2gray(log(1+abs(cf)))); 21
22 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Τέλος υπολογίζουμε τον διακριτό, αντίστροφο μετασχηματισμό F της cf, δηλαδή της εικόνας με τις φιλτραρισμένες συχνότητες με την εντολή ifft2 της matlab: IcF=ifft2(cF); Επειδή η εικόνα που προκύπτει έχει max(max(icf))= και min(min(icf)) = , αλλά και για δώσουμε μια καλύτερη οπτικοποίηση (η αλληλουχία fft2 και ifft2 οδηγεί σε σφάλματα), επιλέγω να πάρω πρώτα τις απόλυτες τιμές της IcF (αν και είμαστε πίσω στο χωρικό πεδίο) και μετά να χρησιμοποιήσω το mat2gray της matlab για να μετασχηματιστούν όλες οι τιμές από 0 εως 1 και στη συνέχεια να οπτικοποιηθούν: figure, imshow(mat2gray(abs(icf))) Με την εντολή subplot δείχνουμε όλα τα βήματα-αποτελέσματα του χαμηλοπερατού φιλτραρίσματος με ΔΜF: subplot(2,2,1);imshow(i,[]), title('original Image'); subplot(2,2,2);imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,2,3);imshow(mat2gray(log(1+abs(cf)))), title('lowpass mask'); subplot(2,2,4); imshow(mat2gray(abs(icf))), title('filtered Image'); Matlab 22
23 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Matlab 23
24 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); c1=(z<10); c2=(z<35); I=imread('cameraman.tif'); F=fftshift(fft2(I)); cf1=f.*c1; cf2=f.*c2; IcF1=ifft2(cF1); IcF2=ifft2(cF2); 15 Matlab 1, D( u, D H ( u, 0, D( u, D D 0 D( u, z 0 0 subplot(2,4,1);imshow(i,[]), title('original Image'); subplot(2,4,2);imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,4,3);imshow(mat2gray(log(1+abs(cf1)))), title('lowpass mask cutoff 10'); subplot(2,4,4);imshow(mat2gray(log(1+abs(cf2)))), title('lowpass mask cutoff 35'); subplot(2,4,6);imshow(mat2gray(abs(icf1))), title('filtered with mask cutoff 10'); subplot(2,4,7);imshow(mat2gray(abs(icf2))), title('filtered with mask cutoff 35'); 24
25 ΔΜF: Χαμηλοπερατά Φίλτρα-Ιδεατό Matlab 25
26 ΔΜF: Χαμηλοπερατά Φίλτρα Οι συναρτήσεις της matlab fft2 kai ifft2 δίνουν αριθμητικές προσεγγίσεις και περιχέουν, αναπόφευκτα, σφάλματα. Για αυτό το λόγο μετά από τον αντίστροφο ΔΜF χρησιμοποιούμε το imshow στις απόλυτες τιμές του πίνακα (abs) επιδιώκοντας να στρογγυλέψουμε σφάλματα που προκύπτουν κατά τον μετασχηματισμό και την αντιστροφή του. Στο ιδεατό φίλτρο υπάρχουν σφάλματα (με τη μορφή δαχτυλιδιού) από το κέντρο της φιλτραρισμένης εικόνας και προς τα έξω. Αυτά οφείλονται στην απόκριση του ιδεατού φίλτρου λόγω των απότομων ακμών του: Matlab [x,y]=meshgrid(-128:127,-128:127); z=sqrt(x.^2+y.^2); c=(z<15); cf=fftshift(fft2(c)); imshow(mat2gray(log(1+abs(cf)))) b=1./(1+(z./15).^2); figure, imshow(b) cf=fftshift(fft2(b)); imshow(mat2gray(log(1+abs(cf)))) Το πρόβλημα λύνεται με τη χρήση φίλτρων Butterworth που έχουν ομαλή μετάβαση εντάσεων στην περιφέρεια του κύκλου. 26
27 ΔΜF: Χαμηλοπερατά φίλτρα Butterworth Matlab Digital Image Processing, Rafael C.Gonzalez & Richard E. Woods, Addison-Wesley, 3rd edition Τα ιδεατά χαμηλοπερατά φίλτρα δεν είναι υλοποιήσιμα με υλικό. Επιπλέον δημιουργούν εικόνες με δακτυλίδια (ringing effect) εξαιτίας της απότομης μεταβολής μεταβολής της Hideal από την τιμή 1 στη τιμή 0. Τα χαμηλοπερατά φίλτρα Butterworth (BLPF) έχουν συνάρτηση μεταφοράς Η της μορφής (n είναι η τάξη του φίλτρου): 1 b=1./(1+(z./10).^2); H ( u, 2n 1 D( u, D0 27
28 ΔΜF: Χαμηλοπερατά φίλτρα Butterworth n=1 [x,y]=meshgrid(-128:127,-128:127); c1=1./(1+((x.^2+y.^2)/15^2)); c2=1./(1+((x.^2+y.^2)/35^2)); I=imread('cameraman.tif'); F=fftshift(fft2(I)); cf1=f.*c1; cf2=f.*c2; IcF1=ifft2(cF1); IcF2=ifft2(cF2); subplot(2,4,1);imshow(i,[]), title('original Image'); H ( u, H ( u, D( u, D0 1 D( u, 1 D0 c1, c2 subplot(2,4,2);imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,4,3);imshow(mat2gray(log(1+abs(cf1)))), title('lowpass mask cutoff 15'); subplot(2,4,4);imshow(mat2gray(log(1+abs(cf2)))), title('lowpass mask cutoff 35'); subplot(2,4,6);imshow(mat2gray(abs(icf1))), title('filtered with mask LP15'); subplot(2,4,7);imshow(mat2gray(abs(icf2))), title('filtered with mask LP 35'); 2 2n x.^2 y.^ Matlab 28
