Matemaatiline analüüs I iseseisvad ülesanded
|
|
- Σωστράτη Ευταξίας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond. 4. Leidke funktsiooni y = ln määramispiirkond. 5. Leidke funktsiooni y = sin muutumispiirkond. 6. Leidke funktsiooni y = + muutumispiirkond. 7. Leidke funktsiooni y = pöördfunktsioon. 8. Leidke funktsiooni y = + pöördfunktsioon. 9. Leidke funktsiooni y = log( + e ) pöördfunktsioon.. Leidke funktsiooni y = 4 arcsin pöördfunktsioon.. Kas funktsioon y = on paaris, paaritu või mitte kumbki?. Kas funktsioon y = (5 5 ) on paaris, paaritu või mitte kumbki?. Kas funktsioon y = 4 + on paaris, paaritu või mitte kumbki? 4. Kas funktsioon y = ln on paaris, paaritu või mitte kumbki? + ( ) + 5. Leidke f, kui f() = Leida f{f[f()]}, kui f() =. 7. lim Ülesannetes leidke piirväärtused lim 4 [ ] 9. lim ( ) + +. lim. lim 7 49
2 . lim h + h h. lim 4. lim ( + )( + ) lim 5 6. lim lim tan sin 5 cos 8. lim sin. ( 9. lim sin ) tan ( π ). lim π tan (. lim + 4 ) ( ) +. lim ( ). lim + 4. lim ( + ) 5. Tõestage tuletise definitsiooni abil, et ( ) = 6. Tõestage tuletise definitsiooni abil, et ( ) = ( ) 7. Tõestage tuletise definitsiooni abil, et = Ülesannetes leidke funktsiooni tuletis ja võimaluse korral lihtsustage avaldis. 8. y = + 9. y = arcsin 4. y = + + arctan
3 4. y = log ( + + 4) 4. y = 4. y = ln ( + + ) y = y = ln(e cos + e sin ) 46. y = ( ) + arcsin y = + ln + + arctan 48. y = sin + cot + cos + tan ( ) 49. Arvutage z (), kui z(t) = t + t 5. Arvutage f (), kui f() = cos 5. Arvutage g ( ), kui g() = arcsin 5. Rihmaratta pöördenurga α sõltuvus ajast on α = t + t 5. Leidke nurkkiirus ajahetkel t = Leidke joone y = 8a puutuja tõus punktis abstsissiga = a 4a Avaldage funktsiooni y = e diferentsiaal dy 55. Arvutage funktsiooni y = ln kui = ja =. + diferentsiaali ja muudu väärtused, 56. Arvutage funktsiooni diferentsiaali abil ligikaudu ln, 57. Arvutage funktsiooni diferentsiaali abil ligikaudu 4 6, Leidke y, kui y = ln( + ) 59. Leidke y, kui y = + 6. Leidke y, kui y = (sin ln + cos ln ) 6. Leidke y, kui y = e 6. Arvutage f IV (), kui f() = Ülesannetes leidke piirväärtus L Hospitali reegli abil. 6. lim
4 e a e b 64. lim π arctan 65. lim ( ln + ) 66. lim e 67. lim ( ln 68. lim sin 69. lim ( ) 7. lim (e + ) ) ln 7. Leidke funktsiooni y = kasvamis- ja kahanemisvahemikud. 7. Leidke funktsiooni y = e kasvamis- ja kahanemisvahemikud. 7. Leidke funktsiooni y = ln kasvamis- ja kahanemisvahemikud. 74. Leidke funktsiooni y = ln( + ) lokaalsed ekstreemumid. 75. Leidke funktsiooni y = ( 5) ( + ) lokaalsed ekstreemumid. 76. Leidke funtsiooni y = ( ) kasvamis- ja kahanemisvahemikud ning lokaalsed ekstreemumid. 77. Leidke funktsiooni y = + suurim ja vähim väärtus lõigul [; 4]. 78. [ Leidke funktsiooni y = sin suurim ja vähim väärtus lõigul π ; π ]. 79. Leidke funktsiooni y = + ning käänupunktid. graafiku kumerus- ja nõgususpiirkonnad 8. Leidke funktsiooni y = ln(+ ) graafiku kumerus- ja nõgususpiirkonnad ning käänupunktid. 8. Leidke funktsiooni y = e graafiku kumerus- ja nõgususpiirkonnad ning käänupunktid. Ülesannetes leidke antud funktsiooni osatuletised kõikide sõltumatute muutujate järgi. 8. z = y y 8. z = y + 4 y 4
5 84. z = ln tan y 85. z = e y 86. z = sin y cos y 87. z = ln( + + y ) 88. z = arctan y 89. z = y ln( + y). 9. w = ln(y + ln z) 9. w = tan( + y + z 4 ) 9. w = yz 9. Arvutage funktsiooni z = arcsin 94. z = cos y y cos z. Arvutage + sin + sin y osatuletised punktis (; ) + y ja z y, kui = y = 95. w = ln( + + y + z ). Leidke w + w y + w z punktis = y = z = 96. z = ln( y ); tõestage, et z + z y + y = 97. On antud funktsioon z = y + arctan y z. Tõestage, et + y z y = y + z. 98. Leidke funktsiooni z = arcsin y täisdiferentsiaali avaldis. 99. Leidke funktsiooni z = + y y täisdiferentsiaali avaldis.. Leidke funktsiooni z = sin(y) täisdiferentsiaali avaldis.. Leidke funktsiooni w = yz täisdiferentsiaali avaldis.. Arvutage funktsiooni z = y täisdiferentsiaali väärtus, kui =, y y =, =, ja y =,.. Arvutage funktsiooni z = + y y täismuudu z ja täisdiferentsiaali dz väärtused, kui =, y = 7, = ja y = Arvutage funktsiooni z = y + täismuudu z ja täisdiferentsiaali dz y väärtused, kui muutub väärtusest väärtuseni, 8 ja y väärtusest väärtuseni,. 5
6 5. Arvutage funktsiooni täisdiferentsiaali abil ligikaudu, 96, Arvutage funktsiooni täisdiferentsiaali abil ligikaudu Arvutage funktsiooni täisdiferentsiaali abil ligikaudu arcsin, 4, Arvutage funktsiooni täisdiferentsiaali abil ligikaudu ln ( 5, , 4 ). 9. Leidke dy, kui y 4 y 4 = a. Leidke dy, kui y + y+ln = ja arvutage selle väärtus, kui =. Leidke dy, kui y = ln y ja arvutage selle väärtus punktis (e ; e).. Leidke dy, kui y ln = ln y ja arvutage selle väärtus punktis (; ).. Leidke z ja z y, kui y + z 4 + z 5 =. 4. Leidke z z ja, kui z = cos y sin z ning arvutage nende väärtused ( y π ) punktis ; ;. 5. Leidke z z ja y, kui yz = ez ning arvutage nende väärtused punktis (e ; ; ). 6. Leidke funktsiooni z = 4 y + 9y + y lokaalsed ekstreemumid ja määrake nende liik. 7. Leidke funktsiooni z = y ( y) lokaalsed ekstreemumpunktid, mis rahuldavad tingimusi > ja y > ja määrake ekstreemumi liik. 8. Leidke funktsiooni z = + y + y + + y ja määrake nende liik. lokaalsed ekstreemumid 9. Leidke funktsiooni z = e ( + y ) lokaalsed ekstreemumid ja määrake nende liik.. Leidke funktsiooni z = +y y lokaalsed ekstreemumid ja määrake nende liik.. Leidke funktsiooni z = + y 4 + 8y suurim ja vähim väärtus ristkülikus külgedega =, y =, = ja y =.. Leidke funktsiooni z = y suurim ja vähim väärtus ringis +y 4. 6
7 . Leidke funktsiooni z = sin +sin y+sin(+y) suurim ja vähim väärtus ruudus π, y π. 4. Leidke funktsiooni z = + y + y =. ekstremaalsed väärtused lisatingimusel 5. Leidke funktsiooni z = a cos + b cos y ekstreemumpunkt lisatingimusel y = π Leidke paraboolil y = punkt, mis on lähim punktile P (; ) Ülesannetes leidke määramata integraal ( sin + cos ) e ( + e ) cot ( + ) ( + ) + cos + cos Ülesannetes integreerige muutuja vahetusega tan sin 4 cos e e + ln 4 + ln 7
8 Ülesannetes integreerige ositi ( + ) sin ( ) cos e ln( + ) arccos Ülesannetes arvutage määratud integraal e 5. e + ln π π π π 4 e cos 5 sin sin sin ln( + ) + Ülesannetes arvutage päratu integraal 8
9 e + + ( + ) sin Vastused. X = ( ; 5) ( 5; );. X = [ ; ];. X = [ 4; π] [; π]; 4. X = (4; 5) (6; ); 5. Y = [ ; ] 6. Y = [; ]; 7. y = + ; 8. y = log ; 9. y = ln ( );. y = ± cos ( π;. Paaritu;. Paaris;. Ei ole 4 kumbki; 4. Paaritu; 5. ; 6. ; 7. 4; 8. 7 ; 9. ;. ;. 56 ;. ;. ; 4. ; 5. ; 6. ; 7. 5 ; 8. 4 ; 9. ;. ;. e ;. e ;. e ; 4. e ; 8. ; 9. arcsin + ; 4. ( ) + 4. ( + ) ( + + 4) ln ; 4. ln + ; 4. ; (e + e )(cos sin ) + ( ) ; 45. ; e cos + e sin 9 ; ; 48. cos ; 49. ; 5. 4 ( + ) ln ; rad s ; 5. ; 54. dy = e ( + ); 55. dy =,, y =, 44; 56., ; , ; 58. ( + ) ; 59. ( + ) sin ln ; 6. ; + 6. e ( + ); 6. 6; 6. 6 ; 64. a b ; 65. ; 66. ; 67. ; 68. ; 69. ; 7. e ; 7. X = (; ), X = (; ); 7. X = (; ), X = ( ; ), X = (; ); 7. X = (e; ), X = (; ), X = (; e); 74. Kohal = lok. miinimum 75. Kohtadel = ja = 5 lok. miin. kohal =, 5 lok. maks. 76. X = ( ; ), X = (; ), X = ( ; ), X = (; ), kohal = lok. maksimum, kohtadel = ± lok. miinimum; 77. y min = y() =, y ma = y(4) = 5 ; 9
10 ( 78. y ma = y π ) = π ( π ), y min = y = π ; 79. ˆX = ( ; ), ˆX = (; ), X = ( ; ), X = (; ), K (; ), K ( ; 9), K 4 (; 9) 8. 4 ˆX = ( ; ), ˆX = (; ), X = ( ; ), K ( ; ln ), K (; ln ) 8. ˆX = K ( ; ( ; ) e 4 y ; y ) (, X = ; ) (, X = ; ( ); K ; e ), 8. y y, y + y ; 8. y + 4y 4 y. 84. ;. 85. y sin y y sin y y y e y ; y e y. 86. y cos y sin y ; cos y+ sin y y ; y ( + + y ) + y. 88. y ( + y ) ; + y. 89. y ln(+y)+ y + y ; ln(+y)+ y + y. 9. y y + ln z ; y + ln z ; z(y + ln z ). 9. cos ( + y + z 4 ) ; y cos ( + y + z 4 ) ; 4z cos ( + y + z 4 ). 9. y z yz ; yz ln zy z ; yz ln y z ln y; 9. 5 ; 5 ; 94. ; y dy ; 98. dz = y y ; (dy y) 99. dz = ;. dz = (y + dy) cos(y);. ( ( y) ) yz dw = yz + z ln dy + y ln dz ;. ;. z = ; dz = ; 4. z, 764; dz =, 5; 5. 59,84; 65 6 ; ) lokaalne miinimum z min = ; ; 7. π 6 ; 8.,6; 9. ( y ) y( y ) ;. ;. ;. ;. 4e z + ; y z + ; 4. + π ; π + π ; 5. e ( ;. 6. Punktis 7 ) 4 ; 7 lokaalne miinimum ( Punktis (6; 4) lokaalne maksimum z ma = Punktis 9. Punktis ( ; ) ekst- reemumit ei ole, punktis (; ) lokaalne miinimum;. Punktis (; ) ekstreemumit ei ole, punktis (; ) lokaalne miinimum;. z min = z(; ) = ; z ma = z(; ) = 7.. z min = z(; ) = z(; ) = 4; z ma = z(; ) = z( ; ) = 4;. ; min = z(; ) = ; z ma = ( π z ; π ) =. 4. z(; ) = C; 8. cos + C; 9. e + ( arctan b a ; π 4 arctan b a + C;. cot + C;. arctan + C; 98.. (tan + ) + C;. ( 5) 5 + C; C; 5. ln cos + C; ).
11 6. sin5 + C; 7. ln(e + ) + C; 8. ln ln + C; 9. 5 arctan + C; 4. arcsin ln + C; 4. arcsin + C; ( + ) cos sin C; 4. ( ) sin + cos +C; e +C; 45. ln ln +C; 46. ln( +) + arctan +C; 47. arccos + C; 48. ; 49. e e; 5. ; 5. arctan arctan ; 5. ln 4 ; 5. 7 ; 54. π 6π; 55. π(9 4 ) + 6 ln ; 56. ; 57. π ; 58. ; 59. ; 6. π; 6. ; 6. hajub;
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
1 MTMM Kõrgem matemaatika, eksamiteemad 2014
1 MTMM.00.188 Kõrgem matemaatika, eksamiteemad 2014 Eksamitöö annab kokku 80 punkti ja ülesanded jagunevad järgmisse kuude gruppi: P1 ( 10p ) - ülesanded I kontrolltöö põhiteemade peale; P2 ( 10p ) - ülesanded
4.1 Funktsiooni lähendamine. Taylori polünoom.
Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised
Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35
Matemaatika VI kursus Tõenäosus, statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y
Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester
Matemaatiline analüüs IV praktikumiülesannete kogu 4. a. kevadsemester . Alamhulgad ruumis R m. Koonduvad jadad. Tõestage, et ruumis R a) iga kera s.o. ring) U r A) sisaldab ruutu keskpunktiga A = a,b),
MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele
MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele TALLINNA TEHNIKAÜLIKOOL Matemaatikainstituut MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele Tallinn 24 3 MATEMAATILINE ANALÜÜS II
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
1 Funktsioon, piirväärtus, pidevus
Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks
6 Mitme muutuja funktsioonid
6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad
Matemaatiline analüüs II praktikumiülesannete kogu a. kevadsemester
Matemaatiline analüüs II praktikumiülesannete kogu 5. a. kevadsemester . Kahe ja kolme muutuja funktsiooni määramispiirkond, selle raja, kinnisus ja lahtisus. Olgu X ja Y hulgad. Kujutus e. funktsioon
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5
Μαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
YMM3740 Matemaatilne analüüs II
YMM3740 Matemaatilne analüüs II Gert Tamberg Matemaatikainstituut Tallinna Tehnikaülikool gert.tamberg@ttu.ee http://www.ttu.ee/gert-tamberg G. Tamberg (TTÜ) YMM3740 Matemaatilne analüüs II 1 / 29 Sisu
Leaving Certificate Applied Maths Higher Level Answers
0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)
Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δεύτερου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε τα arccos και arcsin των 0, ±, ±, ±, ±. Λύση: Στο διάστημα [ π, π ] είναι (κατά αύξουσα διάταξη των γωνιών και
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
Ασκήσεις στα Ολοκληρώματα, Αόριστο Ολοκλήρωμα, Ορισμένο Ολοκλήρωμα, Πολλαπλά Ολοκηρώματα για τα Γενικά Μαθηματικά ΙΙ, Τμήματος Χημείας Διδάσκων: Μιχάλης Ξένος, email : menos@cc.uoi.gr Μαρτίου. Να υπολογιστούν
2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 8: Τεχνικές ολοκλήρωσης Α Οµάδα. Υπολογίστε τα ακόλουθα ολοκληρώµατα : + + d, + + ( + 3)( ) d, 3 + 3 + 3 + + + d. Υπόδειξη. (α) Γράφουµε + + d
Kitsas matemaatika-3 tundi nädalas
Kitsas matemaatika-3 tundi nädalas Õpitulemused I kursus-arvuhulgad. Avaldised. Võrrand, võrratus. 1) eristab ratsionaal-, irratsionaal- ja reaalarve; 2) eristab võrdust, samasust, võrrandit ja võrratust;
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών
( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.
Παράγωγος-Κλίση-Μονοτονία Άσκηση η : Να βρεθούν οι παράγωγοι των συναρτήσεων:, log, ) ln(, e, Λύση: Έχουμε ln ln ( ), f = = e = e R ln ln f ( ) = ( e ) = e ( ln ) = ln = ln, R Γενικά ισχύει: ( a ) = ln
z k z + n N f(z n ) + K z n = z n 1 2N
Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά 6..5 Λύσεις Σειράς Ασκήσεων Άσκηση (α) Έστω z το όριο της ακολουθίας z n, δηλ. για κάθε ɛ > υπάρχει N(ɛ) ώστε z n z < ɛ για n > N. Για n > N(ɛ), είναι z n
Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.
ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin
No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x 4 + 9 x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3
Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, www.maths.gr, Tηλ.: 69 79 0 5 Ασκήσεις παραγώγισης γινοµένου No Άσκηση παραγώγισης γινοµένου
= (2)det (1)det ( 5)det 1 2. u
www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det
ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής
Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ι
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ι. ΠΑΡΑΓΩΓΟΙ Κανόνες παραγώγισης - διαφόρισης ) (c) = dc = ) () = ) (cf) = cf 4) (f g) = f g d(f g) = df dg 5) (fg) = f g + fg d(fg) = gdf + fdg 6) d(f / g) = 7) [f(g())] = f (g)g
Mathematica kasutamine
mathematica_lyhi_help.nb 1 Mathematica kasutamine 1. Sissejuhatus Programmi Mathematica avanemisel pole programmi tuum - Kernel - vaikimisi käivitatud. Kernel on programmi see osa, mis tegelikult teostab
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο2) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ. ώ ό. ί ό ό 1, 1,2,, 1,,,,,,, 1,2,,, V ό V V. ή ό ί ά ύ. ό, ί ί ή έ ύ.
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ 0,,,, i i i i i i ό i i i Έ ώ,,, ό,,, ί ώ ό. ί ό ό,,,,,,,,,,, V ό V 0 V 0,,, ύ ώ ό ή ό ό ή ό ί ά ύ ό, ί ί ή έ ύ ό ό, ί ί ή έ ύ ό ύ ό ΠΑΡΑΔΕΙΓΜΑΤΑ
Homework#13 Trigonometry Honors Study Guide for Final Test#3
Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.
1 Σύντομη επανάληψη βασικών εννοιών
Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
b proj a b είναι κάθετο στο
ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y +
Jörg Gayler, Lubov Vassilevskaya
Differentialrechnung: Aufgaben Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Erste Ableitung der elementaren Funktionen......................... Ableitungsregeln......................................
Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ
% APPM$1235$Final$Exam$$Fall$2016$
Name Section APPM$1235$Final$Exam$$Fall$2016$ Page Score December13,2016 ATTHETOPOFTHEPAGEpleasewriteyournameandyoursectionnumber.The followingitemsarenotpermittedtobeusedduringthisexam:textbooks,class
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΗΣ 2/11/2018
ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΗΣ 2/11/2018 1. i. Έστω = (, ) R. Αν 0 η συνάρτηση στο σημείο είναι συνεχής ως πηλίκο συνεχών. Αν = 0 θα εξετάσουμε αν lim h = 0 = 0. Αν h = (h, h ) έχουμε: lim h
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1
I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
3 + tanx 100 Differentiate G(t) = Answer: G (t) = Differentiate f (x) = lnx + ex 2. Differentiate F(s) = ln ( cos(2s) + 2 ) Answer: F (s) =
Differentiate y xcos(2x 2 ( x 1 2 3 Differentiate f (x sinx f (x cos(1 + x - 2*xˆ2 + x*(-1 + 4*x*sin(1 + x - 2*xˆ2 Differentiate y -24*cot(x*csc(xˆ3 3 + tanx 100 Differentiate G(t (cost 4 1 (sec(xˆ2/(2*sqrt(3
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά
MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM
Lea Lepmann Tiit Lepmann MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM Ülesanded, lahendused, kommentaarid ja soovitused Kõigi käesolevas kogumikus kasutatud riigi- ja katseeksamite ülesannete autoriõigused
5. OPTIMEERIMISÜLESANDED MAJANDUSES
5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,
A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ
A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία
Κεφάλαιο 8 Το αόριστο ολοκλήρωµα
Κεφάλαιο 8 Το αόριστο ολοκλήρωµα 8 Θεµελίωση έννοιας αορίστου ολοκληρώµατος Στο 7 0 Κεφάλαιο ορίσαµε την έννοια της αντιπαραγώγου µιας συνάρτησης f σ ένα κλειστό και φραγµένο διάστηµα Γενικότερα Ορισµός
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
5 Παράγωγος συνάρτησης
5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =
f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,
Διάλεξη 7: Παράγωγοι συναρτήσεων 1 Γενικά Πρόοδος μαθήματος Σάββατο 24/11 στις 14:00 2 Παράγωγος ως συνάρτηση Η παράγωγος της f (x) ως προς x, είναι η συνάρτηση f (x) και η οποία ισούται με f (x) = lim
c) y = c) y = arctan(sin x) d) y = arctan(e x ).
Trường Đại học Bách Khoa Hà Nội Viện Toán ứng dụng và Tin học ĐỀ CƯƠNG BÀI TẬP GIẢI TÍCH I - TỪ K6 Nhóm ngành 3 Mã số : MI 3 ) Kiểm tra giữa kỳ hệ số.3: Tự luận, 6 phút. Nội dung: Chương, chương đến hết
Formulario di Trigonometria
Formulario di Trigonometria Indice degli argomenti Formule fondamentali Valori noti delle funzioni trigonometriche Simmetrie delle funzioni trigonometriche Relazioni tra funzioni goniometriche elementari
1 Elementary Functions
Elementary Functions. Power of Binomials. Power series.0 + q =+q + qq + +! qq...q + + =! q If q is neither a natural number nor zero, the series converges absolutely for < and diverges for >. For =, the
Κεφάλαιο 6 Παράγωγος
Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της
= df. f (n) (x) = dn f dx n
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: : : : ma 3 για κάθε Να αποδείξετε ότι για κάθε ισχύει: 3 3 Τι συμπεραίνετε για τις παραπάνω νόρμες του Αν θεωρήσουμε
Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1
Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος 014-15 ΜΑΝΩΛΗ ΨΑΡΡΑ Μανώλης Ψαρράς Σελίδα 1 Α ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΗ 1 η Να λυθούν γραφικά τα συστήματα: y y6 y 5 1 : 1 : 3 : y 6 0 y 5
I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c}
I. ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(), = f(), = (), F(, ) = c}.μηδενικά.μονοτονίες 3.Ασυνέχειες 4.Θετικές δυνάμεις 5.Αρνητικές δυνάμεις 6.Εκθετική 7.Λογαριθμική 8.Αλλαγή βάσης 9.Πολυωνυμικές.Ρητές.Σύνθεση.Πλεγμένες
ITU-R P (2012/02)
ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU
ΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ
1. Σημασίες δεικτών και σύμβολα ΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ - Σημασίες δεικτών: 1 Μικρός οδοντοτροχός («πινιόν») ενός ζεύγους Μεγάλος οδοντοτροχός (ή σκέτα «τροχός») ούτε 1 ούτε : Εξετάζεται ο οδοντοτροχός
Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27
Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid
Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).
Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Έστω μια συνάρτηση f ορισμένη σε ένα σύνολο Α. Ένα από τα βασικότερα προβλήματα της Μαθηματικής Ανάλυσης είναι ο προσδιορισμός μιας συνάρτησης F/ A με F = f για κάθε
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Θεωρία Συνόλων, Συναρτήσεις Πραγματικής Μεταβλητής, Όριο και Συνέχεια Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής
Αθ.Κεχαγιας. v. 0.86. Λογισµός Συναρτήσεων Μιας Μεταβλητής µε παράρτηµα Αναλυτικής Γεωµετρίας. Σηµειωσεις : Θ. Κεχαγιας.
Σηµειωσεις : Λογισµός Συναρτήσεων Μιας Μεταβλητής µε παράρτηµα Αναλυτικής Γεωµετρίας v..86 Θ. Κεχαγιας Απριλης Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια.....................................
dx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
Ainevaldkond Matemaatika gümnaasiumi ainekava
Ainevaldkond Matemaatika gümnaasiumi ainekava 1. Ainevaldkonna õppeainete kohustuslikud kursused Lai matemaatika koosneb 14 kursusest: 10 klass: 1. Avaldised ja arvuhulgad 2. Võrrandid ja võrrandisüsteemid
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 4: Συναρτήσεις Πολλών Μεταβλητών Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)
. 1 (INTERPOLATION) A a 1x1 [ ] Sin[ A] [ Sin[ a]], Cos[ A] [ Cos[ a]], Tan[ A] [ Tan[ a]], Cot[ A] [ Cot[ a]]. a x + yi x, y R Sin[ a] Cosh[ y] Sin[ x] + Cos[ x] Sinh[ y] i Cos[ a] Cos[ x] Cosh[ y] Sin[
Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού
Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας
6.6 Ühtlaselt koormatud plaatide lihtsamad
6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline
Μιγαδική Ανάλυση. Δρ. Θ. Ζυγκιρίδης
Μιγαδική Ανάλυση Δρ. Θ. Ζυγκιρίδης 2 Περιεχόμενα 1 Μιγαδικοί αριθμοί 1 1.1 Βασικοί ορισμοί και ιδιότητες............................. 1 1.2 Γεωμετρική αναπαράσταση των μιγαδικών αριθμών.................
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΩΣΤΑ ΛΑΘΟΣ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΩΣΤΑ ΛΑΘΟΣ 1. Στο διπλανό σχήμα δίνεται η γραφική παράσταση της συνάρτησης f( ). 1 5 Να χαρακτηρίσετε ως σωστό (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις.. i) Η f έχει πεδίο
Answers to Selected Exercises
Answers to Selected Eercises Chapter. second, fifth, fifth, forty-second a i. yes, it is a ii. no, it is not a iii. no b i. no b ii. yes b iii. no c i. yes c ii. no c iii. no d i. no d ii. no d iii. yes
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές
ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές κ.λ.π. ΔΙΑΝΥΣΜΑΤΑ Παράσταση διανύσματος ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΕΣ
4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτό το κεφάλαιο ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Βασικά Μαθηµατικά ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 04 Μαρτίου 009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια περίληψη των ϐασικών µα- ϑηµατικών γνώσεων που
Έντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος