Elektroodipotentsiaalid, elektrokeemiline tasakaal
|
|
- Σωτηρία Ζαφειρόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 FK 2. os lektroodipotentsilid, elektrokeemiline tskl Krmen Lust Volt smms (1799) esimene ptrei Illustr.: Wikipedi
2 Volt smms Cu (või Ag) pldid vheldumisi -pltideg, mille vhel on elektrolüüdilhuseg immuttud seprtor Alessndro Volt Illustr.: Illustr.: Wikipedi
3 lektrokeemiline element (rkk) lektrokeemiline element on sede elektrivoolu tootmiseks isevoolulise protsessi käigus vbnev energi rvel glvnielement või sede mitteisevoolulise elektrokeemilise protsessi läbiviimiseks elektrivoolu toimel elektrolüüser e elektrolüütiline rkk. Rkupotentsil potensilierinevus khe elektroodi vhel
4 Rku töövõime j potentsili seos lektrokeemiline tskl Pöörduv iseenesliku elektrokeemilise protsessi töö Protsessi mksimlse töö j Gibbsi vbenergi seos: w mx = r G p,t j nii töö w mx < kui k r G p,t < Avldme elektrilise töö : 1 mooli suvlise lengug (z) oskeste liigutmiseks kulub energit w = Kui rkus on protsess isevooluline, siis energi vbneb: w = - Kui protsess on lisks k pöörduv, siis sme elektrilise töö sidud Gibbsi vbenergig: r G P, T
5 lektrokeemiline tskl r G P, T Järeldused Iseenesliku protsessi korrl on rkupotentsil positiivne Võrrnd kehtib siis, kui P j T ei muutu Tegemist on sõltuvuseg rektsiooni Gibbsi energi j elemendi potentsili vhel tingimustes, kus süsteem töötb pöörduvlt Rku nullvoolupotentsil rkupotentsil, kui süsteemi vool ei läbi Kui rektsioon toimub konstntse V j T juures, siis r F V, T
6 lektrokeemiline tskl Nullvoolupotentsili kontsetrtsioonisõltuvus Toimugu rkus rektsioon A +bb cc +ff rektsiooni isotermi võrrndi põhjl c f CF ΔrG ΔrG ln b AB Avldme nullvoolupotentsili: Δ r G ln Stndrdne nullvoolupotentsil c C A Q f F b B ln c C A f F b B Nernsti võrrnd Rektsioonikorrutis Wlther Nernst Nernsti võrrnd 1889 Nobeli keemipreemi 192 (termokeemi) Illustr.:
7 lektrokeemiline tskl Rku stndrdse nullvoolupotentsili seos rektsiooni tsklukonstndig Δ rg lnk Viime tsklukonstndi K vldise Nernsti võrrndisse: ln c f c f C F CF ln b b A A B B Q j K erinevus ktiivsused rektsiooni suvlisel momendil Q K j v j j j j v j ktiivsused tskluolekus lnk lnq
8 lektrokeemiline tskl Kui Q =1 siis lnq = = lnq Kui kõik ktiivsused = 1 siis on tegemist stndrdtingimuseg! Q =1 k siis, kui produktide ktiivsuste korrutis = = lähteinete ktiivsuste korrutiseg Kui Q = K siis = lnk Rkupotentsili sõltuvus lnq-st on sirge lgordint = r tõus =,257/z V (kui t=25 C) lnq