29 ΔΜF: Χαμηλοπερατά φίλτρα Butterworth n=1 [x,y]=meshgrid(-128:127,-128:127); c1=1./(1+((x.^2+y.^2)/15^2)); c2=1./(1+((x.^2+y.^2)/35^2)); I=imread('cameraman.tif'); F=fftshift(fft2(I)); cf1=f.*c1; cf2=f.*c2; IcF1=ifft2(cF1); IcF2=ifft2(cF2); subplot(2,4,1);imshow(i,[]), title('original Image'); subplot(2,4,2);imshow(mat2gray(log(1+abs(f)))), title('dft of Image'); subplot(2,4,3);imshow(mat2gray(log(1+abs(cf1)))), title('lowpass mask cutoff 15'); subplot(2,4,4);imshow(mat2gray(log(1+abs(cf2)))), title('lowpass mask cutoff 35'); subplot(2,4,6);imshow(mat2gray(abs(icf1))), title('filtered with mask LP15'); subplot(2,4,7);imshow(mat2gray(abs(icf2))), title('filtered with mask LP 35'); Matlab 29
Εργαστήριο ADICV. Fourier transform, frequency domain filtering and image restoration. Κώστας Μαριάς 3/4/2017
Εργαστήριο ADICV Fourier transform, frequency domain filtering and image restoration Κώστας Μαριάς 3/4/2017 Fourier Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab ΠΑΡΑΔΕΙΓΜΑΤΑ ΦΙΛΤΡΩΝ ΔΙΑΚΡΙΤΟΣ
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 7 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1 Advanced filtering for image restoration using Fourier Transform
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 5 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1 Βασικές έννοιες Μετασχηματισμού Fourier Basic Concepts of Fourier
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4b 24/4/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Μετασχηματισμός Fourier Εφαρμογές 2 Περιοδικός Θόρυβος
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4 3/4/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Μετασχηματισμός Fourier Εικόνας 2 Περιεχόμενα Διάλεξης Μετασχηματισμός
Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας
ΤΨΣ 150 Ψηφιακή Επεξεργασία Εικόνας Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Εκτίµηση Απόκρισης Περιεχόµενα Βιβλιογραφία
Digital Image Processing
Digital Image Processing Φιλτράρισμα στο πεδίο των Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Φίλτρο: μια διάταξη ή
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4 th part 12/3/2018 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Βασικές έννοιες επεξεργασίας Φιλτράρισμα στο χωρικό
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Επεξεργασία στο πεδίο της συχνότητας Φασματικές τεχνικές Γενικά Τεχνικές αναπαράστασης και ανάλυσης
Εργαστήριο ADICV2. Image filtering. Κώστας Μαριάς
Εργαστήριο ADICV2 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab Στη συνέχεια θα
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Διάλεξη 5 Κώστας Μαριάς kmarias@staff.teicrete.gr 24/4/2017 1 Αναφορές An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew N. Papamarkos,
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 3 27/3/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Σημειακή Επεξεργασία Εικόνας (point processing), μετασχηματισμοί
Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73
Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73 Σχήμα 6.61 Μορφή της συνάρτησης για διάφορες τιμές του a. (α) (β) Σήμα 6.6 Παράδειγμα εφαρμογής: (α) Αρχική εικόνα. (β) Τελική εικόνα για a 0.0. 6.74 N. ΠΑΠΑΜΑΡΚΟΣ:
Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Εργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017
Εργαστήριο ADICV1 Image Boundary detection and filtering Κώστας Μαριάς 13/3/2017 Boundary Detection 2 Γείτονες και περίγραμμα εικόνας Ορίζουμε ως V το σύνολο των τιμών εντάσεων εικόνας για να ορίσουμε
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 5-6 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Σημειακή Επεξεργασία Εικόνας Point processing All/Erasmus students:
