Το ποσοστό υπολογίζεται πάντα στην αρχική τιμή και ποτέ στην τελική. Όταν το ζητούμενο σε ένα πρόβλημα είναι το ποσοστό %, δηλαδή το
|
|
- Ερατώ Ζαΐμης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Μαθηματικά Κεφάλαιο 44 Λύνω προβλήματα με ποσοστά: Βρίσκω το ποσοστό στα εκατό Όνομα: Ημερομηνία: / / Θεωρία Βρίσκω το ποσοστό στα εκατό (%) Το ποσοστό υπολογίζεται πάντα στην αρχική τιμή και ποτέ στην τελική. Όταν το ζητούμενο σε ένα πρόβλημα είναι το ποσοστό %, δηλαδή το ποσοστό σε αρχική τιμή 100, για να το λύσουμε πρέπει να ξέρουμε την αρχική τιμή και την αύξηση ή μείωση στην αρχική τιμή. Για να βρω ένα ποσοστό, χρησιμοποιώ έναν από τους παρακάτω τρόπους: 1ος τρόπος: Βρίσκω (αν δεν ξέρω ήδη) την αρχική τιμή και τη διαφορά (αύξηση ή μείωση) της αρχικής από την τελική τιμή. Το ποσοστό είναι ίσο με το πηλίκο της διαφοράς προς την αρχική τιμή. Διαφορά (Αρχικής Τελικής) 2ος τρόπος: Σχηματίζω πίνακα ποσών και τιμών (αναλογία). 3ος τρόπος: Με απλή μέθοδο των τριών. Πρόβλημα Ένα ζευγάρι παπούτσια πωλείται 130, ενώ στις εκπτώσεις πωλείται 104. Ποιο είναι το ποσοστό έκπτωσης; Αποστόλης Αγγελόπουλος 1
2 Στο πρόβλημα γνωρίζουμε: Την τιμή πριν τις εκπτώσεις 130 () Την τιμή στις εκπτώσεις που είναι 104. (Τελική Τιμή) Ζητάμε το ποσοστό έκπτωσης στα εκατό % (Ποσοστό %) 1ος Τρόπος Βρίσκω τη διαφορά της αρχικής από την τελική τιμή. Το ποσοστό είναι ίσο με το πηλίκο της διαφοράς προς την αρχική τιμή. Η διαφορά Αρχικής - Τελικής Τιμής είναι: = 26 = Απάντηση: Το ποσοστό έκπτωσης είναι 20% = 0, 2 = 20% 2ος Τρόπος: Με πίνακα τιμών όπως στα ανάλογα ποσά. ΣΚΕΦΤΟΜΑΙ : Η τιμή πριν τις εκπτώσεις () ήταν 130 η Τιμή στις εκπτώσεις (Τελική Τιμή) είναι 104 Επομένως το ποσό της έκπτωσης (τα χρήματα που κερδίζουμε) είναι 26 ( ) Ποια είναι η έκπτωση αν η ήταν 100 (πριν τις εκπτώσεις) έκπτωση 26 χ αφού τα ποσά είναι ανάλογα λύνουμε με τα σταυρωτά γινόμενα: 130 χ = χ = 2600 χ = 2600 : 130 χ = 20 η έκπτωση στα 100, επομένως ποσοστό 20% Απάντηση: Το ποσοστό έκπτωσης είναι 20% Αποστόλης Αγγελόπουλος 2
3 3ος Τρόπος: Με απλή μέθοδο των τριών όπως στα ανάλογα ποσά. ΣΚΕΦΤΟΜΑΙ : Αν η τιμή πριν τις εκπτώσεις () ήταν 130 η Τιμή στις εκπτώσεις (Τελική Τιμή) είναι 104 Επομένως το ποσό της έκπτωσης (τα χρήματα που κερδίζουμε) είναι 26 ( ) Ποια είναι η έκπτωση αν η ήταν 100 Αν η ήταν 130 Θα είχαμε έκπτωση 26 ( ) Αν η ήταν 100 Θα είχαμε έκπτωση χ ΘΥΜΑΜΑΙ: Στην απλή μέθοδο των τριών στα ανάλογα ποσά πολλαπλασιάζω τον αριθμό που είναι πάνω από το x με το αντεστραμμένο κλάσμα των άλλων δύο αριθμών. χ= > χ= ποσοστό 20% Απάντηση: Το ποσοστό έκπτωσης είναι 20% -> χ= 20 η έκπτωση στα 100, επομένως Αποστόλης Αγγελόπουλος 3
4 Προβλήματα 1. Ο Άκης καταγράφει τα αυτοκίνητα που διέρχονται από τον δρόμο του σπιτιού του και σημείωσε ότι σε μία ώρα από τα 250 αυτοκίνητα που πέρασαν τα 80 ήταν κόκκινα. Τι ποσοστό στα εκατό αυτοκίνητα είναι κόκκινα; Σύνολο αυτ/των 250 Κόκκινα Στα αυτ/τα τα είναι κόκκινα στα 100 αυτ/τα χ; είναι κόκκινα χ= χ= χ= τα κόκκινα Απάντηση:: Τα 2. Στο Λύκειο της γειτονιάς μου πέρυσι οι μαθητές της Α Λυκείου ήταν 300 και φέτος 345. Ποιο είναι το ποσοστό της αύξησης ; Η διαφορά αρχικής τελικής είναι μαθητές. Η αρχική τιμή είναι μαθητές. Μαθητές πέρυσι (Αρχική) Αύξηση Σε 300 μαθητές -> αύξηση 45 σε 100 μαθητές -> χ αύξηση χ= χ= χ= η αρχική τιμή Απάντηση:: Αποστόλης Αγγελόπουλος 4
