Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du."

Transcript

1 Korronte zuzena ZIRKUITU ELEKTRIKOA Instalazio elektrikoetan, elektroiak sorgailuaren borne batetik irten eta beste bornera joaten dira. Beraz, elektroiek desplazatzeko egiten duten bidea da zirkuitu elektrikoa. ATALAK: zirkuitu elektriko bateko atal garrantzitsuenak hauek dira: SORGAILUA Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du. Bi eratako sorgailuak daude: dinamoak (korronte zuzena sortzeko) eta alternadoreak (korronte alternoa sortzeko) HARGAILUA Elementu honek korronte elektrikoa xurgatzen du; beraz, energia elektrikoa erabiltzen duen tresna da. Hargailutzat ditugu honako hauek: lanparak, motorrak, garbigailuak LINEA Sorgailua eta hargailua elkarren artean lotzen dituen elementua da. Gehienetan kobrezko eroalea izaten da, baina aluminiozko eroaleak ere asko erabiltzen dira, bereziki garraio- -lineetan. 7

2 Sorgailua S Linea Hargailua Beraz, goiko irudian ikusten denez, hargailu elektriko guztiek ezinbestekoa dute funtzionatzeko bi haritatik gutxienez jasotzen duten indarra. Bestalde, zirkuitu elektrikoa itxita badago zeharkatzen duen elektroien mugimenduari korronte elektrikoa deritzo ZIRKUITU ELEKTRIKO BATEKO MAGNITUDEAK Zirkuitu elektrikoak aztertzeko, zenbait magnitude hartu behar dira kontuan. Horietatik garrantzitsuenak hauek dira: tentsioa, intentsitatea, erresistentzia eta dentsitatea TENTSIOA Sorgailu baten bi borneen arten dagoen karga-diferentzia da, hau da, bi borneen arteko potentzial-diferentzia. U letraz adierazten da, eta voltetan (V) neurtzen da. Erabiltzen diren beste unitate batzuk honako hauek dira: 1 kv = V eta 1 mv = 0,001 V INTENTSITATEA Eroale batetik segundoko iragaten den elektrizitate-kopurua da. I letraz adierazten da eta amperetan (A) neurtzen da. Beste unitate hauek ere erabiltzen dira: 1 ka = A, eta 1 ma = 0,001 A. 8

3 Muntatze elektrikoak eta horien mantentze-lanak ERRESISTENTZIA Eroale batek elektroien mugimenduari jartzen dion oztopoa edo zailtasuna da. R letraz adierazten da eta ohmetan (Ω) neurtzen da. Erabiltzen diren beste unitate batzuk hauek dira: 1 kω = Ω, 1 MΩ = Ω eta 1 mω = 0,001 Ω ERRESISTIBITATEA Erresistibitatea ezin har genezake, bete-betean, magnitudetzat. Baina hainbat materialen erresistentzia adierazteko, ezinbestekoa da erresistibitatea zer den jakitea. Erresistibitatearen definizioetako bat hau dugu: metro bateko luzera eta mm 2 bateko azalera duen eroale batek 20 ºC-tan duen erresistentzia. Edo beste hau: material batek, bere osaera molekularraren eraginez, korronte elektrikoari jartzen dion oztopoa. Material bakoitzak bere erresistibitatea du. ρ rro ahoskatzen da letraz adierazten da. Eroale baten erresistentzia kalkulatzeko honako formula erabiltzen da: R = ρ L S Non R = erresistentzia, ohmetan (Ω). ρ = erresistibitatea, Ω. mm 2 /m-tan. S = sekzioa, mm 2 -tan. L = luzera, m-tan TENPERATURAREN ERAGINA ERRESISTENTZIAN Erresistentzia elektrikoaren balio ohmikoa tenperaturaren arabera aldatzen da. Gehienetan, tenperatura igotzean erresistentzia ere igo egiten da. Material baten tenperatura gradu bat (1 ºC) igotzean, erresistentzia-unitateak (1 Ω) jasaten duen balio aldaketari material horren tenperatura-koefizientea (α) deitzen zaio. Material batek tenperatura jakin batean (t ºC) zer erresistentzia izango duen jakiteko, honako formula hau erabiltzen da (betiere, material horrek 0 ºC-tan duen erresistentziatik abiatuta egiten da kalkulua): R t = R 0 + R 0 α t = R t = R 0 (1 + α t) R 0 = erresistentzia, 0 ºC-tan. α = tenperatura-koefizientea. t = tenperatura-igoera. R t = erresistentzia, t ºC-tan. 9

4 DENTSITATEA Eroale baten sekzio-unitatetik, mm 2 A/mm 2 -tan adierazten da. bakoitzetik, pasatzen den intentsitate-kopurua da. δ = I S 1.3. OHM-EN LEGEA Ohm-en legeak honela dio: Zirkuitu elektriko batetik iragaten den intentsitatea tentsioarekiko zuzenki proportzionala da, eta erresistentziarekiko alderantziz proportzionala. I = U R I = intentsitatea, amperetan. U = tentsioa, voltetan. R = erresistentzia, ohmetan. Ariketak 1. 2O Ω-eko erresistentzia bat 220 V-eko tentsio bati konektatu diogu. Kalkulatu hortik iragaten den intentsitatea. I = 11 A 2. Hargailu batetik iragaten den intentsitatea 5 A-koa da. Hargailu horren erresistentzia 20 Ω-ekoa bada, kalkulatu zein tentsiori konektatua dagoen. U = 100 V 3. Eroale baten luzera 15 m-koa da, eta azalera 4 mm 2 -koa Kobrezkoa dela jakinik, kalkulatu haren erresistentzia. Erresistibitatea, berriz, ρ = 0,0172 Ω mm 2 /m-koa da. R = 0, 0645 Ω 4. Eroale baten luzera 2 km-koa da; erresistentzia, 8,5 Ω, eta sekzioa, 4 mm 2 -koa. Kalkulatu erresistibitatea. ρ = O,Ol7 Ω mm 2 /m. 5. Eroale baten luzera cm-koa da; erresistentzia, mω-ekoa, eta sekzioa, 400 cm 2 -koa. Kalkulatu erresistibitatea. ρ = 4409,44 Ω mm 2 /m 10