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 009-0 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x α Ψηφιακή
References. Chapter 10 The Hough and Distance Transforms
References Chapter 10 The Hough and Distance Transforms An Introduction to Digital Image Processing with MATLAB https://en.wikipedia.org/wiki/circle_hough_transform Μετασχηματισμός HOUGH ΤΕΧΝΗΤΗ Kostas
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Δισδιάστατα σήματα
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 06-7 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x t, t,
Παρουσίαση του μαθήματος
Παρουσίαση του μαθήματος Εργαστήριο 1 Ενότητες Μαθήματος 1. Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Τι είναι ψηφιακή εικόνα. Τι σημαίνει Επεξεργασία εικόνας. Ανάλυση εικόνας σε συχνότητα ( Μετασχηματισμός Fourier σε εικόνα)
1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Ενότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ)
Ενότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ) Διδιάστατο Θεώρηµα Συνέλιξης Διδιάστατη Κυκλική Συνέλιξη: 4/0./0 f x, y h x, y = ( ( f m, n h(x m, y n) 523 123 Διδιάστατο Θεώρηµα Συνέλιξης: f x, y h x,
Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:
Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Περιοδικά
Εργαστήριο ADICV3. Image filtering, Point Processing and Histogram Equalisation. Κώστας Μαριάς 20/3/2017
Εργαστήριο ADICV3 Image filtering, Point Processing and Histogram Equalisation Κώστας Μαριάς 20/3/2017 Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab Σκοπός εργαστηρίου Θα φτιάξουμε
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Εισαγωγή Τι είναι η εικόνα; Μια οπτική αναπαράσταση με την μορφή μιας συνάρτησης f(x, y) όπου η
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab XXX Introduction to Python Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Image Processing and Computer Vision with
Παρουσίαση Νο. 5 Βελτίωση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 11: Εφαρμογές DFT Ταχύς Μετασχηματισμός Fourier (FFT) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Διακριτός Μετασχηματισμός Fourier Υπολογισμός Γραμμικής Συνέλιξης
17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση
ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[
Digital Image Processing
Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση
Εργαστήριο ADICV2 Labs 2-6
Εργαστήριο ADICV2 Labs 2-6 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab
Digital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
Μάθημα: Μηχανική Όραση
Μάθημα: Μηχανική Όραση Εργασία 2: Advances in Digital Imaging and Computer Vision Ομάδα χρηστών 2 : Τσαγκαράκης Νίκος, Καραμήτρος Κώστας Εισαγωγή Σκοπός της άσκησης, είναι να εξοικειωθούμε με κάποιες βασικές
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ Γρήγορος Μετασχηματισμός Fourier Το ζεύγος εξισώσεων που ορίζουν το
Ψηφιακή Επεξεργασία Εικόνων
Ψηφιακή Επεξεργασία Εικόνων Εικόνα : αναπαράσταση των πραγμάτων Επεξεργασία : βελτίωση, ανάλυση, αντίληψη Βασικές έννοιες και μεθοδολογίες ψηφιακής επεξεργασίας εικόνων Θεμελιώδη θέματα για την περιοχή
3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές
ΗΜΥ 429 9. Γρήγορος Μετασχηματισμός Fourier Εφαρμογές 1 Ζεύγη σημάτων Συνάρτηση δέλτα: ΔΜΦ δ[ n] u[ n] u[ n 0.5] (συχνότητα 0-0.5) Figure από Scientist s and engineer s guide to DSP. 2 Figure από Scientist
Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το
Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διακριτός Μετασχηματισμός Fourier
Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 3
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 3 Διακριτός Μετασχηματισμός Fourier (DFT) Ο διακριτός μετασχηματισμός Fourier (DFT) αποτελεί το βασικό εργαλείο της Σχετικές εντολές του Matlab: fft, abs, rand, randn,
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή
Στοιχεία επεξεργασίας σημάτων
Στοιχεία επεξεργασίας σημάτων ΕΜΠ - ΣΧΟΛΗ ΑΤΜ Ακ. Έτος 2004-2005 Β.Βεσκούκης, Δ.Παραδείσης, Δ.Αργιαλάς, Δ.Δεληκαράογλου, Β.Καραθανάση, Β.Μασσίνας Γενικά στοιχεία για το μάθημα Εισάγεται στα πλαίσια της
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) Εισαγωγή Μέχρι στιγμής έχουμε δει το Μετασχηματισμό Fourier Διακριτού
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό
Ασκήσεις Επεξεργασίας Εικόνας
Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Επεξεργασία Εικόνας Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Βιοϊατρική τεχνολογία
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 3: Επεξεργασία σημείων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Ιατρικά Ηλεκτρονικά. Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων
Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/
Συστήματα Πολυμέσων. Ενότητα 8: Συμπίεση Εικόνας κατά JPEG Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συμπίεση Εικόνας κατά JPEG 2000 Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα
-Μαρτ-9 ΗΜΥ 49. Παραθύρωση Ψηφιακά φίλτρα . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 Είδη παραθύρων Bartlett τριγωνικό: n, n Blacman: πn 4πn.4.5cos +.8cos, n < . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 3 Hamming:
Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ. 11/4/2005 Βασιλεία Καραθαναση Λέκτορας Ε.Μ.Π
Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Επεξεργασία και φιλτράρισμα Λέκτορας Ε.Μ.Π 1 Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Η εικόνα αποτελεί μία πηγή πληροφορίας. Τη συναντάμε ως : εικόνα ακίνητη (φωτογραφία) κινούμενη(τηλεόραση) Επίσης : ασπρόμαυρη
Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ.
Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRASFORM / x X x X x X x 3 x DFT X 3 X x 5 X 5 x 6 X 6 x 7 X 7 / DFT - Ορισμοί αναφέρεται σε μία πεπερασμένου μήκους ακολουθία σημείων
Σήματα και Συστήματα ΙΙ
Σήματα και Συστήματα ΙΙ Ενότητα 3: Διακριτός και Ταχύς Μετασχηματισμός Fourier (DTF & FFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Διακριτού Χρόνου Σειρές Fourier Περιοδική Επέκταση Σήµατος Πεπερασµένης Χρονικής Διάρκειας.
Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)
Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας
HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και
ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ενότητα #3: Φίλτρα Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,
Group (JPEG) το 1992.
Μέθοδοι Συμπίεσης Εικόνας Πρωτόκολλο JPEG Συμπίεση Εικόνας: Μείωση αποθηκευτικού χώρου Ευκολία στη μεταφορά αρχείων Δημιουργήθηκε από την ομάδα Joint Photographic Experts Group (JPEG) το 1992. Ονομάστηκε
Ο μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
Wavelets α. Τι είναι τα wavelets;
α. Τι είναι τα wavelets; Τα wavelets είναι συναρτήσεις που ικανοποιούν συγκεκριμένες απαιτήσεις. Το όνομα προέρχεται από την απαίτηση να ολοκληρώνονται στο μηδέν, waving πάνω και κάτω από τον άξονα-x.
ΑΝΑΛΥΣΗ ΑΠΟΚΡΙΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ FOURIER
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΝΑΛΥΣΗ ΑΠΟΚΡΙΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ FOURIER έκδοση DΥΝI-FAN_2016b
Επανάληψη Μιγαδικών Αριθμών
Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,
Advances in Digital Imaging and Computer Vision. Image Registration and Transformation
Advances in Digital Imaging and Computer Vision Image Registration and Transformation Γεωμετρικοί Μετασχηματισμοί Εικόνας και Ευθυγράμμιση Image Transformation and Registration Κώστας Μαριάς Αναπληρωτής
Παρουσίαση Νο. 6 Αποκατάσταση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Εισαγωγή (1/2) Αναίρεση υποβάθμισης που μπορεί να οφείλεται: Στο οπτικό σύστημα (θόλωμα λόγω κακής εστίασης, γεωμετρικές παραμορφώσεις...)