5 3. Ο Πέτρος ζύγιζε 75 κιλά αλλά έκανε δίαιτα και έχασε 9 κιλά. Ποιο ήταν το ποσοστό της μείωσης του βάρους του; Η διαφορά αρχικής τελικής είναι κιλά. Η αρχική τιμή είναι. κιλά. Αρχικό βάρος Μείωση βάρους Αρχικό βάρος κ. μείωση κ. Αρχικό βάρος κ. μείωση κ. χ= χ= χ = κ. Απάντηση:: 4. Μια τηλεόραση κόστιζε 850. Την περίοδο των εκπτώσεων πουλήθηκε 646. Ποιο ήταν το ποσοστό της έκπτωσης; Η διαφορά αρχικής τελικής είναι. Η αρχική τιμή είναι.. Αρχική τιμή Αρχική τιμή έκπτωση Αρχική τιμή έκπτωση χ= χ= χ = κ. Απάντηση:: Αποστόλης Αγγελόπουλος 5
6 5. Μία αντιπροσωπεία αυτοκινήτων το 2018 πούλησε 225 αυτοκίνητα περισσότερα απ' ότι το Αν το 2018 πούλησε αυτοκίνητα, ποιο είναι το ποσοστό της αύξησης; Το 2017 (Αρχική τιμή) πούλησε αυτοκίνητα Η διαφορά αρχικής τελικής είναι αυτ.. Πωλήσεις 2017 Αύξηση. χ= χ= χ = αυτοκ. Απάντηση:: 6. Ο πληθυσμός του Δήμου Βόλου, σύμφωνα με την απογραφή του 2011, ήταν κάτοικοι. Ποιο είναι το ποσοστό αύξησης του πληθυσμού αν το 2001 ο πληθυσμός ήταν κάτοικοι; Η διαφορά αρχικής τελικής είναι κάτοικοι. Η αρχική τιμή είναι κάτοικοι.. Απάντηση:: χ= χ= χ = Αποστόλης Αγγελόπουλος 6
7 Απαντήσεις 1. Σύνολο αυτ/των Κόκκινα 80 χ Στα 250 αυτ/τα τα 80 είναι κόκκινα στα 100 αυτ/τα χ; είναι κόκκινα 250 χ = > 250 χ = > χ = : 250 -> χ = 32 κόκκινα αυτοκίνητα χ= χ= χ=32 κόκκινα αυτοκίνητα Απάντηση: Τα κόκκινα αυτοκίνητα είναι το 32% των αυτοκινήτων 2. Η διαφορά (αρχικής τελικής) είναι 45 μαθητές. Η αρχική τιμή είναι 300 μαθητές. = 45 = 0, 15 = 15% 300 Μαθητές πέρυσι (Αρχική) Αύξηση 45 χ 300 χ = > 300 χ = > χ = : 300 -> χ = 15 μαθητές η αύξηση δηλ. 15% Σε 300 μαθητές -> αύξηση 45 σε 100 μαθητές -> χ αύξηση χ= χ= χ= 15 μαθητές η αύξηση δηλ. 15% Απάντηση: Οι μαθητές αυξήθηκαν κατά 15% Αποστόλης Αγγελόπουλος 7
8 3. Η διαφορά (αρχικής-τελικής) είναι 9 κιλά. Η αρχική τιμή είναι 75 κιλά. = 9 = 0, 12 = 12% 75 Αρχικό βάρος Μείωση βάρους 9 χ 75 χ = > 75 χ = 900 -> χ = 900 : 75 -> χ = 12 κιλά η μείωση του βάρους στα 100 κιλά δηλ. 12% Αρχικό βάρος 75 κ. μείωση 9 κ. Αρχικό βάρος 100 κ. μείωση χ κ. χ= χ= χ= 12 κιλά η μείωση του βάρους στα 100 κιλά δηλ. 12% Απάντηση: Το βάρος του Πέτρου μειώθηκε κατά 12% 4. Η διαφορά αρχικής τελικής είναι 204 ( ). Η αρχική τιμή είναι 850. = 204 = 0, 24 ή 24% 850 Αρχική τιμή Έκπτωση 204 Χ 850 χ = > 850 χ = > χ = : 850 -> χ = 24 στα εκατό η έκπτωση δηλ. 24% Αρχική τιμή 850 έκπτωση 204 Αρχική τιμή 100 έκπτωση χ χ= χ= χ = 24 στα εκατό η έκπτωση δηλ. 24% Απάντηση: Η τηλεόραση πουλήθηκε με έκπτωση 24 %. Αποστόλης Αγγελόπουλος 8
9 5. Το 2017 (Αρχική τιμή) πούλησε = αυτοκίνητα Η διαφορά αρχικής τελικής είναι 225 αυτ.. πωλήσεις = 225 = 0, 036 = 3, 6% αύξηση στις Πωλήσεις Αύξηση 225 χ χ = > χ = > χ = : > χ = 3,6 αυτοκίνητα περισσότερα στα 100 δηλ. αύξηση 3,6% Στα αυτ. αύξηση 225 αυτ. Στα 100 αυτ. αύξηση χ αυτ. χ= χ= χ = 3,6 αυτοκίνητα περισσότερα στα 100 δηλ. αύξηση 3,6% Απάντηση: Αύξηση πωλήσεων κατά 3,6% 6. Η διαφορά αρχικής τελικής είναι = κάτοικοι. Η αρχική τιμή είναι κάτοικοι. = = 0, 02 = 2% Κάτοικοι Αύξηση χ χ = > χ = > χ = : > χ = 2 κάτοικοι στους 100 αύξηση δηλ. 2% Σε πληθυσμό αύξηση Σε πληθυσμό 100 αύξηση χ χ= χ = χ= 2 κάτοικοι στους 100 αύξηση δηλ. 2% Απάντηση: Αύξηση πληθυσμού κατά 2% Αποστόλης Αγγελόπουλος 9
Τα ποσά στα ποσοστά είναι πάντα ανάλογα.