5 Muntatze elektrikoak eta horien mantentze-lanak m-ko luzera eta 2 mm 2 -ko azalera duen kobrezko eroale bat (ρ = 0,0172 Ω mm 2 /m) 220 V-eko tentsio bati konektatu diogu. Kalkulatu intentsitatea. I = 127;9 A 7. 2 km-ko luzera duen eroale bat 200 V-eko tentsioari konektatu diogu; 16 A-ko intentsitatea iragaten da hortik. Eroale horren sekzioa 4 mm 2 -koa bada, kalkulatu dentsitatea. δ = 4 A/mm km-ko luzera duen aluminiozko eroale bat (ρ = 0,030 Ω mm 2 /m) 300 V-eko tentsio bati konektatu diogu; 30 A-ko intentsitatea iragaten da hortik. Kalkulatu sekzioa. s = 9 mm km-ko luzera eta 2 mm 2 -ko azalera duen kobrezko eroalea (ρ = 0,017 Ω mm 2 /m) 2 kv-eko tentsio bati konektatu diogu. Kalkulatu intentsitatea. I = 29,4 A Ω-eko erresistentzia 400 V-eko tentsio bati konektatu diogu 2 orduz. Eroale horren sekzioa 8 mm 2 -koa da. Kalkulatu dentsitatea. δ = 2,5 A/mm Eroale batek, 20 ºC-tan, 60 Ω-eko erresistentzia du. Zenbateko erresistentzia izango du, tenperatura 150 ºC-tara igotzen bada. (α = 0,004 )? R 150º = 91,2 Ω 12. Plastikozko hodi zirkular batean 0,5 mm-ko diametroa duen kobrezko hari bat bildu eta bira eman dizkiogu. Espira bakoitzaren batez besteko luzera 15 cm-koa da, eta erresistibitatea ρ = 0,018 Ω mm 2 /m. Zein izango da horrela osatutako harilaren erresistentzia? Erresistentzia hori 0 ºC-takoa dela joz gero, zein izango da 75 ºC-tako erresistentzia? (α = 0,004 ). R 0 = 27,5 Ω ; R 75º = 35,75 Ω 1.4. POTENTZIA ELEKTRIKOA Potentzia elektrikoa: tentsioaren eta intentsitatearen arteko biderkadura. P = U I Ohmen legea aplikatuz: P = R I 2 P = 2 U R Potentzia elektrikoa neurtzeko unitatea watta (W) da. Erabiltzen diren beste unitate batzuk: 1 kw = W eta zaldi-potentzia (1 zp = 736 W). Hargailu elektriko batean hiru potentzia-mota hartu behar dira kontuan: Potentzia xurgatua (Px): hargailuak lineatik xurgatzen duen potentzia. 11

6 Potentzia erabilgarria (Pe): makina horrek erabiltzen duena, hau da, guk aprobetxatzen duguna edo makinak ematen diguna. Potentzia galdua (Pg): erabiltzen ez dena, alferrik galtzen den potentzia. Makina guztietan honako berdintza gertatzen da. P x = P e + P g ERRENDIMENDUA Potentzia erabilgarriaren eta potentzia xurgatuaren arteko erlazioa edo zatidura da. Ehunekotan adierazten da. Adibidea: motor honen errendimendua % 78koa da. η = P P e x 1.5. ENERGIA ELEKTRIKOA Potentzia jakina duen hargailu batek denbora jakin batean egiten duen lanari energia deitzen zaio. Beraz, lana eta energia gauza berbera dira. Energia = Potentzia Denbora E = P T Energia neurtzeko erabiltzen diren unitateak Joulea (J) edo watt-segundoa (Ws) eta kilowatt- -ordua (kwh) dira. Ariketak Ω-eko erresistentzia batek kwh-ko energia bat xurgatzen du 20 minutuan. Instalazio elektrikoa egiteko erabili den eroalearen sekzioa 2 mm 2 bada, kalkulatu dentsitatea. δ = 86,6 A/mm 2 2. Motor batek 5 A-ko korrontea xurgatzen du 220 V-eko linea bati konektatuta. Motor hori egunean 2 orduan konektatzen bada eta kwh bakoitza 0,08 kostatzen bada, kalkulatu 2 asteko kostua. Kostua = 2, zp-ko motorra 200 V-eko linea bati konektatu diogu. Kalkulatu intentsitatea eta sekzioa. I = 25,76 A; S = 5,15 mm 2 12

7 Muntatze elektrikoak eta horien mantentze-lanak Ω-eko erresistentzia batek joule gastatzen ditu 10 minutuan, 300 V-eko linea bati konektatuta. Kalkulatu xurgatutako intentsitatea. I = 2 A zp-ko motor baten errendimendua % 75 da. Kalkulatu zein intentsitate xurgatuko duen 380 V-eko tentsio bati konektatuta. Eta egunero 8 orduz konektatzen bada, zenbat kostatuko da egun bateko energia, kwh-ren prezioa 0,09 bada. I = 25,82 A ; 7, Ω-eko erresistentzia duen berogailu bat 220 V-eko tentsio bati konektatu diogu egunean 4 orduz. Kalkulatu hilabetean (30 egun) ordaindu behar duguna, kwh bakoitzak 0,09 balio badu. 2,614 13

8

9 Babes-tresnak SARRERA Instalazio elektrikoak eta horiek egiteko behar diren babes-elementuak sartzen dira atal honetan, baita instalazio elektrikoek eragin ditzaketen arriskuetatik gizakia babesteko erabiltzen diren elementuak ere. Babes-elementua, beraz, gizakia eta instalazio elektrikoak babesteko erabiltzen da. Hona hemen babes-tresnen sailkapen bat: INSTALAZIOAK BABESTEKO Etengailu termikoak. Etengailu magnetikoak. Etengailu magnetotermikoak. Intentsitate erreleak. Fusibleak PERTSONAK BABESTEKO Etengailu diferentzialak. Lurrerako lineak. 15