Digital Image Processing
Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι
20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier
ΗΜΥ 429 8. Διακριτός Μετασχηματισμός Fourier 1 Μετασχηματισμός Fourier 4 κατηγορίες: Μετασχηματισμός Fourier: σήματα απεριοδικά και συνεχούς χρόνου Σειρά Fourier: σήματα περιοδικά και συνεχούς χρόνου Μετασχηματισμός
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου
ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων
Fast Fourier Transform
Fast Fourier Transform Παναγιώτης Πατσιλινάκος ΕΜΕ 19 Οκτωβρίου 2017 Παναγιώτης Πατσιλινάκος (ΕΜΕ) Fast Fourier Transform 19 Οκτωβρίου 2017 1 / 20 1 Εισαγωγή Στόχος Προαπαιτούμενα 2 Η ιδέα Αντιστροφή -
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Ανάλυση ΓΧΑ Συστημάτων
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 9 με Μετασχηματισμούς Κεφ. 5 (εκτός 5.7.4 και 5.3 μόνο από διάλεξη) Ένα ΓΧΑ σύστημα καθορίζεται πλήρως από Κρουστική απόκριση (impulse response)
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 6: Απόκριση Συχνότητας Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier Διακριτού Χρόνου Η έννοια της Απόκρισης Συχνότητας Ιδιότητες της Απόκρισης
FFT. Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 5 και Ανάλυση με (Κεφ. 9.0-9.5, 10.0-10.2) ΟΔΜΦ Ο αντίστροφος ΔΜΦ Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον αντίστροφο ΔΜΦ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 7 : Πρότυπο συμπίεσης JPEG Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER
ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει
Τηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 10: Ραδιομετρική Ενίσχυση Χωρική Επεξεργασία Δορυφορικών Εικόνων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ
Εργαστήριο Ηλεκτρακουστικής Ι Άσκηση 1 - Σελίδα 1 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1. ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ/ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αρχικά, για την καλύτερη κατανόηση
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά
Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient
Ψηφιακή Επεξεργασία Σήματος
Ψηφιακή Επεξεργασία Σήματος Εργαστήριο 3 Εισαγωγή στα Σήματα Αλέξανδρος Μανουσάκης Τι είναι σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται
ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΣΕΡΡΩΝ Τμήμα ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ
Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα
Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Βασικές Έννοιες Διεργασίες στο πεδίο του χώρου f(x, y) : εικόνα εισόδου g(x, y) : εικόνα εισόδου g x, y = T f(x, y) T : τελεστής που εφαρµόζεται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες
Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι:
Άσκηση 1 Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: i. Προσδιορίστε το σήμα πληροφορίας και το φέρον. ii. Βρείτε το δείκτη διαμόρφωσης. iii. Υπολογίστε το λόγο της ισχύος στις πλευρικές ζώνες
Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ
Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός
3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα
3-Φεβ-2009 ΗΜΥ 429 4. Σήματα 1 Σήματα Σήματα είναι: σχήματα αλλαγών που αντιπροσωπεύουν ή κωδικοποιούν πληροφορίες σύνολο πληροφορίας ή δεδομένων σχήματα αλλαγών στο χρόνο, π.χ. ήχος, ηλεκτρικό σήμα εγκεφάλου
Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT
Σ. Φωτόπουλος ΨΕΣ Κεφάλαιο 3 ο DTFT -7- Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT (discrete time Fourier transform) 3.. Εισαγωγικά. 3.. Είδη µετασχηµατισµών Fourier Με την ονοµασία Μετασχηµατισµοί Fourier
Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 19: Φίλτρα (IV) Σχεδιασμός φίλτρων FIR Είδαμε ότι για φίλτρα IIR συνήθως σχεδιάζουμε ένα φίλτρο ΣΧ και μετασχηματίζουμε Για φίλτρα FIR θα δούμε
Διάλεξη 7. Μετασχηματισμός Hilbert. Κεφ. 11 (εκτός 11.0 και ) Για κάθε συνάρτηση ισχύει. Αν η συνάρτηση είναι αιτιατή (causal)
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 7 Κεφ. 11 (εκτός 11.0 και 11.4.1) Για κάθε συνάρτηση ισχύει Αν η συνάρτηση είναι αιτιατή (causal) Ησυνάρτισηx[n] καθορίζεται από x e [n]
τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:
κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ
Αντίστροφος Μετασχηματισμός Ζ. Υλοποίηση συστημάτων Διακριτού Χρόνου. Σχεδίαση φίλτρων
Αντίστροφος Μετασχηματισμός Ζ Υλοποίηση συστημάτων Διακριτού Χρόνου Σχεδίαση φίλτρων Αντίστροφος Μετασχηματισμός Ζ Αντίστροφος ΜΖ (inverse-zt) Προσεγγίσεις εύρεσης του αντίστροφου ΜΖ Τυπικά ο i-zt γίνεται