Mηχανή Atwood µε κινούµενη τροχαλία
|
|
- Λυσάνδρα Ευταξίας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΦΥΣ Διαλ.11 1 Mηχανή Atwood µε κινούµενη τροχαλία Θεωρείστε τη µηχανή Atwood του σχήµατος. (α) Να γραφούν οι τρεις εξισώσεις Fmα. Θεωρείστε θετική τη φορά προς τα πάνω. (β) Να βρεθεί η επιτάχυνση της µεσαίας µάζας (m) συναρτήσει των επιταχύνσεων των δύο άλλων µαζών. (γ) Να βρεθούν και οι τρεις επιταχύνσεις
2 ΦΥΣ Διαλ.11 Mηχανή Atwood µε κινούµενη τροχαλία (α) Να γραφούν οι τρεις εξισώσεις Fmα. Τ Τ Τ Τ α Τ Τ " α 1 F m1 1 T m1g α 3 " F m T + T mg F m3 3 T m3g " " m1 1 T m1g " m T mg " m3 3 T m3g Τρεις εξισώσεις αλλά με 4 αγνώστους: α 1,α,α 3,T 1 ακόμα εξίσωση
3 ΦΥΣ Διαλ.11 3 Μηχανή Atwood µε κινούµενη τροχαλία (β) Αρχή διατήρησης του νήµατος και η επιτάχυνση της µάζας m m 1 m m 3 ü Έστω η µάζα m 1 κινείται κατά y 1 προς τα πάνω και η µάζα m 3 κινείται κατά y 3 προς τα πάνω. Ø Το νήµα όµως δεν χάνεται, άρα µήκος νήµατος ίσο µε y 1 +y 3 πρέπει να εµφανιστεί στη µεσαία περιοχή. ü Αφού υπάρχουν τµήµατα νήµατος, το καθένα θα πρέπει να επιµηκυνθεί κατά (y 1 +y 3 )/. Η µάζα m πηγαίνει προς τα κάτω κατά το ίδιο διάστηµα y. Εποµένως µπορούµε να βρούµε την επιτάχυνσή της. # & dv dt d # dt " dy dt $ & % d d " y 1 + y 3 dt % $ dt [ ( ) ] ( + ) 1 ( 1 " $ ' # 3 (+) (+) m 1 y 1 d dt " $ # dy 1 dt m m 3 y 3 (-) ( y1 + y3) % ' + & d " $ dt # y dy 3 dt %% '' &&
4 ΦΥΣ Διαλ.11 4 Mηχανή Atwood µε κινούµενη τροχαλία (γ) Οι επιταχύνσεις των τριών µαζών και η τάση Τ του νήµατος Τώρα έχουµε 4 εξισώσεις µε 4 αγνώστους: 1 3 T mg (1) m 1 (5) T mg T mg () m m T 3mg (6) (3) 3m (4) T 3m( 31 ) + 3mg " T m(91 3g (7) " m(91 " 3g) " mg 1 10m1 mg 1 m Από τις (6) και (3) έχουµε: ) Από τις (1) και (7) έχουµε: g 5 Αντικαθιστώντας στις (5),(6) και (7) g 5 3 3g 5 T mg
5 Σχετική ταχύτητα ΦΥΣ Διαλ.11 5
6 ΦΥΣ Διαλ.11 6 Σχετική ταχύτητα Δύο παρατηρητές που κινούνται σχετικά ο ένας ως προς τον άλλο δεν συμφωνούν γενικά για το αποτέλεσμα ενός πειράματος Διαδρομή για παρατηρητή Α Διαδρομή για παρατηρητή Β Οι δύο παρατηρητές Α και Β βλέπουν διαφορετική διαδρομή για την μπάλα
7 ΦΥΣ Διαλ.11 7 Σκύλος-μπισκότο-βάρκα Aν κοιτάζατε από την στεριά τι θα βλέπατε? (ακίνητοι) v x Ο σκύλος ανεβαίνει στο κατάρτι και ρίχνει ένα µπισκότο. Για όλους που είναι στη βάρκα το µπισκότο δεν έχει καµιά κίνηση στην x-διεύθυνση Δηλαδή σα να υπήρχε µιά αρχική ταχύτητα στη x-διεύθυνση To µπισκότο ξεκινά µε v y 0 και καταλήγει µε v y v
8 Αδρανειακά συστήµατα ΦΥΣ Διαλ.11 8 x Έστω δύο συστήµατα αναφοράς S (αδρανειακό) και S (κινούµενο µε σταθερή ταχύτητα v 0 ως προς το αδρανειακό σύστηµα) O S r z v 0 t Α r v 0 Α x r z r O S y, y Το σύστηµα S κινείται µε ταχύτητα -v 0 ως προς το S Τα διανύσµατα θέσης ενός σώµατος όπως µετρούνται από παρατηρητές στα συστήµατα είναι r και r Μπορούµε να περιγράψουµε τη θέση του σώµατος Α στο σύστηµα S συναρτήσει της θέσης του στο S: r A r A + v 0 t v d r A v" A + v A d r A " 0 dt dt + d ( v 0 t) dt