10 2.2. FUSIBLEAK Gainkarga edo zirkuitu laburra badago, instalazioko intentsitatea handitu egiten da; hori dela-eta, fusibleak erre egiten dira, eta horiek dauden zirkuitua ireki egiten dute. Fusibleen funtzionamendua Joule efektuan oinarritzen da, hau da, eroale batetik iragaten den korronteak sortzen duen beroan. Funtzionamendu normalean, intentsitate nominalak sortzen duen beroa ez da nahikoa izaten fusiblea urtzeko. Korronte hori handitzen bada, ordea zirkuitulaburra gertatu delako, adibidez korronteak sortzen duen beroa izugarri handitzen da (Q = 0,24 R I 2 t) eta fusiblearen haria urtu egiten da. Fusiblearen haria urtze-puntu baxua duten materialez egina egoten da. Horregatik, haria erraz urtzen da eta arkua hedatzen ez du uzten. Bestalde, zenbait fusibletan batez ere intentsitate handikoetan fusiblearen haria hondar berezi batez egindako materialean jartzen da, arkua errazago itzaltzeko. Babes-gailu horrek bi atal ditu: FUSIBLEA Arazoren bat egonez gero urtzen den zatia FUSIBLE-ETXEA Fusiblea egoten den kaxa edo lekua. CRADY etxeko fusiblea eta fusible-etxea Eskemetan adierazteko erabiltzen diren ikurrak honako hauek dira: Fusible-etxea: Fusiblea: 16

11 Muntatze elektrikoak eta horien mantentze-lanak 2.3. ETENGAILU TERMIKOA Gainkarga bat gertatzen denean, horren eraginez desitxuratu edo okertzen den xafla bimetaliko batez osatuta dago. Nominala baino handiagoa den intentsitate batek xafla hori zeharkatzen duenean, horrek sortzen duen beroak xafla okertu egiten du eta, ondorioz, kontaktua ireki. Egoera normalean Gainkarga dagoenean 2.4. INTENTSITATE-ERRELEAK EDO ERRELE TERMIKOAK Etengailu termikoaren aplikaziorik ezagunenetakoa da. Motorrak gainkargetatik babesteko erabiltzen da. A B R S T R U V W d C ATALAK: A = kontaktu irekia. B = kontaktu itxia. C = bakelita edo plastikozko plaka. d = bimetalak. R = berotze-erresistentziak Funtzionamendua: R erresistentziatik pasatzen den intentsitatea nominala bada, horrek sortzen duen beroa ez da nahikoa d bimetalak okertzeko. Baina gainkarga baten eraginez intentsitatea handitzen bada, intentsitate horrek sortzen duen beroa ere asko handitzen da (Joule efektua). Bero horren eraginez d plaka bimetalikoak okertu egiten dira, eta C plaka mugiarazi egiten dute. Plakak, mugitzean, hari itsatsita dauden kontaktuen egoera aldarazi egiten du sistema mekaniko baten bidez, A kontaktu irekia itxiz eta B kontaktu itxia irekiz. 17

12 Lehengo egoerara itzultzeko, arazoa konpondu ondoren betiere, botoi bat aktibatu behar da. Honako ikur hauek erabiltzen dira: Indarreko zatia Kontaktu itxia Kontaktu irekia 2.5. ETENGAILU MAGNETIKOA Etengailu hauen funtzionamenduak hauxe du oinarria: haril batetik intentsitate bat iragatean sortzen den eremu magnetikoaren eragina. Funtzionamendua: etengailuaren E hariletik intentsitate izendatua iragaten denean, horrek sortzen duen eremu magnetikoa ez da nahikoa izaten B topea kentzeko. Zirkuitulabur batek edo beste arrazoiren batek intentsitatea handitzen badu, ordea, harilean sortzen den eremuaren indarra ere asko handitzen da; ondorioz, A armadura erakarri egiten du eta B topea, kendu. Hori dela eta, M malgukiaren eraginez C kontaktua ireki eta intentsitatearen bidea moztu egiten da. Berriro lehengo egoerara itzultzeko, arazoa konpondu ondoren, palankatxo bat eskuz igo behar da. Etengailu polobakarrak, bi polokoak, hiru polokoak eta lau polokoak daude. B M A I E C Intentsitatearen arabera, berriz, honako sailkapen hau egiten da: 2 A, 4 A, 6 A, 8 A, 10 A, 15 A, 20 A, 25 A, 30 A... 18

13 Muntatze elektrikoak eta horien mantentze-lanak 2.6. ETENGAILU MAGNETOTERMIKOAK Gainkarga eta zirkuitulaburretarako babesik hoberena, eraginkorrena, hauxe dugu. Etengailu honen funtzionamendua lehenago aipatu ditugun bi etengailuen funtzionamendu-printzipioetan oinarritzen da, hau da, babes termikoa eta babes magnetikoa ematen duten etengailuetan. Zirkuitulaburra gertatzen denean, harilak sortzen duen eremu magnetikoak ireki egiten du C kontaktua; gainkarga dagoenean, berriz, P plaka bimetalikoaren eraginez mugitzen da A armadura. I P B M A E C I Etengailu magnetotermikoa 2.7. ETENGAILU DIFERENTZIALAK Pertsonak elektrizitatearen eragin kaltegarrietatik babestea da horien eginkizun nagusia, hau da, instalazioetan egon daitezken isolamendu-akatsen eraginez sor daitezkeen arazoetatik babestea. Isolamendu-akatsa tarteko, indarra daraman eroale batek gailu elektrikoaren burdinazko zati bat edo pertsona bat ukitzen badu, arazoak izan ditzake ukitutako horrek. Etengailu diferentzialak, ordea, ireki egiten du zirkuitua hori gertatzen denean. Diferentzialaren barrutik doazen harietako batetik lurrera ihesa badago, ihes horrek harietan sortzen duen intentsitate-diferentziak zirkuitua irekiarazi egiten du. 19

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA 1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa

Διαβάστε περισσότερα

1. jarduera. Zer eragin du erresistentzia batek zirkuitu batean?

1. jarduera. Zer eragin du erresistentzia batek zirkuitu batean? 1. jarduera Zer eragin du erresistentzia batek zirkuitu batean? 1. Hastapeneko intentsitatearen neurketa Egin dezagun muntaia bat, generadore bat, anperemetro bat eta lanpa bat seriean lotuz. 2. Erresistentzia

Διαβάστε περισσότερα

DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( )

DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( ) DERIBAZIO-ERREGELAK.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. Izan bitez D multzo irekian definituriko f funtzio erreala eta puntuan deribagarria dela esaten da baldin f ( f ( D puntua. f zatidurak

Διαβάστε περισσότερα

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu) UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko

Διαβάστε περισσότερα

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x

Διαβάστε περισσότερα

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK 1.-100 m 3 aire 33 Km/ordu-ko abiaduran mugitzen ari dira. Zenbateko energia zinetikoa dute? Datua: ρ airea = 1.225 Kg/m 3 2.-Zentral hidroelektriko batean ur Hm

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa Elektroteknia: Ariketa ebatzien bilduma LANBDE EKMENA LANBDE EKMENA LANBDE EKMENA roiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): JAO AAGA, Oscar. Ondarroa-Lekeitio BH, Ondarroa

Διαβάστε περισσότερα

1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP]

1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP] Ariketak Liburukoak (78-79 or): 1,2,3,4,7,8,9,10,11 Osagarriak 1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP] 2. Gorputz bat altxatzeko behar izan den energia 1,3 kwh-koa

Διαβάστε περισσότερα

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 1. AKTIBITATEA Lan Proposamena ARAZOA Zurezko oinarri baten gainean joko elektriko bat eraiki. Modu honetan jokoan asmatzen dugunean eta ukitzen dugunean

Διαβάστε περισσότερα

= 32 eta β : z = 0 planoek osatzen duten angelua.