Μαθηματικά Κεφάλαιο 42 Λύνω προβλήματα με ποσοστά: Βρίσκω την τελική τιμή Όνομα: Ημερομηνία: / / Θεωρία Τα ποσά στα ποσοστά είναι πάντα ανάλογα. Άρα μπορούμε να λύνουμε τα προβλήματα ποσοστών με τις μεθόδους
ΚΕΦΑΛΑΙΟ 43ο. Από πού έρχοµαι; Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:
ΚΕΦΑΛΑΙΟ 43ο Σίγουρα την αρχική τιµή! Λύνω προβλήµατα µε ποσοστά: Βρίσκω την αρχική τιµή Από πού έρχοµαι; Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να µάθεις να λύνεις προβλήµατα
Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4%
Ποσοστά: Τα Μαθηματικά της Αγοράς ===================================================================================== Κώστας Γ. Σάλαρης - Μάνια Κ. Σάλαρη Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις
Α. για να βρω το διαιρετέο
Μαθηματικά Κεφάλαιο 29 Εξισώσεις στις οποίες ο άγνωστος είναι διαιρετέος ή διαιρέτης Όνομα: Ημερομηνία: / / Θεωρία Εξίσωση στην οποία ο άγνωστος είναι διαιρετέος ΘΥΜΑΜΑΙ: Σε κάθε τέλεια διαίρεση έχουμε:
Επαναληπτικές ασκήσεις για το Πάσχα.
Μαθηματικά A Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Μέρος Β - Ασκήσεις. Κεφάλαιο 1 ο. 1. Σε ένα χωράφι καλλιεργούνται 200 δένδρα, ελιές, λεμονιές και πορτοκαλιές. Οι ελιές μαζί με τις λεμονιές
Ασκήσεις
Ασκήσεις Μάθημα 1 ο 1. Να κάνεις τις προσθέσεις : 209 101 595 614 185 212 709 221 127 667 + 127 + 111 + 100 + 202 + 103 548 921 916 943 955 345 538 816 248 347 723 707 340 248 394 307 + 249 + 237 + 185
Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ
Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ Στην καθημερινή ζωή μας ακούμε φράσεις όπως: Ο έμπορος κερδίζει 30% (τριάντα τοις εκατό ή τριάντα στα εκατό) στην τιμή της αγοράς Τι σημαίνει ο έμπορος κερδίζει 30%; Αν
ΑΝΑΛΟΓΑ ΑΝΤΙΣΤΡΟΦΟΣ ΑΝΑΛΟΓΑ - ΠΟΣΟΣΤΑ. 1. Ο καυστήρας του καλοριφέρ καίει 60 λίτρα πετρέλαιο σε 6 ώρες. Πόσα λίτρα πετρέλαιο θα κάψει σε 15 ώρες ;
ΑΝΑΛΟΓΑ ΑΝΤΙΣΤΡΟΦΟΣ ΑΝΑΛΟΓΑ - ΠΟΣΟΣΤΑ 1. Ο καυστήρας του καλοριφέρ καίει 60 λίτρα πετρέλαιο σε 6 ώρες. Πόσα λίτρα πετρέλαιο θα κάψει σε 15 ώρες ; 60 λίτρα πετρέλαιο 6 ώρες 15 ώρες Χ ; λίτρα πετρέλαιο θα
6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ
1 6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ ΘΕΩΡΙΑ 1. Τρόποι ελέγχου αν δύο ποσά είναι ανάλογα α) Εξετάζουµε αν µεταβάλλονται µε τον ίδιο τρόπο. ηλαδή, όταν πολλαπλασιάζεται (διαιρείται) η τιµή του ενός µε έναν αριθµό,
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα:
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Κλάσματα Η έννοια του κλάσματος. Να γραφούν σαν κλάσματα τα πηλίκα των διαιρέσεων 0 δ.. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα δ.. Ένα σχολείο
Μαθηματικά A Γυμνασίου
Μαθηματικά A Γυμνασίου Κεφ 5 ο - Ποσοστά. Μέρος Α Θεωρία 1. Πως ονομάζεται το σύμβολο α% και με τι είναι ίσο; 2. Πως μπορούμε να υπολογίσουμε το α% του β; 3. Τι είναι ο ΦΠΑ και πως τον υπολογίζουμε; Μέρος
Ελληνική Μαθηματική Εταιρεία Παράρτημα Καστοριάς Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ 3ου ΔΙΑΓΩΝΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΩΝ 2η ΦΑΣΗ 5 Απριλίου 2014
Ελληνική Μαθηματική Εταιρεία Παράρτημα Καστοριάς Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ 3ου ΔΙΑΓΩΝΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΩΝ 2η ΦΑΣΗ 5 Απριλίου 2014 Αγαπητοί μαθητές, σας καλωσορίζουμε στην δεύτερη φάση του τρίτου τοπικού διαγωνισμού
Διαχειρίζομαι αριθμούς έως το 10.000
Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,
Ρητοί Αριθμοί - Η ευθεία των αριθμών
ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ρητοί Αριθμοί - Η ευθεία των αριθμών Ρητοί αριθμοί (ℚ ονομάζονται οι αριθμοί οι οποίοι μπορούν να εκφραστούν με ένα κλάσμα με ακέραιους όρους. Με
ΠΟΣΟΣΤΑ. Τι πρέπει να θυμάμαι:
ΠΟΣΟΣΤΑ Τι πρέπει να θυμάμαι: Ένα ποσοστό επί τοις εκατό συμβολίζεται με το σύμβολο (%) και είναι ένα δεκαδικό κλάσμα με παρονομαστή το. Θυμάμαι ότι δεκαδικά λέω τα κλάσματα που έχουν παρονομαστή το 10
Μαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη: ΣΤ Η γάτα και το ποντίκι 1. Ένα ποντίκι βρίσκεται πάνω σε έναν τοίχο ύψους 2 μέτρων και κάτω στο έδαφος, περιμένοντας το, βρίσκεται μια γάτα. Κατά τη διάρκεια της
Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ
ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής
1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5
Μαθηματικά Α' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 5 να διαιρείται ακριβώς με το, το και το 5 (β)
1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ
1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;
Η εξίσωση 0 x = 0 επαληθεύεται για οποιαδήποτε τιμή του x και ο- νομάζεται ταυτότητα ή αόριστη.
ΜΕΡΟΣ Α 2.1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 16 2. 1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 Η εξίσωση αx+β=0 Κάθε εξίσωση της μορφής αx+β=0 όπως για παράδειγμα οι εξισώσεις x- 2=0, 4x=-,2x-2=x+6 ονομάζεται εξίσωση 1ου βαθμού με έναν άγνωστο
qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop
qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Α Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 3 η έκδοση 29/04/15
Τι είναι τα πολλαπλάσια ;
Μαθηματικά Κεφάλαιο 10 Πολλαπλάσια και διαιρέτες Όνομα: Ημερομηνία: / / Θεωρία Πώς τα βρίσκουμε; Τι είναι τα πολλαπλάσια ; Πολλαπλάσια ενός φυσικού αριθμού ονομάζονται οι αριθμοί που προκύπτουν όταν τον
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ
ΚΕΦΑΛΑΙΟ 2 Ο : ΚΛΑΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Όταν ένα μέγεθος ή ένα σύνολο χωριστεί σε ν ίσα μέρη, το κάθε ένα από αυτά ονομάζεται.. και συμβολίζεται : 2. Κάθε τμήμα του μεγέθους ή του συνόλου αντικειμένων,
Από τι αποτελούνται; 4 όροι. Θεωρία. Κλάσμα ονομάζω τον αριθμό που φανερώνει. Κλάσματα ομώνυμα και ετερώνυμα. Μαθηματικά. Όνομα:
Μαθηματικά Κεφάλαιο Όνομα: Ημερομηνία: / / Θεωρία Κλάσμα ονομάζω τον αριθμό που φανερώνει ένα μέρος ενός συνόλου. Παράδειγμα Τα κλάσματα τα χρησιμοποιούμε για να δηλώσουμε το μέρος ενός πράγματος, δηλαδή
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε
6.3 ΑΝΑΛΟΓΑ ΠΟΣΑ Ι ΙΟΤΗΤΕΣ
1 6.3 ΑΝΑΛΟΓΑ ΠΟΣΑ Ι ΙΟΤΗΤΕΣ ΘΕΩΡΙΑ 1. Ανάλογα ποσά : ύο ποσά τα λέµε ανάλογα όταν µεταβάλονται µε τέτοιο τρόπο ώστε όταν πολλαπλασιάζεται (διαιρείται) το ένα µε έναν αριθµό να πολλαπλασιάζεται (διαιρείται)
qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop
qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Α Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 5 η έκδοση 0/04/7
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα Τι παρατηρήσατε στο video; 1η δραστηριότητα (Φύλλο Εφαρμογής (1) Στο ορθογώνιο τρίγωνο ΑΒΓ
Μαθηματικά Α Γυμνασίου
Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο
Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα
Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην
ΚΕΦΑΛΑΙΟ 37ο. Παίρνοντας αποφάσεις! Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:
ΚΕΦΑΛΑΙΟ 37ο Λύνω προβλήµατα µε αντιστρόφως ανάλογα ποσά Παίρνοντας αποφάσεις! Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: 1. Να εξασκηθείς στην αναγνώριση δύο ποσών που είναι
y είναι πάντα σταθερός και ίσος µε α, δηλα- y x 0.O λόγος αυτός λέγεται κλίση της ευθείας y = αx. x ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ
ΜΕΡΟΣ Α. ΣΥΝΑΡΤΗΣΗ =α. ΣΥΝΑΡΤΗΣΗ =α Ποσά ανάλογα- Η συνάρτηση =α Δύο ποσά λέγονται ανάλογα, όταν πολλαπλασιάζοντας τις τιµές του ενός ποσού µε έναν αριθµό, τότε και οι αντίστοιχες τιµές του άλλου πολλαπλασιάζονται
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ. Ο πολλαπλασιασμός στους δεκαδικούς αριθμούς. Ενότητα 5. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ Ο πολλαπλασιασμός στους δεκαδικούς αριθμούς Ενότητα 5 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 29 β τεύχος Ο πολλαπλασιασμός στους δεκαδικούς αριθμούς 29 η Άσκηση Να υπολογίσεις με διαφορετικούς τρόπους
Ασκήσεις. Απάντηση : Η μέση θερμοκρασία της εβδομάδας στην Αλεξάνδρεια είναι 18,3 ο C.