9 lektrokeemiline element Potentsilihüpped piirpinddel 2 ( t) 2 ( l) Mingi kogus 2+ ioone lhustub Mid suuremks muutub lengute erinevus, sed rskem on 2+ - ioonidel lhustud. Tskl tekib siis, kui tekkinud potentsilihüpe piirpinnl tsklustb keemiliste potentsilide erinevuse. Piirpinnl tekib potentsilihüpe 2+ Üksiku elektroodi potentsili ei s mõõt
10 lektrokeemiline element Glvnielement Glvnielement teeb tööd oksüdeerub: 2e - 2+ ANOOD Poorne membrn Cu 2+ redutseerub: Cu 2+ +2e - Cu KATOOD + Cu Cu 2 2 ( 2 ) Cu ( 2 Cu ) Cu Toimub iseenesest
11 r = 1,red - 2,red lektrooodipotentsilid Poolelemendid j nende potentsilid Rkurektsioon j rku nullvoolupotentsil: + Cu Cu Need sme jotd vse poolelemendi osks: Cu e - Cu 2 2 Cu /Cu Cu Ox 1 Red 1...j tsingi poolelemendi osks - 2e - 2+ Red 2 Ox 2 / r / /Cu ln 2 ln Cu Cu ln Cu ln Cu Cu 2 Cu Reduktsioonipotentsil Oksüdtsioonipotentsil r = 1,red + 2,ox Ig redokspri 1,ox = - 1,red Thke ine =1
12 lektrooodipotentsilid Stndrdpotentsilide tbel Stndrdpotentsil = stndrdne redutseerumispotentsil Üksiku redokspri stndrdset nullvoolupotentsili ei s määrt Sb määrt kõigi redokspride st. nullvoolupotentsilid ühe kindl redokspri suhtes Stndrdvesinikelektrood (SH) 2H + + 2e - H 2, Pt,H 2 (1 br) H + (=1)... H /H 2 H /H 2 F ln p H H igsugusel tempertuuril (kokkulepe) 2
13 lektrooodipotentsilid Stndrdpotentsilide tbel stndrdpotentsil 2+ (=1) H + (=1) H 2 (1 br),pt 2 /,76 V Cu 2 /Cu Cu stndrdpotentsil,34 V Pt,H 2 (1 br) H + (=1) Cu 2+ (=1) Cu Stndrdpotentsilide skl 2+ (=1) Cu 2+ (=1) Cu r =,34 (-,76)=1,1 V
14 lektrooodipotentsilid lektrokeemilise elemendi potentsili rvutmine r Cu 2 Cu /Cu 2 /Cu 2 / 2 / ln 2F Cu 2 2 r Positiivsem stndrdpotentsilig poolelemendi (elektronktseptori) reduktsioonipotentsilist lhuttkse vähempositiivsem (või negtiivse) stndrdpotentsilig poolelemendi (elektronidoonori) reduktsioonipotentsil Thkete inete ktiivsused loetkse kontstntseks Q kirjutmisel ei tohi unustd stöhhiomeetrilisi koefitsiente Kui tulemus () on positiivne, siis on tegemist glvnielemendig, kui negtiivne, siis ntud tingimustes protsess isevooluliselt ei toimu
15 Difusioonipotentsil on tingitud ioonide erinevst liikuvusest lektrokeemiline element Nullvoolupotentsili määrmine
16 Difusioonipotentsil Ühe iooni membrn Vtleme süsteemi membrnig, mid sb läbid inult ühte sorti ioon: H + ioon läbib membrni, Cl - ioonid j lhustimolekulid mitte. Keemiline j elektriline energi: 1 G keem. pot ln Gel d Tskluolekus: 1 Gkeem pot Gel ln d 2 Difusioonipotentsili vldis: d d G 2. ln 2 1 d HCl ( 1 ) HCl ( 2 ) 1 < 2 H + Cl + Difusioonipotentsil on lti positiivne!
17 Difusioonipotentsil Kui mõlemd ioonid läbivd membrni Potentsilihüpe tekib ioonide erinevte liikuvuste tõttu (H + -iooni liikuvus on plju suurem Cl - -iooni liikuvusest) Potentsilihüpe on väiksem kui ühe iooni membrni korrl, sest k os negtiivseid lenguid läbib membrni HCl ( 1 ) HCl ( 2 ) 1 < 2 H + Cl + kui t + >t kui t + <t d ( t Üldjuhul: t ) d ln t 2 1 t ln d ( t t ) suurem ktiivus väiksemktiivsus ln 2 1
18 Kontsentrtsioonielement Amlgmelektroodideg kontsetrtsioonielement Amlgmelektroodides on lhustunud metlli ktiivus erinev. Kui näiteks preml pool on kliumi ktiivsus suurem, siis selt hkkb klium oksüdeerum. Prem elektrood sb positiivse, vsk negtiivse lengu. F ln 2 1 Kontsetrtsioonielemendi stndrdpotentsil =
19 Kontsentrtsioonielement Ktioonide suutes pöörduvlt töötv element lektroodirektsioonides oslevd ktioonid lektriline potentsil Pt H 2 HCl ( 1 ) HCl ( 2 ) H 2 Pt kun 1 < 2 siis ln 2 H + H + H 2 F 1 Cl Difusioonipotentsil lektrivälj suund: + Anood Ktood t t ln 2 d 1 H Summrne potentsil + 2t ln 2 1 Cl kun t + > t, siis + Kui elektriväljd on lektrivälj suund: vstupidise suung, siis difusioonipotentsil vähendb rkupotentsili, kui sm suung, siis suurendb
20 Kontsentrtsioonielement Anioonide suutes pöörduvlt töötv element lektroodirektsioonides oslevd nioonid lektriline potentsil ln 2 F 1 Difusioonipotentsil t t ln 2 d 1 Summrne potentsil 2t ln 2 1 Pne tähele, et gs erldub siin noodilt (eelmises näites erldub ktoodilt) Pt Cl 2 HCl ( 1 ) HCl ( 2 ) Cl 2 Pt kun 1 < 2 siis Cl Cl Cl 2 H + + lektrivälj suund: Ktood Anood H + Cl kun t + > t, siis + lektrivälj suund:
21 Kontsentrtsioonielement lektrolüüdisillg kontsentrtsioonielement lektrolüüdisills on sellise sool lhus, mille nioonide j ktioonide ülekndervud on lähedsed (KCl, KNO 3 ) Difusioonipotentsil t ln 2 t 1 Summrne potentsil ln 2 d 1 Pt H 2 HCl ( 1 ) KNO 3 HCl ( 2 ) H 2 Pt kun 1 < 2 siis difusiooni suund: K + NO 3 lektrolüüdisillg kontsetrtsioonielemendi potentsil on võrdne rku elektrilise potentsilig
22 Stndrdpotentsilid on tbelites 25 C juures Potentsili sõltuvus tempertuurist Nullvoolupotentsili tempertuurisõltuvus Δ r G f ( T) f (T ) Arvestdes termodünmiliste suuruste seoseid j Gibbsi vbenergi seost nullvoolupotentsilig, sb rku nullvoolupotentsili tempertuurisõltuvuse kudu määrt termodünmilisi prmeetreid: ΔG d S T T dt H d dt P d G TS T dt P - nullvoolupotentsili tempertuurikoefitisent
Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2
Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee
BIOMEDITSIINITEHNIKA KESKUS. Elektromagnetväljad ja lained LBR5010 loengute konspekt. Hiie Hinrikus
BIOMDITIINITNIKA KKU lektromgnetväljd j lined LBR5 loengute konspekt. iie inrikus IJUATU lektrodünmik on os teoreetilisest füüsikst, nimelt elektromgnetilise välj teoorist, j käsitleb suhteliselt kiiretoimelisi
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui
Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.
7,5V 4,5V. Joon
. DIOODSKEEMID Dioodskeemid: piirikud, eelpinge formeerijd, tempertuurindurid j -kompenseerijd, dioodventiilid j dioodkitse. Dioodide eriliigid, nende ksutus mdl- j KS-tehniks. Dioode - p-n siirdeid -
1.2 Elektrodünaamiline jõud
. Elektrodüniline jõud.. Jõud rööpsete juhtide vhel Elektriprti võib läbid k lühisvool, is on sdu või isegi tuhndeid kordi suure prdi niivoolust. Voolu toiel tekib voolujuhtivte osde vhel ehniline jõud,
Elektrimahtuvus ja elektrivälja energia (Duffin, 5. ptk)
Elektrimhtuvus j elektrivälj energi (Duffin, 5. ptk) Gümnsiumiõpik: (vlemid G.1, G. jne) Klltes vedelikku ühekõrgustesse kuid erinev läbimõõdug klsidesse, näeme otsekohe, et liemsse klsi mhub rohkem vedelikku.
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
MATEMAATIKA TÄIENDUSÕPE
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD ARVUHULGAD ARITMEETIKA Mõigte rvude kõrgemd stmed Hriliku murru põhiomdus Tehetevhelised seosed Tehted hrilike murdudeg
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.
Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud
MATEMAATIKA TÄIENDUSÕPE
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD ARVUHULGAD ARITMEETIKA Mõigte rvude kõrgemd stmed Hriliku murru põhiomdus Tehetevhelised seosed Tehted hrilike murdudeg
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
panagiotisathanasopoulos.gr
. Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal
I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Ivar Tammeraid itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend
TTÜ Mtemtikinstituut http://www.stff.ttu.ee/ mth/ Ivr Tmmerid http://www.stff.ttu.ee/ itmmerid/ MATEMAATILINE ANALÜÜS I Elektrooniline õppevhend Tllinn, Trükitud versioon: Ivr Tmmerid, Mtemtiline nlüüs
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II
4-1 ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II Θέμα ασκήσεως: Ποτενσιομετρική τιτλοδότηση, προσδιορισμός κανονικού δυναμικού ηλεκτροδίου, πειραματική επαλήθευση της εξισώσεως Nernst. Αρχή μεθόδου: Μετρείται η ΗΕΔ γαλβανικού
Ivar Tammeraid itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend
TTÜ Mtemtikinstituut http://www.stff.ttu.ee/ mth/ Ivr Tmmerid http://www.stff.ttu.ee/ itmmerid/ MATEMAATILINE ANALÜÜS I Elektrooniline õppevhend Tllinn, Trükitud versioon: Ivr Tmmerid, Mtemtiline nlüüs
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
Eesti koolinoorte 43. keemiaolümpiaad
Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6
Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).
Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
PÕHIKOOLI KORDAMISE TÖÖ I
PÕHIKOOLI KORDAMISE TÖÖ I 0. Arvut vldise,6 4 täpe väärtus. 4 4. Lihtsust vldis. 4 4. Lhed võrrdisüsteem = 4. 4= 4. Mtel mksis 400 krooi. Mtli hid tõusis lgul 0% j seejärel veel %. Kui suur oli lõpuks
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 18. november a.
Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja. klass) 8. november 2. a.. a) X C, vingugaas, Q Cl 2, Z CCl 2, fosgeen b) Z on õhust raskem, sest Q on õhust raskem, Z molekulmass on aga
C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ
»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()
/&25*+* 24.&6,2(2**02)' 24
!! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &
=217 kj/mol (1) m Ühe mooli glükoosi sünteesil lihtainetest vabaneb footoneid: Δ H f, glükoos n (glükoos) =5,89 mol (1) E (footon)
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Vanem rühm (11. ja 12. klass) Kohtla-Järve, Kuressaare, Narva, Pärnu, Tallinn ja Tartu 6. oktoober 2018 1. a) 1 p iga õige ühendi eest. (4) b) Võrrandist ():
F l 12. TRANSPORDINÄHTUSED JA BIOENERGEETIKA ALUSED
1. TRANSPORDINÄHTUSED JA BIOENERGEETIKA ALUSED Eluks on vajalik pidev aine ja energia transport (e suunatud liikumine) läbi biosfääri ja konkreetselt bioloogilise aine. Biosfäär ehk elukeskkond on Maa
NORDrect Ventilatsiooni kandiline torustik
Ventitsiooni kndiine torustik www.etsnord.ee 0 0 Üdist EKT Toru EKP Põv EKPK Põv EKK Üeminek 0 EKD Üeminek 0 EKN Nihe ESS Sdu ESK Sdu ESD Sdu ESDR Sdu EKM Komik EKO Pime EKOL Pime EVO Õhuhre võrgug ESV
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
b) Täpne arvutus (aktiivsete kontsentratsioonide kaudu) ph arvutused I tugevad happed ja alused
ph arvutused I tugevad happed ja alused Tugevad happed: HCl, HBr, HI, (NB! HF on nõrk hape) HNO 3, H 2SO 4, H 2SeO 4, HClO 4, HClO 3, HBrO 4, HBrO 3, HMnO 4, H 2MnO 4 Tugevad alused: NaOH, OH, LiOH, Ba(OH)
Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults
TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on
ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ
ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ Τι είναι ο αριθμός οξείδωσης Αριθμό οξείδωσης ενός ιόντος σε μια ετεροπολική ένωση ονομάζουμε το πραγματικό φορτίο του ιόντος. Αριθμό οξείδωσης ενός
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ
5-1 ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ Έννοιες που θα γνωρίσετε: Δομή και δυναμικό ηλεκτρικής διπλής στιβάδας, πολώσιμη και μη πολώσιμη μεσεπιφάνεια, κανονικό και
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΧλΘ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 8 Απριλίου
K o Na o Cl o. K i Na i Cl i
3 Kuigi kõigi loomarakkude ümber on stabiilsed potentsiaalide erinevused, suudavad ainult teatud tüüpi mebraanid vastata potentsiaalide muutumisele aktsioonipotentsiaalide genereerimisega. Iga kord, kui
ΘΕΜΑ Να αντιστοιχίσετε κάθε ηλεκτρονιακή δομή της στήλης Α με το σωματίδιο της στήλης Β στο οποίο αναφέρεται : v) 3 Li vi) 11 N
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΧΗΜΕΙΑ 0 A' Λυκείου Ον/μο:. /0/01 ΘΕΜΑ 1 0 1. Να αντιστοιχίσετε κάθε ηλεκτρονιακή δομή της στήλης Α με το σωματίδιο της στήλης Β στο οποίο αναφέρεται : Στήλη Α Στήλη Β α) Κ() i) 10 Ne β)
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής Κατεύθυνσης Χημεία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΚΑΛΟΓΝΩΜΗΣ ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Κατεύθυνσης Χημεία Γ Λυκείου ΚΑΛΟΓΝΩΜΗΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskosgr wwwiliaskosgr 0 2 7 1s 2s ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 2p 3s 14 2 2 6
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ Όλες οι αντιδράσεις που ζητούνται στη τράπεζα θεµάτων πραγµατοποιούνται. Στην πλειοψηφία των περιπτώσεων απαιτείται αιτιολόγηση της πραγµατοποίησης των αντιδράσεων.
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ
Κεφάλαιο 1ο-ΟΞΕΙΔΩΑΝΑΓΩΓΗ 1 ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
ALGEBRA I. Kevad Lektor: Valdis Laan
ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
Χημικές Αντιδράσεις. Εισαγωγική Χημεία
Χημικές Αντιδράσεις Εισαγωγική Χημεία Κατηγορίες Χημικών Αντιδράσεων Πέντε κυρίως κατηγορίες: Σύνθεσης Διάσπασης Απλής αντικατάστασης Διπλής αντικατάστασης Καύσης Αντιδράσεις σύνθεσης Ένωση δύο ή περισσότερων
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 15. november a.
. a) A mutant E.coli B β galaktosidaas C allolaktoos D laktoos b) N = 2 aatomit Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 0. klass) 5. november 200. a. molekulis 6 prootonit + aatomit
Α. Αντιδράσεις απλής αντικατάστασης
1 Δ ι δ ακ τ ι κ ή Ε ν ό τ η τ α: Οξειδοαναγωγικές Αντιδράσεις Α. Αντιδράσεις απλής αντικατάστασης Ορισμός Αντιδράσεις απλής αντικατάστασης είναι οι αντιδράσεις στις οποίες ένα στοιχείο (μέταλλο ή αμέταλλο)
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ
ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το αντίστοιχο ιόν Παράδειγμα:
Περιβαλλοντική Γεωχημεία
Περιβαλλοντική Γεωχημεία Χ. Στουραϊτη 2018-2019 Ύλη 1. Γεωχημικά περιβάλλοντα και διαγράμματα Eh-pH (κεφ. 4, βιβλίο EBY) (Υπολογιστικές ασκήσεις) 2. Οργανικός άνθρακας και οργανική ύλη στο έδαφος (1 η
2017/2018. õa keemiaolümpiaadi lõppvooru ülesannete lahendused klass
217/218. õa keemiaolümpiaadi lõppvooru ülesannete lahendused 11. 12. klass 1. a) Vee temperatuur ei muutu. (1) b) A gaasiline, B tahke, C vedel Kõik õiged (2), üks õige (1) c) ja d) Joone õige asukoht
Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.4 εξίσωση του Nernst. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π.
Σημειώσεις για το μάθημα Φυσική Χημεία ΙΙ Ηλεκτροχημικά στοιχεία Κεφ.4 εξίσωση του Nernst Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Τμήμα Χημείας ΑΠΘ ΚΕΦΑΛΑΙΟ 4 ΕΞΙΣΩΣΗ NERNST 4.1 Εξίσωση Nernst Μια
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
Temperatuur ja soojus. Temperatuuri mõõtmise meetodid. I. Bichele, 2016
Temperatuur ja soojus. Temperatuuri mõõtmise meetodid. I. Bichele, 016 Soojuseks (korrektselt soojushulgaks) nimetame energia hulka, mis on keha poolt juurde saadud või ära antud soojusvahetuse käigus
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [4. loeng] 1 Loengu kava Dünaamika Inerts Newtoni I seadus Inertsiaalne taustsüsteem Keha mass, aine
3. Να συμπληρωθούν οι παρακάτω αντιδράσεις:
1. Να συμπληρωθούν οι παρακάτω αντιδράσεις: 2N 2 + 3H 2 2NH 3 4Na + O 2 2Να 2 Ο Fe + Cl 2 FeCl 2 Zn + Br 2 ZnBr 2 2K + S K 2 S 2Ca + O 2 2CaO Na + Ca -------- C + O 2 CO 2 H 2 + Br 2 2HBr CaO + H 2 O Ca(OH)
Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες
Χημικά στοιχεία και ισότοπα διαθέσιμα στο Minecraft: Education Edition Σύμβολο στοιχείου Στοιχείο Ομάδα Πρωτόνια Ηλεκτρόνια Νετρόνια H Υδρογόνο He Ήλιο Ευγενή αέρια Li Λίθιο Αλκάλια Ατομικό βάρος 1 1 0
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
Βιοχημικές Οξειδοαναγωγικές αντιδράσεις
Βιοχημικές Οξειδοαναγωγικές αντιδράσεις Χρήστος Κρούπης, MSc, PhD Επίκουρος Καθηγητής Κλινικής Βιοχημείας Αττικόν Πανεπιστημιακό Νοσοκομείο Ιατρική Σχολή Πανεπιστημίου Αθηνών 1 Ὺλη Οξειδοαναγωγής Lehninger
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 8 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 8 ΕΠΙΚΑΙΡΟΠΟΙΗΜΕΝΗ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΝΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2
ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
Introduction. Strong Electrolyte Weak Electrolyte Dissociation depends on concentration, model as reaction
Introduction Strong Electrolyte Weak Electrolyte Dissociation depends on concentration, model as reaction 1 18.2 Colligative properties Electrolyte dissociation changes concentration more than non-electrolyte
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
REAKTSIOONIKINEETIKA
TARTU ÜLIKOOL TEADUSKOOL TÄIENDAVAID TEEMASID KOOLIKEEMIALE II REAKTSIOONIKINEETIKA Vello Past Õppevahend TK õpilastele Tartu 008 REAKTSIOONIKINEETIKA. Keemilise reatsiooni võrrand, tema võimalused ja
Ονοματεπώνυμο: Χημεία Α Λυκείου Αριθμός Οξείδωσης Ονοματολογία Απλή Αντικατάσταση. Αξιολόγηση :
Ονοματεπώνυμο: Μάθημα: Υλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση : Χημεία Α Λυκείου Αριθμός Οξείδωσης Ονοματολογία Απλή Αντικατάσταση Τσικριτζή Αθανασία Θέμα Α 1. Να επιλέξετε τη σωστή απάντηση σε καθεμία
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
ΑΘΗΑ - ΕΞΕΤΑΖΟΕΝΗ ΥΛΗ ΧΗΕΙΑ Γ ΛΥΚΕΙΟΥ ΚΑΘΗΓΗΤΗΣ ΤΗΑ ΠΑΡΑΡΤΗΑ ΔΙΑΡΚΕΙΑ 3 ΩΡΕΣ ΘΕΑ Α ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΑΤΩΝ Α1. 3, Α2. 3, Α3. 2, Α4. 3 Α5. 1. Λάθος, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Σωστό. ΘΕΑ Β Β1. Ι) 1.
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
ph Mõõtmine ph mõõtmise täpsus Kalibreerimisgraafik Enamasti salvestab ph meeter tõusu s (toatemperatuuril ca 59 mv/ph)
ph Mõõtmine Potentsiomeetria olulisim rakendus ph meetri tööpõhimõte Siin vaatleme vaid potentsiomeetrilist ph mõõtmist Olemus: ph meeter on sisuliselt millivoltmeeter, mis mõõdab tema külge ühendatud
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
Βιοχημικές Οξειδοαναγωγικές αντιδράσεις
Βιοχημικές Οξειδοαναγωγικές αντιδράσεις Χρήστος Κρούπης, MSc, PhD Επίκουρος Καθηγητής Κλινικής Βιοχημείας Αττικόν Πανεπιστημιακό Νοσοκομείο Ιατρική Σχολή Πανεπιστημίου Αθηνών 1 Ὺλη Οξειδοαναγωγής Lehninger
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ, ΘΕΡΜΟΚΗΠΙΑΚΩΝ ΚΑΛΛΙΕΡΓΕΙΩΝ ΚΑΙ ΑΝΘΟΚΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ, ΘΕΡΜΟΚΗΠΙΑΚΩΝ ΚΑΛΛΙΕΡΓΕΙΩΝ ΚΑΙ ΑΝΘΟΚΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΙΔΡΑΣΗ ΚΑΔΜΙΟΥ (Cd) ΣΕ ΜΟΡΦΟΛΟΓΙΚΑ ΚΑΙ ΦΥΣΙΟΛΟΓΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ
TÄIENDAVAID TEEMASID KOOLIKEEMIALE III
TARTU ÜLIKOOL TEADUSKOOL TÄIENDAVAID TEEMASID KOOLIKEEMIALE III KEEMILINE TASAKAAL Vello Past Õppevahend TK õpilastele Tartu 007 KEEMILINE TASAKAAL 1. Keemilise tasakaalu mõiste. Tasakaalu mõiste on laialt
ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως Αρχή μεθόδου Θεωρία
3-1 ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως: Προσδιορισμός κανονικού δυναμικού (Ε) ηλεκτροδίου. Προσδιορισμός του θερμικού συντελεστή ( Ε/ Τ) P. Προσδιορισμός του γινομένου διαλυτότητας του Agl. Αρχή μεθόδου:
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A5 και δίπλα