= 32 eta β : z = 0 planoek osatzen duten angelua. 1 ARIKETA Kalkulatu α : 4x+ 3y+ 10z = 32 eta β : z = 0 planoek osatzen duten angelua. Aurki ezazu α planoak eta PH-k osatzen duten angelua. A'' A' 27 A''1 Ariketa hau plano-aldaketa baten bidez ebatzi

Διαβάστε περισσότερα

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea. Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia

Διαβάστε περισσότερα

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa. Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar

Διαβάστε περισσότερα

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9 Magnetismoa manak eta imanen teoriak... 2 manaren definizioa:... 2 manen arteko interakzioak (elkarrekintzak)... 4 manen teoria molekularra... 4 man artifizialak... 6 Material ferromagnetikoak, paramagnetikoak

Διαβάστε περισσότερα

7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i

7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i 7.GAIA. ESTATISTIKA DESKRIBATZAILEA 1. Osatu ondorengo maiztasun-taula: x i N i f i 1 4 0.08 2 4 3 16 0.16 4 7 0.14 5 5 28 6 38 7 7 45 0.14 8 2. Ondorengo banaketaren batezbesteko aritmetikoa 11.5 dela

Διαβάστε περισσότερα

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin:

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1 Tentsio gorakada edo pikoa errele batean: Ikertu behar dugu

Διαβάστε περισσότερα

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa

Διαβάστε περισσότερα

9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko

9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko 9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomikoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 21 Laburpena 1 Espektroskopiaren Oinarriak 2 Hidrogeno Atomoa Espektroskopia Esperimentua

Διαβάστε περισσότερα

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):...

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):... Makina Elektrikoak MAKINA ELEKTRIKOAK... 3 Motak:... 3 Henry-Faradayren legea... 3 ALTERNADOREA:... 6 DINAMOA:... 7 Ariketak generadoreak (2010eko selektibitatekoa):... 8 TRANSFORMADOREAK:... 9 Ikurrak...

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa ELEKTROTEKNIA Makina elektriko estatikoak eta birakariak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION

Διαβάστε περισσότερα

Banaketa normala eta limitearen teorema zentrala

Banaketa normala eta limitearen teorema zentrala eta limitearen teorema zentrala Josemari Sarasola Estatistika enpresara aplikatua Josemari Sarasola Banaketa normala eta limitearen teorema zentrala 1 / 13 Estatistikan gehien erabiltzen den banakuntza

Διαβάστε περισσότερα

1. Gaia: Mekanika Kuantikoaren Aurrekoak

1. Gaia: Mekanika Kuantikoaren Aurrekoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 12 Laburpena 1 Uhin-Partikula Dualtasuna 2 Trantsizio Atomikoak eta Espektroskopia Hidrogeno Atomoaren Espektroa Bohr-en Eredua 3 Argia: Partikula (Newton)

Διαβάστε περισσότερα

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA Datu orokorrak: Elektroiaren masa: 9,10 10-31 Kg, Protoiaren masa: 1,67 x 10-27 Kg Elektroiaren karga e = - 1,60 x 10-19 C µ ο = 4π 10-7 T m/ampere edo 4π

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,

Διαβάστε περισσότερα

1. MATERIALEN EZAUGARRIAK

1. MATERIALEN EZAUGARRIAK 1. MATERIALEN EZAUGARRIAK Materialek dituzten ezaugarri kimiko, fisiko eta mekanikoek oso eragin handia dute edozein soldadura-lanetan. Hori guztia, hainbat prozesu erabiliz, metal desberdinen soldadura

Διαβάστε περισσότερα

EIB sistemaren oinarriak 1

EIB sistemaren oinarriak 1 EIB sistemaren oinarriak 1 1.1. Sarrera 1.2. Ezaugarri orokorrak 1.3. Transmisio teknologia 1.4. Elikatze-sistema 1.5. Datuen eta elikatzearen arteko isolamendua 5 Instalazio automatizatuak: EIB bus-sistema

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 1. (2015/2016) 20 cm-ko tarteak bereizten ditu bi karga puntual q 1 eta q 2. Bi kargek sortzen duten eremu elektrikoa q 1 kargatik 5 cm-ra dagoen A puntuan deuseztatu

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10

Διαβάστε περισσότερα

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak ELEKTRIZITATEA D.B.H. 1 Joseba Arruabarrena 2007ko Otsaila ren atalak: 1. Karga elektrikoa 2. Korronte elektrikoa 3. Zirkuitu elektrikoa 4. Magnitudeak: : Ohmen legea 5. Irudikapena eta ikurrak 6. Korronte

Διαβάστε περισσότερα

Atal honetan, laborategiko zirkuituetan oinarrizkoak diren osagai pasibo nagusiak analizatuko ditugu: erresistentziak, kondentsadoreak eta harilak.

Atal honetan, laborategiko zirkuituetan oinarrizkoak diren osagai pasibo nagusiak analizatuko ditugu: erresistentziak, kondentsadoreak eta harilak. 1. SARRERA Atal honetan, laborategiko zirkuituetan oinarrizkoak diren osagai pasibo nagusiak analizatuko ditugu: erresistentziak, kondentsadoreak eta harilak. Horien artean interesgarrienak diren erresistentziak

Διαβάστε περισσότερα

1 Aljebra trukakorraren oinarriak

1 Aljebra trukakorraren oinarriak 1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,

Διαβάστε περισσότερα

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J.

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J. ENERGIA ARIKETAK OINARRIZKO KONTZEPTUAK 1.- 1000 Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z=385.802,47 J.) 2.- 500Kg.tako eta 10m-tara zintzilik dagoen masa

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa Analisia eta Kontrola Materialak eta entsegu fisikoak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): HOSTEINS UNZUETA, Ana Zuzenketak:

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren

Διαβάστε περισσότερα

2. ERDIEROALEEN EZAUGARRIAK

2. ERDIEROALEEN EZAUGARRIAK 2. ERDIEROALEEN EZAUGARRIAK Gaur egun, dispositibo elektroniko gehienak erdieroale izeneko materialez fabrikatzen dira eta horien ezaugarri elektrikoak dispositiboen funtzionamenduaren oinarriak dira.

Διαβάστε περισσότερα

1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra.

1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra. 1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra. 2. Higidura harmoniko sinplearen ekuazioa. Grafikoak. 3. Abiadura eta azelerazioa hhs-an. Grafikoak. 4. Malguki baten oszilazioa. Osziladore

Διαβάστε περισσότερα

Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK

Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK SINUA KOSINUA TANGENTEA ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK sin α + cos α = sin α cos α = tg α 0º, º ETA 60º-KO ANGELUEN ARRAZOI TRIGONOMETRIKOAK

Διαβάστε περισσότερα

Zirkunferentzia eta zirkulua

Zirkunferentzia eta zirkulua 10 Zirkunferentzia eta zirkulua Helburuak Hamabostaldi honetan, hau ikasiko duzu: Zirkunferentzian eta zirkuluan agertzen diren elementuak identifikatzen. Puntu, zuzen eta zirkunferentzien posizio erlatiboak

Διαβάστε περισσότερα

9. K a p itu lu a. Ekuazio d iferen tzial arrun tak

9. K a p itu lu a. Ekuazio d iferen tzial arrun tak 9. K a p itu lu a Ekuazio d iferen tzial arrun tak 27 28 9. K A P IT U L U A E K U A Z IO D IF E R E N T Z IA L A R R U N T A K UEP D o n o stia M ate m atik a A p lik atu a S aila 29 Oharra: iku rra rekin

Διαβάστε περισσότερα

15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA

15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA 15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA KONTZEPTUA Eremu-efektuko transistorea (Field Effect Transistor, FET) zirkuitu analogiko eta digitaletan maiz erabiltzen den transistore mota

Διαβάστε περισσότερα

EREDU ATOMIKOAK.- ZENBAKI KUANTIKOAK.- KONFIGURAZIO ELEKTRONIKOA EREDU ATOMIKOAK

EREDU ATOMIKOAK.- ZENBAKI KUANTIKOAK.- KONFIGURAZIO ELEKTRONIKOA EREDU ATOMIKOAK EREDU ATOMIKOAK Historian zehar, atomoari buruzko eredu desberdinak sortu dira. Teknologia hobetzen duen neurrian datu gehiago lortzen ziren atomoaren izaera ezagutzeko, Beraz, beharrezkoa da aztertzea,

Διαβάστε περισσότερα

Hirukiak,1. Inskribatutako zirkunferentzia. Zirkunskribatutako zirkunferentzia. Aldekidea. Isoszelea. Marraztu 53mm-ko aldedun hiruki aldekidea

Hirukiak,1. Inskribatutako zirkunferentzia. Zirkunskribatutako zirkunferentzia. Aldekidea. Isoszelea. Marraztu 53mm-ko aldedun hiruki aldekidea Hirukiak, Poligonoa: elkar ebakitzen diren zuzenen bidez mugatutako planoaren zatia da. Hirukia: hiru aldeko poligonoa da. Hiruki baten zuzen bakoitza beste biren batuketa baino txiakiago da eta beste

Διαβάστε περισσότερα

DBH3 MATEMATIKA ikasturtea Errepaso. Soluzioak 1. Aixerrota BHI MATEMATIKA SAILA

DBH3 MATEMATIKA ikasturtea Errepaso. Soluzioak 1. Aixerrota BHI MATEMATIKA SAILA DBH MATEMATIKA 009-010 ikasturtea Errepaso. Soluzioak 1 ALJEBRA EKUAZIOAK ETA EKUAZIO SISTEMAK. EBAZPENAK 1. Ebazpena: ( ) ( x + 1) ( )( ) x x 1 x+ 1 x 1 + 6 x + x+ 1 x x x 1+ 6 6x 6x x x 1 x + 1 6x x

Διαβάστε περισσότερα

3. Ikasgaia. MOLEKULA ORGANIKOEN GEOMETRIA: ORBITALEN HIBRIDAZIOA ISOMERIA ESPAZIALA:

3. Ikasgaia. MOLEKULA ORGANIKOEN GEOMETRIA: ORBITALEN HIBRIDAZIOA ISOMERIA ESPAZIALA: 3. Ikasgaia. MLEKULA RGAIKE GEMETRIA: RBITALE IBRIDAZIA KARB DERIBATUE ISMERIA ESPAZIALA Vant off eta LeBel-en proposamena RBITAL ATMIKE IBRIDAZIA ibridaio tetragonala ibridaio digonala Beste hibridaioak

Διαβάστε περισσότερα

Mikel Lizeaga 1 XII/12/06

Mikel Lizeaga 1 XII/12/06 0. Sarrera 1. X izpiak eta erradiazioa 2. Nukleoaren osaketa. Isotopoak 3. Nukleoaren egonkortasuna. Naturako oinarrizko interakzioak 4. Masa-defektua eta lotura-energia 5. Erradioaktibitatea 6. Zergatik

Διαβάστε περισσότερα

Behe Tentsioko Ariketak ISBN:

Behe Tentsioko Ariketak ISBN: Behe Tentsioko Ariketak ISB: 978-84-9860-670-6 Zigor Larrabe Uribe EUSKARA ETA ELEAIZTASUEKO ERREKTOREORDETZARE SARE ARGITALPEA Liburu honek UPV/EHUko Euskara eta Eleaniztasuneko Errektoreordetzaren dirulaguntza

Διαβάστε περισσότερα

ERREAKZIOAK. Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea

ERREAKZIOAK. Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea ERREAKZIAK Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea ADIZI ELEKTRZALEK ERREAKZIAK idrogeno halurozko adizioak Alkenoen hidratazioa

Διαβάστε περισσότερα

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a 1. Partziala 2009.eko urtarrilaren 29a ATAL TEORIKOA: Azterketaren atal honek bost puntu balio du totalean. Hiru ariketak berdin balio dute. IRAUPENA: 75 MINUTU. EZ IDATZI ARIKETA BIREN ERANTZUNAK ORRI

Διαβάστε περισσότερα

Diamanteak osatzeko beharrezkoak diren baldintzak dira:

Diamanteak osatzeko beharrezkoak diren baldintzak dira: 1 Diamanteak osatzeko beharrezkoak diren baldintzak dira: T= 2,000 C eta P= 50,000 a 100,000 atmosfera baldintza hauek bakarrik ematen dira sakonera 160 Km-koa denean eta beharrezkoak dira miloika eta

Διαβάστε περισσότερα

1.1 Sarrera: telekomunikazio-sistemak

1.1 Sarrera: telekomunikazio-sistemak 1 TELEKOMUNIKAZIOAK 1.1 Sarrera: telekomunikazio-sistemak Telekomunikazio komertzialetan bi sistema nagusi bereiz ditzakegu: irratia eta telebista. Telekomunikazio-sistema horiek, oraingoz, noranzko bakarrekoak

Διαβάστε περισσότερα

Energia-metaketa: erredox orekatik baterietara

Energia-metaketa: erredox orekatik baterietara Energia-metaketa: erredox orekatik baterietara Paula Serras Verónica Palomares ISBN: 978-84-9082-038-4 EUSKARAREN ARLOKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko Euskararen Arloko Errektoreordetzaren

Διαβάστε περισσότερα

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz.

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. - 1-1. JARDUERA. LAN PROPOSAMENA. 1 LAN PROPOSAMENA Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. BALDINTZAK 1.- Bai memoria (txostena),

Διαβάστε περισσότερα

Solido zurruna 2: dinamika eta estatika

Solido zurruna 2: dinamika eta estatika Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4 DBH Higidurak

FISIKA ETA KIMIKA 4 DBH Higidurak 1 HASTEKO ESKEMA INTERNET Edukien eskema Erreferentzia-sistemak Posizioa Ibibidea eta lekualdaketa Higidura motak Abiadura Abiadura eta segurtasun tartea Batez besteko abiadura eta aldiuneko abiadura Higidura

Διαβάστε περισσότερα

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua.

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua. Elektronika Analogikoa 1 ELEKTRONIKA- -LABORATEGIKO TRESNERIA SARRERA Elektronikako laborategian neurketa, baieztapen eta proba ugari eta desberdinak egin behar izaten dira, diseinatu eta muntatu diren

Διαβάστε περισσότερα

Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c

Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c ntzekotasuna NTZEKOTSUN IRUI NTZEKOK NTZEKOTSUN- RRZOI NTZEKO IRUIK EGITE TLESEN TEOREM TRINGELUEN NTZEKOTSUN-IRIZPIEK LEHEN IRIZPIE $ = $' ; $ = $' IGRREN IRIZPIE a b c = = a' b' c' HIRUGRREN IRIZPIE

Διαβάστε περισσότερα

Aldagai Anitzeko Funtzioak

Aldagai Anitzeko Funtzioak Aldagai Anitzeko Funtzioak Bi aldagaiko funtzioak Funtzio hauen balioak bi aldagai independenteen menpekoak dira: 1. Adibidea: x eta y aldeetako laukizuzenaren azalera, S, honela kalkulatzen da: S = x

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4 DBH Lana eta energia

FISIKA ETA KIMIKA 4 DBH Lana eta energia 5 HASTEKO ESKEMA INTERNET Edukien eskema Energia Energia motak Energiaren propietateak Energia iturriak Energia iturrien sailkapena Erregai fosilen ustiapena Energia nuklearraren ustiapena Lana Zer da

Διαβάστε περισσότερα

2. ELEKTRONIKA-LABORATEGIKO TEGIKO TRESNERIA 2.1 POLIMETROA Ω. 100 Ω. 10 Ω Analogikoa OINARRIZKO ELEKTRONIKA

2. ELEKTRONIKA-LABORATEGIKO TEGIKO TRESNERIA 2.1 POLIMETROA Ω. 100 Ω. 10 Ω Analogikoa OINARRIZKO ELEKTRONIKA 2. ELEKTRONIKA-LABORATEGIKO TEGIKO TRESNERIA Elektronikan adituak bere lana ondo burutzeko behar dituen tresnak honakoak dira:.- Polimetro analogikoa edo digitala..- Elikatze-iturria..- Behe-maiztasuneko

Διαβάστε περισσότερα

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula Fisika BATXILERGOA 2 Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena, legeak aurrez ikusitako

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: OPTIKA

SELEKTIBITATEKO ARIKETAK: OPTIKA SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu

Διαβάστε περισσότερα

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA eman ta zabal zazu Euskal Herriko Unibertsitatea Informatika Fakultatea Konputagailuen rkitektura eta Teknologia saila KONPUTGILUEN TEKNOLOGIKO LBORTEGI KTL'000-00 Bigarren parteko dokumentazioa: Sistema

Διαβάστε περισσότερα

1.1. Aire konprimituzko teknikaren aurrerapenak

1.1. Aire konprimituzko teknikaren aurrerapenak 1.- SARRERA 1.1. Aire konprimituzko teknikaren aurrerapenak Aire konprimitua pertsonak ezagutzen duen energia-era zaharrenetarikoa da. Seguru dakigunez, KTESIBIOS grekoak duela 2.000 urte edo gehiago katapulta

Διαβάστε περισσότερα

Jose Miguel Campillo Robles. Ur-erlojuak

Jose Miguel Campillo Robles. Ur-erlojuak HIDRODINAMIKA Hidrodinamikako zenbait kontzeptu garrantzitsu Fluidoen garraioa Fluxua 3 Lerroak eta hodiak Jarraitasunaren ekuazioa 3 Momentuaren ekuazioa 4 Bernouilli-ren ekuazioa 4 Dedukzioa 4 Aplikazioak

Διαβάστε περισσότερα

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2 Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,

Διαβάστε περισσότερα

0.Gaia: Fisikarako sarrera. ARIKETAK

0.Gaia: Fisikarako sarrera. ARIKETAK 1. Zein da A gorputzaren gainean egin behar dugun indarraren balioa pausagunean dagoen B-gorputza eskuinalderantz 2 m desplazatzeko 4 s-tan. Kalkula itzazu 1 eta 2 soken tentsioak. (Iturria: IES Nicolas

Διαβάστε περισσότερα

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak

Διαβάστε περισσότερα

IMAN IRAUNKORREKO FLUXU AXIALEKO SORGAILU BATEN DISEINU, KALKULU ETA ERAIKUNTZA

IMAN IRAUNKORREKO FLUXU AXIALEKO SORGAILU BATEN DISEINU, KALKULU ETA ERAIKUNTZA eman ta zabal zazu BILBOKO INDUSTRIA INGENIARITZA TEKNIKOKO UNIBERTSITATE ESKOLA INGENIARITZA ELEKTRIKOKO GRADUA : GRADU AMAIERAKO LANA 2014 / 2015 IMAN IRAUNKORREKO FLUXU AXIALEKO SORGAILU BATEN DISEINU,

Διαβάστε περισσότερα

Materialen elastikotasun eta erresistentzia

Materialen elastikotasun eta erresistentzia Materialen elastikotasun eta erresistentzia Juan Luis Osa Amilibia EUSKARA ETA ELEANIZTASUNEKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko Euskara eta Eleaniztasuneko Errektoreordetzaren

Διαβάστε περισσότερα

du = 0 dela. Ibilbide-funtzioekin, ordea, dq 0 eta dw 0 direla dugu. 2. TERMODINAMIKAREN LEHENENGO PRINTZIPIOA ETA BIGARREN PRINTZIPIOA

du = 0 dela. Ibilbide-funtzioekin, ordea, dq 0 eta dw 0 direla dugu. 2. TERMODINAMIKAREN LEHENENGO PRINTZIPIOA ETA BIGARREN PRINTZIPIOA . TERMODINAMIKAREN LEHENENGO PRINTZIPIOA ETA BIGARREN PRINTZIPIOA.. TERMODINAMIKAREN LAN-ARLOA Energi eraldaketak aztertzen dituen jakintza-adarra termodinamika da. Materia tarteko den prozesuetan, natural

Διαβάστε περισσότερα

2. PROGRAMEN ESPEZIFIKAZIOA

2. PROGRAMEN ESPEZIFIKAZIOA 2. PROGRAMEN ESPEZIFIKAZIOA 2.1. Asertzioak: egoera-multzoak adierazteko formulak. 2.2. Aurre-ondoetako espezifikazio formala. - 1 - 2.1. Asertzioak: egoera-multzoak adierazteko formulak. Programa baten

Διαβάστε περισσότερα

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA eman ta zabal zazu Euskal Herriko Unibertsitatea Informatika Fakultatea Konputagailuen Arkitektura eta Teknologia saila KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA KTL'2000-2001 Oinarrizko dokumentazioa lehenengo

Διαβάστε περισσότερα

Oinarrizko mekanika:

Oinarrizko mekanika: OINARRIZKO MEKANIKA 5.fh11 /5/08 09:36 P gina C M Y CM MY CY CMY K 5 Lanbide Heziketarako Materialak Oinarrizko mekanika: mugimenduen transmisioa, makina arruntak eta mekanismoak Gloria Agirrebeitia Orue

Διαβάστε περισσότερα

Deixia. Anafora edota katafora deritze halako deixi-elementuei,

Deixia. Anafora edota katafora deritze halako deixi-elementuei, Deixia Jardunera edo gogora ekarritako erreferente bat (izaki, leku zein denbora) seinalatzen duen elementu linguistiko bat da deixia. Perpausaren ia osagai guztiek dute nolabaiteko deixia: Orduan etxe

Διαβάστε περισσότερα

Uhin guztien iturburua, argiarena, soinuarena, edo dena delakoarena bibratzen duen zerbait da.

Uhin guztien iturburua, argiarena, soinuarena, edo dena delakoarena bibratzen duen zerbait da. 1. Sarrera.. Uhin elastikoak 3. Uhin-higidura 4. Uhin-higiduraren ekuazioa 5. Energia eta intentsitatea uhin-higiduran 6. Uhinen arteko interferentziak. Gainezarmen printzipioa 7. Uhin geldikorrak 8. Huyghens-Fresnelen

Διαβάστε περισσότερα

GIZA GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA I BINOMIALA ETA NORMALA 1

GIZA GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA I BINOMIALA ETA NORMALA 1 BINOMIALA ETA NORMALA 1 PROBABILITATEA Maiztasu erlatiboa: fr i = f i haditze bada, maiztasuak egokortzera joko dira, p zebaki batera hurbilduz. Probabilitatea p zebakia da. Probabilitateak maiztasue idealizazioak

Διαβάστε περισσότερα

Oxidazio-erredukzio erreakzioak

Oxidazio-erredukzio erreakzioak Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/

Διαβάστε περισσότερα

EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA

EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA AIXERROTA BHI EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA 2012 uztaila P1. Urtebete behar du Lurrak Eguzkiaren inguruko bira oso bat emateko, eta 149 milioi km ditu orbita horren batez besteko erradioak.

Διαβάστε περισσότερα

Poisson prozesuak eta loturiko banaketak

Poisson prozesuak eta loturiko banaketak Gizapedia Poisson banaketa Poisson banaketak epe batean (minutu batean, ordu batean, egun batean) gertaera puntualen kopuru bat (matxura kopurua, istripu kopurua, igarotzen den ibilgailu kopurua, webgune

Διαβάστε περισσότερα

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK

Διαβάστε περισσότερα

1. Oinarrizko kontzeptuak

1. Oinarrizko kontzeptuak 1. Oinarrizko kontzeptuak Sarrera Ingeniaritza Termikoa deritzen ikasketetan hasi berri den edozein ikaslerentzat, funtsezkoa suertatzen da lehenik eta behin, seguru aski sarritan entzun edota erabili

Διαβάστε περισσότερα

Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35; 0,32; 0,32; 2,2 atm; 2,03 atm; 2.03 atm c) 1,86; 0,043

Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35; 0,32; 0,32; 2,2 atm; 2,03 atm; 2.03 atm c) 1,86; 0,043 KIMIKA OREKA KIMIKOA UZTAILA 2017 AP1 Emaitzak: a) 0,618; b) 0,029; 1,2 EKAINA 2017 AP1 Emaitzak:a) 0,165; 0,165; 1,17 mol b) 50 c) 8,89 atm UZTAILA 2016 BP1 Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35;

Διαβάστε περισσότερα

1 GEOMETRIA DESKRIBATZAILEA...

1 GEOMETRIA DESKRIBATZAILEA... Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA... 1 1.1 Proiekzioa. Proiekzio motak... 3 1.2 Sistema diedrikoaren oinarriak... 5 1.3 Marrazketarako hitzarmenak. Notazioak... 10 1.4 Puntuaren, zuzenaren eta planoaren

Διαβάστε περισσότερα

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia 1. MAKROEKONOMIA: KONTZEPTUAK ETA TRESNAK. 1.1. Sarrera Lehenengo atal honetan, geroago erabili behar ditugun oinarrizko kontzeptu batzuk gainbegiratuko ditugu, gauzak nola eta zergatik egiten ditugun

Διαβάστε περισσότερα

4. Hipotesiak eta kontraste probak.

4. Hipotesiak eta kontraste probak. 1 4. Hipotesiak eta kontraste probak. GAITASUNAK Gai hau bukatzerako ikaslea gai izango da ikerketa baten: - Helburua adierazteko. - Hipotesia adierazteko - Hipotesi nulua adierazteko - Hipotesi nulu estatistikoa

Διαβάστε περισσότερα

SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK

SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK... Zer da sistema Pneumatikoa? Fluido mota, erabilerak, abantailak eta desabantailak... ABANTAILAK... DESABANTAILAK...3

Διαβάστε περισσότερα

ARRAZOI TRIGONOMETRIKOAK

ARRAZOI TRIGONOMETRIKOAK ARRAZOI TRIGONOMETRIKOAK 1.- LEHEN DEFINIZIOAK Jatorri edo erpin berdina duten bi zuzenerdien artean gelditzen den plano zatiari, angelua planoan deitzen zaio. Zirkunferentziaren zentroan erpina duten

Διαβάστε περισσότερα

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana 6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Batezbestekoaren estimazioa biztanlerian kalkulatzeko. - Proba parametrikoak

Διαβάστε περισσότερα

(1)σ (2)σ (3)σ (a)σ n

(1)σ (2)σ (3)σ (a)σ n 5 Gaia 5 Determinanteak 1 51 Talde Simetrikoa Gogoratu, X = {1,, n} bada, X-tik X-rako aplikazio bijektiboen multzoa taldea dela konposizioarekiko Talde hau, n mailako talde simetrikoa deitzen da eta S

Διαβάστε περισσότερα

Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa

Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa 1 Zenbaki errealak Helburuak Hamabostaldi honetan hau ikasiko duzu: Zenbaki errealak arrazional eta irrazionaletan sailkatzen. Zenbaki hamartarrak emandako ordena bateraino hurbiltzen. Hurbilketa baten

Διαβάστε περισσότερα

1. MATERIAREN PROPIETATE OROKORRAK

1. MATERIAREN PROPIETATE OROKORRAK http://thales.cica.es/rd/recursos/rd98/fisica/01/fisica-01.html 1. MATERIAREN PROPIETATE OROKORRAK 1.1. BOLUMENA Nazioarteko Sisteman bolumen unitatea metro kubikoa da (m 3 ). Hala ere, likido eta gasen

Διαβάστε περισσότερα

5 Hizkuntza aljebraikoa

5 Hizkuntza aljebraikoa Hizkuntza aljebraikoa Unitatearen aurkezpena Unitate honetan, aljebra ikasteari ekingo diogu; horretarako, aurreko ikasturteetan landutako prozedurak gogoratuko eta sakonduko ditugu. Ikasleek zenbait zailtasun

Διαβάστε περισσότερα

3. KOADERNOA: Aldagai anitzeko funtzioak. Eugenio Mijangos

3. KOADERNOA: Aldagai anitzeko funtzioak. Eugenio Mijangos 3. KOADERNOA: Aldagai anitzeko funtzioak Eugenio Mijangos 3. KOADERNOA: ALDAGAI ANITZEKO FUNTZIOAK Eugenio Mijangos Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia

Διαβάστε περισσότερα

ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi

ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi I. ebazkizuna (2.25 puntu) Poisson, esponentziala, LTZ Zentral

Διαβάστε περισσότερα

ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu

ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu I. ebazkizuna Ekoizpen-prozesu batean pieza bakoitza akastuna edo

Διαβάστε περισσότερα

GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK)

GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK) GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK) Recart Barañano, Federico Pérez Manzano, Lourdes Uriarte del Río, Susana Gutiérrez Serrano, Rubén EUSKARAREN

Διαβάστε περισσότερα

Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra

Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra Gaien Aurkibidea 1 Definizioa 1 2 Solido zurrunaren zinematika: translazioa eta biraketa 3 2.1 Translazio hutsa...........................

Διαβάστε περισσότερα

LAUGARREN MULTZOA: EREMU EFEKTUKO TRANSISTOREA

LAUGARREN MULTZOA: EREMU EFEKTUKO TRANSISTOREA LAUGARREN MULZOA: EREMU EFEKUKO RANSSOREA 15. EREMU EFEKUKO RANSSOREAK : SALKAPENA EA MOSFEA 59 15.1 MOSFE transistorearen oinarria: MOS egitura 61 15.1.1 Metal-Oxido-Erdieroale egitura orekan 61 15.1.

Διαβάστε περισσότερα

6 INBERTSIOA ENPRESAN

6 INBERTSIOA ENPRESAN 6 INBERTSIOA ENPRESAN 6.1.- INBERTSIO KONTZEPTUA 6.2.- INBERTSIO MOTAK 6.3.- DIRUAREN BALIOA DENBORAN ZEHAR 6.2.1.- Oinarrizko hainbat kontzeptu 6.2.2.- Etorkizuneko kapitalen gutxietsien printzipioa 6.2.3.-

Διαβάστε περισσότερα

LOTURA KIMIKOA :LOTURA KOBALENTEA

LOTURA KIMIKOA :LOTURA KOBALENTEA Lotura kobalenteetan ez-metalen atomoen arteko elektroiak konpartitu egiten dira. Atomo bat beste batengana hurbiltzen denean erakarpen-indar berriak sortzen dira elektroiak eta bere inguruko beste atomo

Διαβάστε περισσότερα

Gailuen elektronika Azterketen bilduma ( )

Gailuen elektronika Azterketen bilduma ( ) Gailuen elektronika Azterketen bilduma (1999-2009) Federico Recart Barañano Susana Uriarte del Río Rubén Gutiérrez Serrano Iñigo Kortabarria Iparragirre Eneko Fernández Martín EUSKARA ETA ELEANIZTASUNEKO

Διαβάστε περισσότερα