Ασκήσεις Μάθημα 25 ο 1. Ένα προϊόν πωλείται σε 3 διαφορετικά καταστήματα στις παρακάτω τιμές : 18, 20 και 22. Ποια είναι η μέση τιμή πώλησης του προϊόντος ; Κατάστημα Α Β Γ Τιμές 18 20 22 Μ.Ο. 18 20 22
Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)
Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές
Α.Π.Σ. «ΟΙ ΑΜΠΕΛΟΚΗΠΟΙ» Επιμέλεια θεμάτων ΡΕΡΡΕΣ ΓΕΩΡΓΙΟΣ. κυκλώστε απάντηση σε όλμ τα θέματα
Α.Π.Σ. «ΟΙ ΑΜΠΕΛΟΚΗΠΟΙ» ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ Διάρκεια : 120 λεπτά ΕΠΙΠΕΔΟ 1 Ονοματεπώνυμο :.... Σχολείο:... Τηλέφωνο επικ/νίας :... για παιαια της; Ε? ΔΒΜΘΤ1ΚΟΥ Επιμέλεια θεμάτων Θέματα 5 μονάδων κυκλώστε
ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος
ΤΑ ΠΟΣΟΣΤΑ 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ν 100 80 Από συνήθεια λέµε «80 τοις εκατό» και γράφουµε
ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ. ΠΛΗΘΥΣΜΟΣ ΔΕΙΓΜΑ
1 4.1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ. ΠΛΗΘΥΣΜΟΣ ΔΕΙΓΜΑ ΘΕΩΡΙΑ 1.Πληθυσμός άτομα Πληθυσμός ονομάζεται ένα σύνολο του οποίου τα στοιχεία εξετάζουμε ως προς κάποιο χαρακτηριστικό. Τα στοιχεία του πληθυσμού
Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ. 27 32 Πηγή: e-selides ΜΑΘΗΜΑΤΙΚΑ ΚΕΦ. 27 Προσθέσεις Αφαιρέσεις τετραψήφιων - Προβλήματα 1. Χθες
Ποσοστά (Π%) Π % = Εξάσκηση: Μετατρέψτε τα ποσοστά σε ανάγωγα κλάσματα και δεκαδικούς ποσοστό 1) 20% 2) 25% 3) 30% βασική έννοια
βασική έννοια Ποσοστά (Π%) Π % = Τα ποσοστά είναι μια διαφορετική αναπαράσταση των κλασμάτων και των δεκαδικών! Α. Μετατροπή του δεκαδικού 0,35 σε ποσοστό Β. Μετατροπή του κλάσματος σε ποσοστό 0, 35 00
Περιεχόμενα 3. Προσπαθήστε, αν θέλετε, να φανταστείτε την κοινωνία μας χωρίς αριθμούς ή υπολογισμούς. Σημειώνουμε πού μένουμε με αριθμούς
Περιεχόμενα 3 Προσπαθήστε, αν θέλετε, να φανταστείτε την κοινωνία μας χωρίς αριθμούς ή υπολογισμούς. Σημειώνουμε πού μένουμε με αριθμούς στους δρόμους. Τηλεφωνούμε χρησιμοποιώντας αριθμούς. Τα χρήματά
Κριτήρια διαιρετότητας. Κριτήριο για το 2. Κριτήριο για το 5. Κριτήριο για το 10,100, Θεωρία. Όνομα: Μαθηματικά Κεφάλαιο 11.
Μαθηματικά Κεφάλαιο 11 Κριτήρια διαιρετότητας Όνομα: Ημερομηνία: / / Θεωρία Κριτήρια διαιρετότητας Κριτήρια διαιρετότητας λέγονται οι κανόνες με τους οποίους μπορώ να συμπεράνω χωρίς να κάνω τη διαίρεση
Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127
Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών
ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...
ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται
Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγική Σχολή Τμήμα Δημοτικής Εκπαίδευσης
Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγική Σχολή Τμήμα Δημοτικής Εκπαίδευσης Εργασία: Επίλυση προβλήματος Καθηγητής : Χαράλαμπος Λεμονίδης Όνομα φοιτήτριας: Μπεσικιώτη Ζωή, Α.Ε.Μ. 4385 από το σχολικό
ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ
ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ 1. Η συνδρομή για την συμμετοχή στον όμιλο κολύμβησης είναι 15 τον μήνα και 5 για κάθε φορά που χρησιμοποιούμε την πισίνα. Αν τον προηγούμενο μήνα πληρώσαμε 75, πόσες
ΚΕΦΑΛΑΙΟ 3 Ο ΑΡΙΘΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΑΡΙΘΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΡΟΟΔΟΙ ΤΥΠΟΛΟΓΙΟ ΠΡΟΟΔΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΓΕΝΙΚΟΣ ΟΡΟΣ ΓΕΝΙΚΟΣ ΟΡΟΣ " ÎÀ-{0}, + ( ν-) ω " ÎÀ-{0}, l - ω : διαφορά προόδου λ : λόγος
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 15 20) Πηγή πληροφόρησης: e-selides Έμαθα ότι: Κεφάλαιο 15 «Θυμάμαι τους δεκαδικούς αριθμούς» Όταν θέλω να
Θεωρία. Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα. Ιδιότητα αντιστρόφως ανάλογων ποσών. Αντιστρόφως ανάλογα ή αντίστροφα ποσά
Μαθηματικά Κεφάλαιο 36 Αντιστρόφως ανάλογα Όνομα: Ημερομηνία: / / ή αντίστροφα ποσά Θεωρία Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα οποία, όταν πολλαπλασιάζεται η τιμή του ενός ποσού με
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία
ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΙΑ ΤΑ ΠΟΣΟΣΤΑ. Σπύρος Φερεντίνος, Σχολικός Σύμβουλος ΠΕ03
ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΙΑ ΤΑ ΠΟΣΟΣΤΑ Σπύρος Φερεντίνος, Σχολικός Σύμβουλος ΠΕ03 ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: Μαθηματικά Α Γυμνασίου (Παράγραφοι Α5.1 - Α5.2, Ποσοστά) ΧΡΟΝΟΣ: 3 διδακτικές ώρες (τόσες
Αριθμητής = Παρονομαστής
Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα
Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής
Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,
Περιοδικοί δεκαδικοί αριθμοί. Περίοδος περιοδικού δεκαδικού αριθμού. Γραφή των περιοδικών δεκαδικών αριθμών. Δεκαδική μορφή ρητού :
Περιοδικοί δεκαδικοί αριθμοί Κάθε δεκαδικός αριθμός, ο οποίος έχει άπειρα δεκαδικά ψηφία τα οποία από ένα σημείο και μετά επαναλαμβάνονται ακριβώς τα ίδια, ονομάζεται περιοδικός δεκαδικός αριθμός. Πx.
ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ
ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 21 26) Πηγή πληροφόρησης: e-selides 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ - κεφ. 21 26 Συμπληρώνουμε σωστά τον παρακάτω
Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγική Σχολή Τμήμα Δημοτικής Εκπαίδευσης
Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγική Σχολή Τμήμα Δημοτικής Εκπαίδευσης Εργασία: Επίλυση προβλήματος Καθηγητής : Χαράλαμπος Λεμονίδης Όνομα φοιτήτριας: Μπεσικιώτη Ζωή, Α.Ε.Μ. 4385 από το σχολικό
2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ
.3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι
ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ. είκτες Ευηµερίας. Μέσος όρος χώρας ΑΕΠ κατά κεφαλή 2001 3,70 εκατ.δρχ. 4,05 8 Αποταµιευτικές καταθέσεις ανά κάτοικο
ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ Η Περιφέρεια Θεσσαλίας περιλαµβάνει τους νοµούς Καρδίτσας, Λάρισας, Μαγνησίας και Τρικάλων. Με έδρα τη Λάρισα, η Περιφέρεια συγκεντρώνει ποσοστό 6,9% του πληθυσµού και παράγει 6,3%
Λυμένες Ασκήσεις. Λύση
ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΥΝΑΡΤΗΣΗ y = αx + β Λυμένες Ασκήσεις 1. Στο ίδιο σύστημα αξόνων να παραστήσετε γραφικά τις ευθείες με εξισώσεις y = 1 x, y = 1 x +, y = 1 x Η εξίσωση y = 1 x για x = δίνει y = 1 Επομένως
ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ. ΕΠΑΝΑΛΗΨΗ 3 ης. Όνομα: Ημ/νία: 1. Βρίσκω το γινόμενο στους πιο κάτω πολλαπλασιασμούς: 3 Χ 9 = 8 Χ 8 = 10 Χ 8 = 9 Χ 9 =
ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΕΠΑΝΑΛΗΨΗ 3 ης ΕΝΟΤΗΤΑΣ Όνομα: Ημ/νία: 1. Βρίσκω το γινόμενο στους πιο κάτω πολλαπλασιασμούς: 3 Χ 9 = 8 Χ 8 = 10 Χ 8 = 9 Χ 9 = 3 Χ 5 = 6 Χ 7 = 11 Χ 9 = 8 Χ 5 = 6 Χ 5 = 7 Χ 8 = 6 Χ 11
ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 3
THE G C SCHOOL OF CAREERS UΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 3 Χρόνος: 1 ώρα και 30 λεπτά UΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 25 ερωτήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στο
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Σε μια ομάδα που αποτελείται από 7 άνδρες και 3 γυναίκες, 4 από τους άνδρες και από τις γυναίκες παίζουν σκάκι. Επιλέγουμε τυχαία ένα από τα άτομα αυτά.
Διδαςκαλία Γλώςςασ & Μακθματικών
Διαθεμαηική προζέγγιζη ζηη διδαζκαλία ηης Ελληνικής ως δεύηερης γλώζζας Διδαςκαλία Γλώςςασ & Μακθματικών Παραγωγι και επιμζλεια υλικοφ: Δζςποινα Παπαδοποφλου & Γιάννθσ Μιτηιασ 1 ποσοστά τι καταλαβαίνω
Κεφάλαιο 3. x 300 = = = Άσκηση 3.1
Άσκηση. Κεφάλαιο Έστω χ η πόσοτητα ενός αγαθού που παράγει μια επιχείρηση. Η κάθε μονάδα αυτής της ποσότητας μπορεί να πουλήθει στην τιμή που δίνεται από τη συνάρτηση P = 00. Το συνολικό κόστος για την
Συμπέρασμα: μεγαλύτερος είναι ο δεκαδικός αριθμός γιατί, τα κλάσματα έχουν ίδιους παρονομαστές και μεγαλύτερο είναι αυτό που έχει
Κώστας Γ. Σάλαρης Στη μαθηματικ πόλη έχουν δημιουργηθεί εδώ και πολλά χρόνια, τρεις ομάδες νέων ανεξάρτητες μεταξύ τους. Τα μέλη κάθε ομάδας έχουν δικούς τους κανόνες επικοινωνίας και σκέψης. Έχουν δημιουργσει
Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012. 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π.
Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012 Πρόοδοι 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π. 2. Να σχηματίσετε την Α.Π. που έχει α 8 =30 και α 12 =46 3. Σε Α.Π.
Θεωρία και ασκήσεις στα κλάσματα
Θεωρία Θεωρία και ασκήσεις στα κλάσματα. Πως λέγονται οι όροι ενός κλάσματος. Ο αριθμός που βρίσκεται πάνω από την γραμμή του κλάσματος λέγεται αριθμητής ενώ ο αριθμός που βρίσκεται κάτω από αυτήν λέγεται
Mέτρα (παράμετροι) θέσεως
Mέτρα (παράμετροι) θέσεως Είδη παραμέτρων Σκοπός μέτρων θέσεως Μέτρα θέσεως Αριθμητικός μέσος Επικρατούσα τιμή Διάμεσος Τεταρτημόρια Σύντομη περιγραφή Το πρώτο βήμα της ανάλυσης των δεδομένων, είναι η
Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια
Β ΓΥΜΝΑΣΙΟΥ ,,,,,,,
Τηλ 36653-367784 - Fa: 36405 Tel 36653-367784 - Fa: 36405 Νοεμβρίου 04 Β ΓΥΜΝΑΣΙΟΥ 3 74 3 3 Να υπολογίσετε την τιμή της παράστασης: :8 9 9 37 4 Πρόβλημα Ένας έμπορος συλλεκτικών αντικειμένων αγόρασε δύο
Σελίδα 5: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 4, Εξισώσεις και προβλήματα
Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 3 Περιεχόμενα Σελίδα 5: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 4, Εξισώσεις και προβλήματα Σελίδα
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελίδα
Ανατοκισμός. -Χρόνος (συμβολισμός n Ακέραιες περιόδους, μ/ρ κλάσμα χρονικών περιόδων)
Ανατοκισμός Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχικό κεφάλαιο ή παρούσα αξία (συμβολισμός Κ ο ή PV) -Τελικό κεφάλαιο ή μελλοντική αξία (συμβολισμός Κ n ή FV) -Επιτόκιο (συμβολισμός
Α.Π.Σ. «ΟΙ ΑΜΠΕΛΟΚΗΠΟΙ»
Α.Π.Σ. «ΟΙ ΑΜΠΕΛΟΚΗΠΟΙ» ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΠΑΙΔΙΑ τ η ς Γ ΓΥΜΝΑΣΙΟΥ Διάρκεια : 120 λεπτά ΕΠΙΠΕΔΟ 1 Ονοματεπώνυμο :.... Σχολείο:... Τηλέφωνο επικ/νίας Επιμέλεια θεμάτων \ ' Θέματα 5 μονάδων επιλέξτε
10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών
/3/7 HL R. VRIN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η
ΜΑΘΗΜΑΤΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ - 02
. Το εμβαδόν του παρακάτω σχήματος είναι ίσο με: 5α β. 6α γ. 9α δ. 4α ΜΑΘΗΜΑΤΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ - 0 α 3α α α. Αν το εμβαδόν του ορθογωνίου ΑΒΓΔΕΖ είναι 5m και το εμβαδόν του ορθογωνίου ΗΘΙΚ είναι 9m, πόσα
Ασκήσεις. Πρέπει να ξέρω ότι: Οτιδήποτε χωρίζεται σε ίσα μέρη είναι μια ακέραιη μονάδα.