9 ΦΥΣ Διαλ.11 9 Σχετική ταχύτητα Παράδειγμα v Ως προς το τρένο Ως προς το έδαφος u Η ταχύτητα της µπάλας ως προς το έδαφος θα είναι u + v u Αν η ταχύτητα u είναι σταθερή τότε η επιτάχυνση ως προς το έδαφος είναι η ίδια ως προς το τρένο, επειδή "#$%& d( u + v) dt d u dt + d v dt 0 + d v dt '(")% Η επιτάχυνση που µετρούν παρατηρητές που κινούνται µε σταθερή σχετική ταχύτητα είναι η ίδια και για τους παρατηρητές Άρα µετρούν και την ίδια δύναµη πάνω στο σώµα F m F όπως θα έπρεπε για δύναµη v Υποθέσεις: Ίδιος χρόνος και για τους παρατηρητές Ίδια µονάδα µέτρησης αποστάσεων Ίδια µάζα
10 Σχετική ταχύτητα Παράδειγµα ΦΥΣ Διαλ Οδηγείτε βόρεια σε ένα δρόµο µε σταθερή ταχύτητα 88km/h και ένα φορτηγό κινείται µε σταθερή ταχύτητα 104km/h στο αντίθετο ρεύµα και σας πλησιάζει. (α) Ποια η ταχύτητα του φορτηγού ως προς εσάς. (β) Ποια η ταχύτητά σας ως προς το φορτηγό. (γ) Πως αλλάζουν οι σχετικές σας ταχύτητες αφού προσπεράσετε; Υποθέστε ότι το όχηµά σας συµβολίζεται µε Υ και το φορτηγό µε Τ. Σαν ακίνητο σύστηµα αναφοράς παίρνουµε τη γη και τη συµβολίζουµε µε Ε. Εποµένως η ταχύτητά σας σχετικά µε τη γη είναι # " / 88km / h α) Το φορτηγό σας πλησιάζει και εποµένως έχει ταχύτητα # T / " 104km / h Θέλουµε την ταχύτητα υ Τ/Υ Αλλά υ Τ/Ε υ Τ/Υ + υ Υ/Ε è υ Τ/Υ υ Τ/Ε - υ Υ/Ε km/h β) Η ταχύτητα Y / T " T / Y γ) Η σχετική ταχύτητα δεν αλλάζει όταν προσπεράσετε το φορτηγό. Οι σχετικές θέσεις των σωµάτων δεν παίζουν ρόλο. Η υ Τ/Ε εξακολουθεί να είναι -19km/h
11 ΦΥΣ Διαλ Σχετική ταχύτητα Παράδειγμα Είστε σε ένα τρένο το οποίο κινείται µε ταχύτητα 40km/h προς τα δυτικά. Περπατάτε µε ταχύτητα 5km κάθετα προς το µήκος του βαγονιού. Ποια η σχετική σας ταχύτητα ως προς το έδαφος; (A) 40 km/h (B) < 40 km/h (Γ) > 40 km/h 5 km/h V V " 41 > 40km / h 40 km/h Τρεις κολυµβήτριες, η Άντρη, η Βάσω και η Γεωργία είναι σε ένα αγώνα για να διασχύσουν ένα ποτάµι από τη µια όχθη στην απέναντι στο µικρότερο χρόνο. Οι τρεις κολυµβήτριες κολυµβούν µε την ίδια ταχύτητα ως προς τη ροή του ποταµού. Στον αγώνα, η Άντρη κολυµπά αντίθετα προς τη ροή του ποταµού, η Βάσω κάθετα και η Γεωργία κολυµπά προς τη ροή του ποταµού. d Ποια απο τις Αντρη ή Γεωργία φθάνει απέναντι στη δεύτερη θέση; A B Γ θ θ υ Ποτ (Α) Η Άντρη (Β) Μαζί (Γ) Η Γεωργία Άντρη: y V cos" Βάσω: Γεωργία: y V y V cos" t d y θ
12 ΦΥΣ Διαλ.11 1 Σχετική ταχύτητα Παράδειγµα Τρεις κολυµβήτριες, η Άντρη, η Βάσω και η Γεωργία είναι σε ένα αγώνα για να διασχύσουν ένα ποτάµι από τη µια όχθη στην απέναντι στο µικρότερο χρόνο. Οι τρεις κολυµβήτριες κολυµβούν µε την ίδια ταχύτητα 5km/h ως προς τη ροή του ποταµού τα νερά του οποίου κινούνται µε ταχύτητα 3km/h. Με ποια γωνία θα πρέπει να κολυµπά η Άντρη ώστε να φθάσει στο ακριβώς απέναντι σηµείο της απέναντι όχθης; V V + V x Α/π V A/" A/# #/" V θ Α/π Vy Α/π Για να φθάσει στο ακριβώς απέναντι σηµείο, θα πρέπει η ταχύτητα της Άντρης ως προς το έδαφος στη x-διεύθυνση να είναι µηδέν (x V x t) x-διεύθυνση V x A/" V x A/# + V x #/" 0 V x A/" + V x "/#$ 0 "5sin# + 3 5sin" 3 sin" 3 / 5 d A B Γ θ θ υ Ποτ