Μάθημα 8 ο Ασκήσεις. Συμπλήρωσε τα παρακάτω κενά : Η Κυριακή έκοψε ένα μήλο σε ίσα μέρη Το μήλο είναι η ακέραιη μονάδα. Χωρίστηκε σε τέσσερα () ίσα μέρη. Τι μέρος του μήλου αντιπροσωπεύει κάθε κομμάτι
Άσκηση 1 (κλιμακωτή χρέωση) Ένα γραφείο ενοικίασης αυτοκινήτων εφαρμόζει την παρακάτω τιμολογιακή πολιτική: Πάγιο 30 ευρώ
Α ν α κ ε φ α λ α ι ω τ ι κ έ ς α σ κ ή σ ε ι ς Άσκηση 1 (κλιμακωτή χρέωση) Ένα γραφείο ενοικίασης αυτοκινήτων εφαρμόζει την παρακάτω τιμολογιακή πολιτική: Πάγιο 30 ευρώ Αριθμός χλμ Χρέωση (ευρώ / χλμ)
ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης
ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης ΠΑΛΙΕΣ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΛΙΕΣ ΑΝΤΙΛΗΨΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΠΑΣΧΑ
Όνομα:. Δ ΔΗΜΟΤΙΚΟΥ Ημερομηνία :. 1. Συμπληρώνω τον πίνακα : ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΠΑΣΧΑ Δ Μ δέκατα εκατοστά χιλιοστά Αριθμός 5,36 0,430 0,043 37,009 8,495 10,001 80,407 0,77 0,009 1,76 2. Γράφω με λέξεις
ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά
ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε
Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Μαΐου 019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη του κύκλου c: x + y = ρ στο σημείο του
Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου)
Kangourou Sans Frontières αγκουρό Ελλάς Επώνυµο:... Όνοµα:... Όνοµα πατέρα:... e-mail:... ιεύθυνση:... Τηλέφωνο:... Εξεταστικό έντρο:... Σχολείο προέλευσης:... Τάξη:... Θέµατα αγκουρό 007 Επίπεδο: 4 (για
1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ Η εξίσωση με και 0 ή 0 λέγεται γραμμική εξίσωση. Οι μεταβλητές είναι οι άγνωστοι της εξίσωσης αυτής. Οι αριθμοί λέγονται συντελεστές των αγνώστων
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α
1 ΣΚΗΣΙΣ ΠΝΛΗΨΗΣ 3 η Κ 1. Στο διπλανό σχήµα το τετράπλευρο παριστάνει µία τετράγωνη πλατεία και τα τετράπλευρα ΚΛΘ και ΗΜΡΖ παριστάνουν δύο κήπους. Η πλευρά του είναι 30m και η απόσταση των ΚΛ και ΡΜ είναι
Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το
Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί
α) να βρείτε το άθροισµα των τεσσάρων πρώτων όρων της S 4 και β) το άθροισµα των άπειρων όρων της.
Ερωτήσεις ανάπτυξης 1. * Να σχηµατίσετε τις γεωµετρικές προόδους µε: α) α 1 = 5 και λ = 3 2 1 β) α 1 = και λ = 3 1 γ) α 1 = - 20 και λ = 2 2. * Ποιον αριθµό πρέπει να προσθέσουµε στους αριθµούς 2, 16,
ΜΑΘΗΜΑΤΙΚΑ A ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 2016 14 ΙΑΝΟΥΑΡΙΟΥ 2017 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ 1 η ΑΣΚΗΣΗ Τρεις φίλοι, ο Γιώργος, ο Κώστας και ο Δημήτρης συνεννοήθηκαν να πηγαίνουν στο Δημοτικό στάδιο, για τρέξιμο. Λόγω
α) Πώς παίρνουμε αποφάσεις στην καθημερινή μας ζωή; Συμπληρώσετε τον παρακάτω πίνακα: τότε
1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 «Η δομή επιλογής εάν» Δραστηριότητα 1 α) Πώς παίρνουμε αποφάσεις στην καθημερινή μας ζωή;
Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4
Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Na λυθούν οι εξισώσεις : α) 2 3x 1 x 8 x 1 (απ.: x = -2) β) γ) 2x 7 x 1 (απ.: x = -12) 4 3 4 5 x 2 x 4 2 x (απ.: x = 1) 4 5 δ) x 1
ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ
2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.
Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ www.askisopolis.gr 3 4 .5381 Ένα κουτί περιέχει άσπρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 0, οι κόκκινες είναι 7, ενώ όλες οι μπάλες μαζί είναι
4. Να βρείτε την εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(,.
1. Τι ξέρετε για τη γραφική παράσταση των συναρτήσεων της μορφής ; Πώς ονομάζεται το ; Η γραφική παράσταση των συναρτήσεων της μορφής, είναι ευθεία γραμμή που διέρχεται από την αρχή των αξόνων. Το ονομάζεται
HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση
HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η οποία
1.4 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ
1 4 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ Ισότητα Ευκλείδειας διαίρεσης : Αν, δ φυσικοί αριθµοί µε δ 0, τότε υπάρχουν δύο άλλοι φυσικοί αριθµοί π και υ έτσι ώστε να ισχύει = δ π + υ όπου υ < δ Η διαίρεση