13 Σχετική ταχύτητα - Παράδειγµα ΦΥΣ Διαλ Ένας µεγάλος σκύλος περπατά κατά µήκος ενός βαγονιού µε ταχύτητα 5.0Km/h (ανατολικά ως προς το βαγόνι). Το βαγόνι έχει ταχύτητα 10Km/h ανατολικά. Μια ψείρα κινείται στην ράχη του σκυλιού µε φορά δυτικά ως προς το σκύλο και ταχύτητα 0.01Km/h. Να βρεθεί η ταχύτητα της ψείρας ως προς το έδαφος V D VD 0.01Km / h " δυτικά ψείρα ως V TE V DT V DT 5.0Km / h ανατολικά V TE 10.0Km / h ανατολικά προς σκύλο σκύλος ως προς τρένο τρένο ως προς έδαφος V E V D + V DT + V TE Όπως παρατηρούµε τα D και Τ απολοίφονται οπότε θα έχουµε: V E " Km / h (To - επειδή η ψείρα κινείται µε φορά προς δυτικά)
ΦΥΣ Διαλ.12. Παράδειγμα Τάσεων
ΦΥΣ 111 - Διαλ.1 1 Παράδειγμα Τάσεων Το παιδί της διπλανής εικόνας θέλει να φθάσει ένα µήλο στο δέντρο χωρίς να σκαρφαλώσει. Χρησιµοποιεί ένα σχοινί αµελητέας µάζας και µια αβαρή τροχαλία. Τραβάει το σχοινί
ΦΥΣ Διαλ.13. Παράδειγμα Τάσεων
ΦΥΣ 111 - Διαλ.13 1 Παράδειγμα Τάσεων Το παιδί της διπλανής εικόνας θέλει να φθάσει ένα µήλο στο δέντρο χωρίς να σκαρφαλώσει. Χρησιµοποιεί ένα σχοινί αµελητέας µάζας και µια αβαρή τροχαλία. Τραβάει το
ΦΥΣ. 111 Κατ οίκον εργασία # 3 - Επιστροφή 03/10/2017. Οι ασκήσεις στηρίζονται στα κεφάλαια 3 και 4 των βιβλίων των Young και Serway
ΦΥΣ. 111 Κατ οίκον εργασία # 3 - Επιστροφή 03/10/2017 Οι ασκήσεις στηρίζονται στα κεφάλαια 3 και 4 των βιβλίων των Young και Serway 1. Ένα πλοίο κινείται µε σταθερή ταχύτητα 8m/s για χρόνο T = 60s. Κατόπιν
Έργο Ενέργεια Παραδείγµατα
ΦΥΣ 131 - Διαλ.17 1 Έργο Ενέργεια Παραδείγµατα Mn Επανάληψη Έργο δύναμης W = Έργο συνισταμένης δυνάμεων W = E "#$ Βαρυτική δυναμική ενέργεια U g " 1 2 F d r Ελαστική δυναμική ενέργεια U " = 1 2 kx 2 ΦΥΣ
ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος
ΦΥΣ 3 - Διαλ.2 Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 2 Μη αδρανειακά συστήµατα x Έστω ότι το S αποκτά επιτάχυνση α 0 S z 0 Α x z S y, y Ο παρατηρητής S µετρά µια επιτάχυνση: A = A +
1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Οκτωβρίου-2011
1 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 1 η Πρόοδος: 15-Οκτωβρίου-2011 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά
1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 16-Οκτωβρίου-2010
1 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 1 η Πρόοδος: 16-Οκτωβρίου-2010 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά
ΣΧΕΤΙΚΗ ΤΑΧΥΤΗΤΑ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ. Η ανάλυση της κίνησης μας εξαρτάται από την ταχύτητα του παρατηρητή.
Η ανάλυση της κίνησης μας εξαρτάται από την ταχύτητα του παρατηρητή. Η ανάλυση της κίνησης μας έχει σχέση με ένα σύστημα αναφοράς Η ανάλυση της κίνησης μας εξαρτάται από την ταχύτητα του παρατηρητή. Η
( ) = T 1 ) (2) ) # T 3 ( ) + T 2 ) = T 3. Ισορροπία Παράδειγµα. ! F! = m! a = 0. ! F y. # F g = 0! T 3 ! T 2. sin( 53 0
Ισορροπία Παράδειγµα Δεν υπάρχει κίνηση στο σηµατοδότη οπότε βρίσκεται σε ισορροπία και η επιτάχυνση είναι µηδέν.! F! = m! a!! F!! F Ανάλυση του προβλήµατος 2 σώµατα (σηµατοδότης σηµείο ένωσης σχοινιών)
Νόµοι Newton: Μερικές ακόµα εφαρµογές
Νόµοι Newton: Μερικές ακόµα εφαρµογές ΦΥΣ 111 - Διαλ.18 1 Κινήσεις σώµατος µέσα σε υγρά ή αέρα Σώµα κινούµενο µέσα σε κάποιο υγρό ή τον αέρα ασκεί µια δύναµη στο µέσο στο οποίο κινείται. Το µέσο αντιδρά
Σύστηµα αναφοράς κέντρου µάζας
ΦΥΣ - Διαλ.6 Σύστηµα αναφοράς κέντρου µάζας Έστω σώµατα µάζας m και m κινούµενα µε ταχύτητες υ και υ Η ταχύτητα του ΚΜ δίνεται από τη σχέση: υ cm = m υ + m υ m + m Σε ένα σύστηµα το οποίο συνδέεται µε
Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1
Ορμή - Κρούσεις, ΦΥΣ 131 - Διαλ.19 1 ΦΥΣ 131 - Διαλ.19 2 Κρούσεις σε 2 διαστάσεις q Για ελαστικές κρούσεις! p 1 + p! 2 = p! 1! + p! 2! όπου p = (p x,p y ) Δηλαδή είναι 2 εξισώσεις, µια για κάθε διεύθυνση
ΦΥΣ. 111 Κατ οίκον εργασία # 1 - Επιστροφή 19/09/2017. Οι ασκήσεις στηρίζονται στα κεφάλαια 1 και 2 των βιβλίων των Young και Serway
ΦΥΣ. 111 Κατ οίκον εργασία # 1 - Επιστροφή 19/09/2017 Οι ασκήσεις στηρίζονται στα κεφάλαια 1 και 2 των βιβλίων των Young και Serway 1. Χρησιµοποιώντας διαστασιακή ανάλυση, να προσδιορίστε την ταχύτητα
ΦΥΣ η Πρόοδος: 14-Οκτωβρίου-2017
ΦΥΣ. 111 1 η Πρόοδος: 14-Οκτωβρίου-2017 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση αποτελείται
ΦΥΣ η Πρόοδος: 14-Οκτωβρίου-2017
ΦΥΣ. 111 1 η Πρόοδος: 14-Οκτωβρίου-2017 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση αποτελείται
2 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 10-Οκτωβρίου-2009
2 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 1 η Πρόοδος: 10-Οκτωβρίου-2009 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά
ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση
Κινηµατική ΦΥΣ 111 - Διαλ.04 2 Σύνοψη εννοιών Κινηµατική: Περιγραφή της κίνησης ενός σώµατος Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Στιγµιαία Κίνηση - Τροχιές ΦΥΣ 111 - Διαλ.04 3!
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 2
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 2 1. Η επιτάχυνση της βαρύτητας µπορεί να µετρηθεί ρίχνοντας µια µπάλα προς τα πάνω και µετρώντας το χρόνο που χρειάζεται να περάσει δύο σηµεία τα οποία βρίσκονται σε συγκεκριµένο ύψος
Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.
Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 1. Θέλουµε να µετακινήσουµε ένα κιβώτιο κατά µήκος ενός λείου κεκλιµένου επιπέδου γωνίας κλίσης 20 ο µε την οριζόντια διεύθυνση. Δίνουµε στο κιβώτιο µια αρχική ταχύτητα 5.0m/s και
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 1. Θέλουµε να µετακινήσουµε ένα κιβώτιο κατά µήκος ενός λείου κεκλιµένου επιπέδου γωνίας κλίσης 20 ο µε την οριζόντια διεύθυνση. Δίνουµε στο κιβώτιο µια αρχική ταχύτητα 5.0m/s και
ΦΥΣ η Πρόοδος: 21-Οκτωβρίου-2012
Σειρά Θέση ΦΥΣ. 131 1 η Πρόοδος: 21-Οκτωβρίου-2012 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση
Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2
ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή
1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 10-Οκτωβρίου-2009
1 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 1 η Πρόοδος: 10-Οκτωβρίου-2009 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά
Ενέργεια στην περιστροφική κίνηση
ΦΥΣ 111 - Διαλ.31 1 Ενέργεια στην περιστροφική κίνηση q Ένα περιστρεφόµενο στερεό αποτελεί µια µάζα σε κίνηση. Εποµένως υπάρχει κινητική ενέργεια. v i θ i r i m i Θεωρείστε ένα στερεό σώµα περιστρεφόµενο
ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4)
ΘΕΜΑ Ένα αεροπλάνο πετάει οριζόντια σε ύψος h=km µε σταθερή ταχύτητα V=6km/h, ως προς ακίνητο παρατηρητή στο έδαφος. Ο πιλότος αφήνει µια βόµβα να πέσει ελεύθερα: (α) Γράψτε τις εξισώσεις κίνησης (δηλαδή
2 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Οκτωβρίου-2011
2 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 1 η Πρόοδος: 15-Οκτωβρίου-2011 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά
ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου
ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα
ΦΥΣ Διαλ Δυναµική
ΦΥΣ 131 - Διαλ.08 1 Δυναµική Ø F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Ø Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Ø Γιατί σώµατα κινούνται µε το τρόπο που κινούνται q Θεµελιώδεις νόµοι της µηχανικής:
Κίνηση σε δύο διαστάσεις
ΦΥΣ 131 - Διαλ.07 1 Κίνηση σε δύο διαστάσεις Διαδρομή του σώματος Τελική θέση Αρχική θέση Η κίνηση που κάνει το αυτοκίνητο καθώς στρίβει περιορίζεται σε ένα οριζόντιο επίπεδο - Η αλλαγή στο διάνυσμα θέσης
Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ
0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε
Παράδειγµα διατήρησης στροφορµής
Παράδειγµα διατήρησης στροφορµής ΦΥΣ 3 - Διαλ.6 Κολόνα πέφτει σε γίγαντα. Δίνονται η µάζα του γίγαντα Μ, της κολόνας m, το µήκος της κολόνας l, η ταχύτητα της κολόνας v. H κίνηση γίνεται σε λεία επιφάνεια.
Ορμή - Κρούσεις. ΦΥΣ Διαλ.23 1
Ορμή - Κρούσεις ΦΥΣ 111 - Διαλ.3 1 Χτύπημα καράτε ΦΥΣ 111 - Διαλ.3 q Σπάσιμο μιας σανίδας ξύλου με την ώθηση I = FΔt = Δp = mδυ Δt πολύ μικρό και Δp = σταθ. è F μεγάλη Ø Σώματα: ü Χέρι: M xεριού =3Kg,
Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; F N
Παράδειγµα roller coaster ΦΥΣ 131 - Διαλ.13 1 Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; y-διεύθυνση:
Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1
Έργο Ενέργεια ΦΥΣ 131 - Διαλ.15 1 ΦΥΣ 131 - Διαλ.15 2 Έργο, Κινητική Ενέργεια και Δυναμική Ενέργεια q Βέλος εκτοξεύεται από ένα τόξο: Ø Η δύναμη μεταβάλλεται καθώς το τόξο επανέρχεται στην αρχική του θέση
Λύσεις 4 ης εργασίας
Λύσεις 4 ης εργασίας. α) Η συνισταµένη δύναµη είναι ίση µε ολ = + = 5N και η γωνία o δίνεται από τη σχέση tn = tn =,75 36,9 Άρα, η επιτάχυνση είναι ίση µε: = ολ = m 5m / ολ β) Η συνισταµένη δύναµη είναι
( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν
ΦΥΣ 111 - Διαλ.33 1 Παράδειγµα Θεωρήστε δυο σώµατα τα οποία συνδέονται µέσω µιας αβαρούς τροχαλίας όπως στο σχήµα. Από διατήρηση ενέργειας υπολογίστε την ταχύτητα των δυο σωµάτων όταν η µάζα m 2 έχει κατέβει
Ανεξαρτησία κάθετων μεταξύ των κινήσεων
Ανεξαρτησία κάθετων μεταξύ των κινήσεων ΦΥΣ 111 - Διαλ.08 1 Εξαρτώνται οι τιμές των α x, v x και x από τις τιμές των α y, v y και y την ίδια ή κάποια άλλη χρονική στιγμή? Το ερώτημα που τίθεται είναι κατά
3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7)
3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου 2007 ΘΕΜΑ 1 (Μονάδες 7) Η θέση ενός σωματίου που κινείται στον άξονα x εξαρτάται από το χρόνο σύμφωνα με την εξίσωση: x (t) = ct 2 -bt 3 (1) όπου x σε μέτρα
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,
Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓ Α ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ Ι ΑΚΤΩΡ ΕΜΠ Ε
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 7
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 7 1. Μια κοπέλα µάζας 45.0kg στέκεται 1.0m από το άκρο µιας βάρκας µήκους 5m και µάζας 60.0kg. Περπατά από το σηµείο αυτό προς κάποιο άλλο σηµείο το οποίο βρίσκεται 1.0m από το άλλο
ΦΥΣ Τελική Εξέταση: 11-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).
ΦΥΣ. 131 Τελική Εξέταση: 11-Δεκεµβρίου-2011 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται
ΦΥΣΙΚΗ Ι. ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ ΔΥΝΑΜΕΩΝ Βαρυτική Δύναμη Βάρος Κάθετη Δύναμη σε Επιφάνεια Τάση Νήματος Τριβή Οπισθέλκουσα Δύναμη και Οριακή Ταχύτητα
ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Α. Καραμπαρμπούνης, Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 014 01 015 ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ Νόμος της Αδράνειας Αδρανειακό Σύστημα Μάζα και Ορμή Αρχή διατήρησης της Ορμής Δύναμη Δεύτερος Νόμος
Κεφάλαιο 3. Κίνηση σε δύο ή τρεις διαστάσεις
Κεφάλαιο 3 Κίνηση σε δύο ή τρεις διαστάσεις Στόχοι 3 ου Κεφαλαίου Τα διανύσματα της θέσης και της ταχύτητας. Το διάνυσμα της επιτάχυνσης. Παράλληλη και κάθετη συνιστώσα της επιτάχυνσης. Κίνηση βλήματος.
ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).
ΦΥΣ. 111 1 η Πρόοδος: 13-Οκτωβρίου-2018 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση αποτελείται
ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).
ΦΥΣ. 111 1 η Πρόοδος: 13-Οκτωβρίου-2018 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση αποτελείται
Κίνηση με σταθερή επιτάχυνση, α(t) =σταθ.
ΦΥΣ 111 - Διαλ.6 1 Κίνηση με σταθερή επιτάχυνση, α() =σταθ. Από την εξίσωση κίνησης = a( )d + Αντικαθιστώντας στην x = x + ( )d x = x + ( a + )d = x + ( a)d + d = a + (1) x = x + 1 a + () Λύνοντας ως προς
Εξαναγκασµένες φθίνουσες ταλαντώσεις
ΦΥΣ 131 - Διαλ.32 1 Εξαναγκασµένες φθίνουσες ταλαντώσεις q Στην περίπτωση αυτή µελετάµε την δεδοµένη οδηγό δύναµη: F d (t) = F cos! d t η οποία δρα επιπλέον των άλλων δυνάµεων:!kx! b x Ø H συχνότητα µπορεί
( ) ( ) ( ) Μη αδρανειακά συστήματα αναφοράς. ( x, y,z) καρτεσιανό. !!z = h x, y,z. !! y = q. x = f. !! z = h
Μη αδρανειακά συστήματα αναφοράς ΦΥΣ 211 - Διαλ.27 1 q Μέχρι τώρα έχουµε χρησιµοποιήσει συστήµατα αναφοράς όπως ( x, y,z) καρτεσιανό q όπου ο 2 ος νόµος του Newton F = m a x = f x, y,z έχει την µορφή:
Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται
1 Δυναµική F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Γιατί σώµατα κινούνται µε το τρόπο που κινούνται " Θεµελιώδεις νόµοι της µηχανικής: Οι τρεις νόµοι του
( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r
ΦΥΣ 211 - Διαλ.28 1 Απειροστές περιστροφές και γωνιακή ταχύτητα q Θεωρήστε ότι έχετε ένα σώµα το οποίο περιστρέφεται ως προς άξονα: q Θεωρήστε ότι ένα σηµείο P πάνω στο σώµα µε διάνυσµα θέσης r t O r t
Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.
Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια
ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017
ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται
ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την
1 ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ 1) Δίνεται η διπλανή γραφική παράσταση της ταχύτητας με το χρόνο. Να γίνει το διάγραμμα (θέσης χρόνου ), αν όταν o= είναι o =. Υπόδειξη Βρείτε τα εμβαδά μεταξύ της γραφικής παράστασης
Κέντρο Μάζας - Παράδειγμα
Κέντρο Μάζας - Παράδειγμα ΦΥΣ 131 - Διαλ.1 1 Ο Ρωμαίο (m R =77kg) διασκεδάζει την Ιουλιέτα (m I =55kg) παίζοντας την κιθάρα του καθισμένος στην πρύμνη της βάρκας τους (μήκους.7 m) που είναι ακίνητη στα
Κίνηση σε μία διάσταση
Κίνηση σε μία διάσταση ΦΥΣ 131 - Διαλ.5 1 q Ανακεφαλαιώνοντας θέσης τροχιάς μετατόπισης Δx = x f - x i, χρονικού διαστήματος Δ = f i, μέση ταχύτητα v = x x στιγμιαία ταχύτητα x v = lim " = d x d παράγωγος
ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία
1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)
Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται
Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1
Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν
ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ
1. Από σημείο Α κεκλιμένου επιπέδου γωνίας κλίσης ρίχνεται προς τα πάνω, στη διεύθυνση του επιπέδου σώμα μάζας m = 2kgr με αρχική ταχύτητα u o = 20 m/sec. Αν δεν υπάρχουν τριβές να βρείτε: α)την αντίδραση
ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης
ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου
ΕΡΓΑΣΙΑ 3 η. (αποστολή µέχρι ευτέρα 1/4/ βδοµάδα)
ΕΡΓΑΣΙΑ η (αποστολή µέχρι ευτέρα /4/ + βδοµάδα) Άσκηση (5 µονάδες): Να βρεθεί η συνισταµένη των δυνάµεων που ενεργούν πάνω στο σώµα µάζας Kg, όπως φαίνεται στο σχήµα. Ποιό είναι το µέτρο και η διεύθυνσή
( ) { } ( ) ( ( ) 2. ( )! r! e j ( ) Κίνηση στερεών σωμάτων. ω 2 2 ra. ω j. ω i. ω = ! ω! r a. 1 2 m a T = T = 1 2 i, j. I ij. r j. d 3! rρ. r! e!
Κίνηση στερεών σωμάτων ΦΥΣ 11 - Διαλ.30 1 q Κίνηση στερεού σώµατος: Ø Υπολογισµός της κινητικής ενέργειας Ø Θεωρήσαµε ότι ένα σώµα διακριτής ή συνεχούς κατανοµής µάζας q Η κινητική ενέργεια δίνεται από
Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο
Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο ) Οµογενής κύλινδρος µάζας m, ακτίνας R φέρει λεπτή εγκοπή βάθους είναι τυλιγµένο νήµα αµελητέου πάχους. R r=, στην οποία Το άλλο άκρο του νήµατος έχει δεθεί σε οροφή όπως στο
ΦΥΣ 111 Γενική Φυσική Ι 4 η Εργασία Επιστροφή: Ένα κιβώτιο µάζας 20kg το οποίο είναι συνδεδεµένο µε µία τροχαλία κινείται κατά µήκος µίας
ΦΥΣ 111 Γενική Φυσική Ι 4 η Εργασία Επιστροφή: 11.10.18 1. Ένα κιβώτιο µάζας 20kg το οποίο είναι συνδεδεµένο µε µία τροχαλία κινείται κατά µήκος µίας λείας επιφάνειας. Το κιβώτιο είναι συνδεδεµένο µέσω
Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση
Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση 1. Mόλις τεθεί σε κίνηση µε σταθερή ταχύτητα, ο µάζας 1000 kg ανελκυστήρας Α ανεβαίνει µε ρυθµό έναν όροφο (3 m) το δευτερόλεπτο.
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου
Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις Περιεχόµενα Κεφαλαίου 5 Εφαρµογές Τριβής Οµοιόµορφη Κυκλική Κίνηση Δυναµική Κυκλικής Κίνησης Οι κλήσεις στους αυτοκινητοδρόµους
Σφαιρικά σώµατα και βαρύτητα
ΦΥΣ 131 - Διαλ.28 1 Σφαιρικά σώµατα και βαρύτητα q Χρησιµοποιήσαµε τις εκφράσεις F() =! GMm που ισχύουν για σηµειακές µάζες Μ και m. 2 και V () =! GMm q Ένα χαρακτηριστικό γεγονός, που κάνει τους υπολογισµούς
Ταλαντώσεις σώματος αλλά και συστήματος.
σώματος αλλά και συστήματος. Μια καλοκαιρινή περιπλάνηση. Τα δυο σώµατα Α και Β µε ίσες µάζες g, ηρεµούν όπως στο σχήµα, ό- που το ελατήριο έχει σταθερά 00Ν/, ενώ το Α βρίσκεται σε ύψος h0,45 από το έδαφος.
Α ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 19-Νοεµβρίου-2011
Α ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 η Πρόοδος: 19-Νοεµβρίου-011 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας) και τη θέση στην οποία κάθεστε (σειρά/στήλη). Ονοµατεπώνυµο Αριθµός
Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; O.T.
Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; ιανυσµατικό µέγεθος Μέτρο ιεύθυνση Φορά A Μετατόπιση Τελική θέση Αρχική θέση Σύµβολο µέτρου διανύσµατος A ύο διανύσµατα είναι ίσα αν έχουν ίδιο µέτρο
Στροφορµή. ΦΥΣ 131 - Διαλ.25 1
Στροφορµή ΦΥΣ 131 - Διαλ.25 1 ΦΥΣ 131 - Διαλ.25 2 Στροφορµή q Ένα από τα βασικά µεγέθη που σχετίζονται µε την περιστροφική κίνηση είναι η στροφορµή q Θυµηθείτε ότι για µάζα m που κινείται µε ταχύτητα v
ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
3 η Εργασία ΦΥΕ14 Ημερομηνία αποστολής: 3/3/2008. Άσκηση 1
Άσκηση 3 η Εργασία ΦΥΕ4 Ημερομηνία αποστολής: 3/3/008 Πύραυλος εκτοξεύεται με γωνία φ 60 ως προς την κατακόρυφο, με μηδενική αρχική ταχύτητα. Αν η μηχανή του πυραύλου, του προσδίδει επιτάχυνση α 30 m/s
Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000
Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να
ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ
ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ 1. Ένα σώμα μάζας 2kg ηρεμεί σε λείο οριζόντιο επίπεδο. Σε μια στιγμή ασκούνται πάνω του οι οριζόντιες δυνάμεις που εμφανίζονται στο σχήμα. Δίνονται F 1 =8 3N, F 2 =14N, F 3
ΔΥΝΑΜΙΚΗ ΕΝΟΣ ΣΩΜΑΤΟΣ
Κεφάλαιο 3 ΔΥΝΑΜΙΚΗ ΕΝΟΣ ΣΩΜΑΤΟΣ Νομοι του Νευτωνα {Νόμος της Αδράνειας- Αδρανειακό Σύστημα, Μάζα και Ορμή, Αρχή διατήρησης της Ορμής, Δύναμη- Δεύτερος Νόμος του Νεύτωνα, Τρίτος Νόμος του Νεύτωνα} Ειδικες
( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.
Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a
4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1
4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Από το ύψος και τη γωνία που µας δίνεται, έχουµε
Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα
Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά
Κεφάλαιο M11. Στροφορµή
Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την
3 ος νόμος του Νεύτωνα Δυνάμεις επαφής δυνάμεις από απόσταση
3 ος νόμος του Νεύτωνα Δυνάμεις επαφής δυνάμεις από απόσταση ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ 1. Ποια από τις παρακάτω προτάσεις είναι η σωστή; Με βάση τον 3 ο νόμο του Νεύτωνα, όταν δυο σώματα αλληλεπιδρούν και
1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Νοεµβρίου-2008
η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 3 η Πρόοδος: 5-Νοεµβρίου-008 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Η εξέταση αποτελείται από µέρη. Το
v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται
Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής
Κεφάλαιο 2 Κίνηση κατά μήκος ευθείας γραμμής Στόχοι 1 ου Κεφαλαίου Περιγραφή κίνησης σε ευθεία γραμμή όσον αφορά την ταχύτητα και την επιτάχυνση. Διαφορά μεταξύ της μέσης και στιγμιαίας ταχύτητας καθώς
Κεφάλαιο M3. Διανύσµατα
Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως
Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000
Ζήτηµα ο Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένας ανεµιστήρας
Φθίνουσες ταλαντώσεις
ΦΥΣ 111 - Διαλ.39 1 Φθίνουσες ταλαντώσεις q Οι περισσότερες ταλαντώσεις στη φύση εξασθενούν (φθίνουν) γιατί χάνεται ενέργεια. q Φανταστείτε ένα σύστημα κάτω από μια δύναμη αντίστασης της μορφής F = bυ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες
ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να
ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε