MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
|
|
- Μελίνα Ενυώ Κορωναίος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on järgmine geomeetriline tähendus: funktsiooni f mille abstsiss on Seega k f tuletis võrdub funktsiooni graafiku uutuja tõusuga unktis, Geomeetriast on teada, et tõusuga k ja ühe unktiga võrrand on k Saame, et joonele f unktis kus uutuja tõus ; määratud sirge ; tõmmatud uutuja võrrand on k, k f tanα (nurk α on uutuja tõusunurk) Näide Leida joone f e uutuja unktis, kus Lahendus Leiame kõigeealt uutuunkti teise koordinaadi Puutuja tõusu k leidmiseks leiame tuletise unktis Saame uutuja võrrandi f e f e ja arvutame tuletise väärtuse k f e 8
2 ( ),, + Vastus Puutuja võrrand on + Näide Leida joone f + uutuja võrrand kohal Lahendus Et uuteunkt on joone ja uutuja ühine unkt, siis ning uuteunkt on koordinaatidega ( ; 5) f + 5 Leiame funktsiooni tuletise f ja selle väärtuse uuteunktis f Seega uutuja tõus k Asendades leitud suurused uutuja võrrandisse, saame ( ) Vastus Puutuja võrrand on 3 5 ehk 3 Näide 3 Leida unktid, milles hüerbooli f uutuja on aralleelne sirgega + 3 Lahendus Olgu ( ; ) unktid, milles hüerboolile tõmmatud uutujad on aralleelsed antud sirgega Leiame sirge võrrandist selle sirge tõusu k (sirge võrrandis k+ b on kordaja k sirge tõus) Et antud sirge ja otsitav uutuja on aralleelsed, siis on uutuja tõus k otsitavas unktis ( ; ) samuti võrdne Saame, et k f Leiame nüüd f ( ) Seostest f ja f saame, et 9
3 millest,, ± Arvutame ka uuteunktide teised koordinaadid f ( ) +, siis f Kui, siis Kui ja uuteunkt on ; f ja uuteunkt on ; Vastus Punktid on ; ja ; Näide Leida arabooli f 3 5 uutuja, mis on aralleelne sirgega Lahendus Paralleelsete sirgete tõusud on võrdsed, seega on otsitava uutuja tõus 5 (sirge võrrandis k+ b on kordaja k sirge tõus) Teisalt k f Leiame 3 f ja saame võrrandi 5 3 Puuteunkti ordinaadi leiame antud joone võrrandist Seega on uuteunkt ( ; ) f 3 3 ja uutuja võrrand Vastus Puutuja võrrand on ehk 5 + Näide 5 Leida unkt, milles joonele f -teljega nurga 35 Koostada selle uutuja võrrand tõmmatud uutuja moodustab Lahendus Sirge tõusunurk on -telje ositiivse suuna ja sirge vaheline nurk Et otsitav uutuja moodustaks -teljega nurga 35, eab ta -teljega moodustama nurga 5 Puutuja tõus k f tanα
4 Praegu k f ( ) tan 5 Leiame f ja koostame võrrandi uuteunkti arvutamiseks ning lahendame selle tan 5,,,5 f ehk Joone võrrandist uuteunkti ordinaat (,5), 75 ; abstsissi Saame uutuja võrrandi ( (,5) ),75,,75 +,5, +,5 Vastus Punkt on (-,5 ;,75), uutuja võrrand on +, uutujad unktides, kus, 3 + lõikuvad unktis, mille abstsiss Näide 6 Tõestada, et joone f Lahendus Joonele f () unktis ( ; ) tõmmatud uutuja võrrand on Leiame funktsiooni tuletise: f '( )( ) (+ 3 ) (3 + ) (+ 3 )(3 + ) f ' (3 + ) 6 ) (+ 3 ) ) 6 ) Ülesande tingimuste kohaselt on uutuja tõmmatud joonele unktis, kus Joone võrrandist leiame vastava väärtuse ja ehk, millest saame, et ± ) kui, siis 6 '( ) (3 ) + f ning uutuja võrrandiks unktis ; saame
5 ( ) ; 6 ) kui, siis f '( ), seega uutuja võrrandiks unktis ) ( ; ) saame ( + ) Vastus Sirged ja lõikuvad koordinaatide algusunktis, so unktis, mille abstsiss on tõeoolest null 58 Ülesanded uutuja võrrandi koostamisest Leida joone uutuja võrrand, kui uuteunkti abstsiss 3 Vastus Puutuja võrrand on Koostada uutuja võrrand joonele unktides, kus see joon lõikab koordinaattelgi Vastus Puutujate võrrandid on 3+, Leida hüerbooli uutujad, mis on arallelsed sirgega Vastus Puutujate võrrandid on +, Leida joone ( )( + ) uutujate võrrandid, kui uuteunkti ordinaat Vastus Puutujate võrrandid on, 3
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Analüütilise geomeetria praktikum II. L. Tuulmets
Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
; y ) vektori lõpppunkt, siis
III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
1 Funktsioon, piirväärtus, pidevus
Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks
Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2
Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee
4.1 Funktsiooni lähendamine. Taylori polünoom.
Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
6 Mitme muutuja funktsioonid
6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)
Vektor. Joone võrrand. Analüütiline geomeetria.
Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil,
Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine
TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
Eesti koolinoorte 51. täppisteaduste olümpiaad
Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused
Eesti koolinoorte 50. täppisteaduste olümpiaad 1. ülesanne Füüsika lõppvoor. 30. märts 2003. a. Keskkooli ülesannete lahendused Läheme kiirusega v/2 liikuvasse süsteemi. Seal on olukord sümmeetriline,
Kitsas matemaatika-3 tundi nädalas
Kitsas matemaatika-3 tundi nädalas Õpitulemused I kursus-arvuhulgad. Avaldised. Võrrand, võrratus. 1) eristab ratsionaal-, irratsionaal- ja reaalarve; 2) eristab võrdust, samasust, võrrandit ja võrratust;
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed
6.6 Ühtlaselt koormatud plaatide lihtsamad
6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline
1 MTMM Kõrgem matemaatika, eksamiteemad 2014
1 MTMM.00.188 Kõrgem matemaatika, eksamiteemad 2014 Eksamitöö annab kokku 80 punkti ja ülesanded jagunevad järgmisse kuude gruppi: P1 ( 10p ) - ülesanded I kontrolltöö põhiteemade peale; P2 ( 10p ) - ülesanded
2017/2018. õa keemiaolümpiaadi lõppvooru ülesannete lahendused klass
217/218. õa keemiaolümpiaadi lõppvooru ülesannete lahendused 11. 12. klass 1. a) Vee temperatuur ei muutu. (1) b) A gaasiline, B tahke, C vedel Kõik õiged (2), üks õige (1) c) ja d) Joone õige asukoht
TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots
TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
REAALAINETE KESKUS JAAK SÄRAK
REAALAINETE KESKUS JAAK SÄRAK TALLINN 2006 1 DESCRIPTIVE GEOMETRY Study aid for daily and distance learning courses Compiler Jaak Särak Edited by Tallinn College of Engineering This publication is meant
Eesti koolinoorte 26. füüsika lahtine võistlus
Eesti koolinoorte 6. füüsika lahtine võistlus 8. november 05. a. Vanema rühma ülesannete lahendused. (RONGIVILE) Tähistagu L veduri kaugust jaamaülemast hetkel, mil vedurijuht alustab vile laskmisega.
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM
Lea Lepmann Tiit Lepmann MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM Ülesanded, lahendused, kommentaarid ja soovitused Kõigi käesolevas kogumikus kasutatud riigi- ja katseeksamite ülesannete autoriõigused
MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele
MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele TALLINNA TEHNIKAÜLIKOOL Matemaatikainstituut MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele Tallinn 24 3 MATEMAATILINE ANALÜÜS II
Ehitusmehaanika. EST meetod
Ehitusmehaanika. EST meetod Staatikaga määramatu kahe avaga raam /44 4 m q = 8 kn/m 00000000000000000000000 2 EI 4 EI 6 r r F EI p EI = 0 kn p EI p 2 m 00 6 m 00 6 m Andres Lahe Mehaanikainstituut Tallinna
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
REAKTSIOONIKINEETIKA
TARTU ÜLIKOOL TEADUSKOOL TÄIENDAVAID TEEMASID KOOLIKEEMIALE II REAKTSIOONIKINEETIKA Vello Past Õppevahend TK õpilastele Tartu 008 REAKTSIOONIKINEETIKA. Keemilise reatsiooni võrrand, tema võimalused ja
Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise
Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.
Ainevaldkond Matemaatika gümnaasiumi ainekava
Ainevaldkond Matemaatika gümnaasiumi ainekava 1. Ainevaldkonna õppeainete kohustuslikud kursused Lai matemaatika koosneb 14 kursusest: 10 klass: 1. Avaldised ja arvuhulgad 2. Võrrandid ja võrrandisüsteemid
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
Geomeetria põhivara. Jan Willemson. 19. mai 2000.a.
Geomeetria põhivara Jan Willemson 19. mai 2000.a. 1 Kolmnurk Kolmnurgas tasub mõelda järgmistest lõikudest ja sirgetest: kõrgused, nurgapoolitajad, välisnurkade poolitajad, külgede keskristsirged, mediaanid,
2.1. Jõud ja pinged 2-2
1 Peatükk 2 Pinge 2.1. Jõud ja pinged 2-2 2.1 Jõud ja pinged Kehale mõjuvad välisjõud saab jagada kahte rühma. 1. Pindjõud ehk kontaktjõud on põhjustatud keha kontaktist teiste kehade või keskkondadega.
5. OPTIMEERIMISÜLESANDED MAJANDUSES
5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,
5. TUGEVUSARVUTUSED PAINDELE
TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)
Eesti LIV matemaatikaolümpiaad
Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit
HULGATEOORIA ELEMENTE
HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
Eesti koolinoorte XLI täppisteaduste olümpiaad
Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise
DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.
Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka
Sirgete varraste vääne
1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3
(Raud)betoonkonstruktsioonide üldkursus 33
(Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse
TALLINNA TEHNIKAÜLIKOOL Elektriajamite ja jõuelektroonika instituut AAR000 Sissejuhatus robotitehnikasse KODUTÖÖ Teemal: Tööstusroboti Mitsubishi RV-6SD kinemaatika ja juhtimine Tudeng: Aleksei Tepljakov
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults
TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on
Pinge. 2.1 Jõud ja pinged
Peatükk 2 Pinge 1 2.1. Jõud ja pinged 2-2 2.1 Jõud ja pinged Kehale mõjuvad välisjõud saab jagada kahte rühma. 1. Pindjõud ehk kontaktjõud on põhjustatud keha kontaktist teiste kehade või keskkondadega.
Ainevaldkond Matemaatika
Ainevaldkond Matemaatika 1 Matemaatikapädevus Matemaatika õpetamise eesmärk gümnaasiumis on matemaatikapädevuse kujundamine, see tähendab suutlikkust tunda matemaatiliste mõistete ja seoste süsteemsust;
Deformatsioon ja olekuvõrrandid
Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,
LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST. Koostanud Hilja Afanasjeva
LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST EESSÕNA Koostanud Hilja Afanasjeva Enne selle teema käsitlemist avame mõned materjalist arusaamiseks vajalikud mõisted hulgateooriast.
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias
ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Eesti koolinoorte 58. füüsikaolümpiaad
Eesti koolinoorte 58. füüsikaolümpiaad 29. jaanuar 2011. a. Piirkondlik voor. Gümnaasiumi ülesannete lahendused Eessõna Allpool on toodud iga ülesande üks õige lahenduskäik (mõnel juhul ka enam. Kõik alternatiivsed
Elastsusteooria põhivõrrandid,
Peatükk 4 Elastsusteooria põhivõrrandid, nende lahendusmeetodid ja lihtsamad ruumilised ülesanded 113 4.1. Elastsusteooria põhivõrrandid 114 4.1 Elastsusteooria põhivõrrandid 1. Tasakaalu (diferentsiaal)võrrandid
1.2. Ainevaldkonna õppeainete kohustuslikud kursused ja valikkursused
Vabariigi Valitsuse 06.01.2011. a määruse nr 2 Gümnaasiumi riiklik õppekava lisa 3 1. Ainevaldkond Matemaatika 1.1. Matemaatikapädevus Matemaatikapädevus tähendab matemaatiliste mõistete ja seoste süsteemset
Staatika ja kinemaatika
Staatika ja kinemaatika MHD0071 I. Staatika Leo eder Mehhatroonikainstituut Mehaanikateaduskond allinna ehnikaülikool 2016 Sisukord I Staatika 1. Sissejuhatus. 2. Newtoni seadused. 3. Jõud. 4. ehted vektoritega.
AINE ÕPPE- JA KASVATUSEESMÄRGID ÜLDPÄDEVUSED
Matemaatika Gümnaasium 10.-12. klass Kursusi: 14 (lisaks kordamine) Tunde kursuses: 35 Rakendumine: 1. september 2016 Koostamise alus: Gümnaasiumi riiklik õppekava, lisa 3; Koeru Keskkooli õppekava AINE
=217 kj/mol (1) m Ühe mooli glükoosi sünteesil lihtainetest vabaneb footoneid: Δ H f, glükoos n (glükoos) =5,89 mol (1) E (footon)
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Vanem rühm (11. ja 12. klass) Kohtla-Järve, Kuressaare, Narva, Pärnu, Tallinn ja Tartu 6. oktoober 2018 1. a) 1 p iga õige ühendi eest. (4) b) Võrrandist ():
Sissejuhatus. Kinemaatika
Sissejuhatus Enamuse füüsika ülesannete lahendamine taandub tegelikult suhteliselt äikese hulga ideede rakendamisele (öeldu kehtib ka teiste aldkondade, näiteks matemaatika kohta). Seega on aja õppida
Mathematica kasutamine
mathematica_lyhi_help.nb 1 Mathematica kasutamine 1. Sissejuhatus Programmi Mathematica avanemisel pole programmi tuum - Kernel - vaikimisi käivitatud. Kernel on programmi see osa, mis tegelikult teostab
Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool. Andrus Salupere STAATIKA ÜLESANDED
Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool Andrus Salupere STAATIKA ÜLESANDED Tallinn 2004/2005 1 Eessõna Käesolev ülesannete kogu on mõeldud kasutamiseks eeskätt Tallinna
KATEGOORIATEOORIA. Kevad 2010
KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
MATEMAATILISEST LOOGIKAST (Lausearvutus)
TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks
Elastsusteooria tasandülesanne
Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni
Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).
Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi
8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.
TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ
Virumaa Kolledž Reaal ja tehnikateaduste keskus
Viruaa Koedž Reaa ja tehnikateaduste keskus Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 7/8 Eessõna Loengukonspekt
Virumaa Kolledž. Gennadi Arjassov. L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaamika. Ehitusmehaanika RAR2030.
Viruaa Koedž Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 5/ Eessõna Loengukonspekt Varraskonstruktsioonide staatika
KATEGOORIATEOORIA. Kevad 2016
KTEGOORITEOORI Kevad 2016 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32
Sisukord Sündmused ja t~oenäosused 4. Sündmused................................... 4.2 T~oenäosus.................................... 7.2. T~oenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni
VFR navigatsioon I (Mõisted ja elemendid I)
VFR navigatsioon I (Mõisted ja elemendid I) 1. Suunad ja nende tähistamine. 2. Maakera ja sellega seonduv. 3. Maa magnetism. 4. Kursid (suunanurkade tüübid). 5. Navigatsiooniline kiiruste kolmnurk Min
Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist
KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha
IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel
IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel Allar Veelmaa, Loo Keskkool Gümnaasiumi riiklik õppekava 1 (edaspidi GRÕK) järgi võib õpilane valida kitsa ja laia matemaatikakursuse
7.7 Hii-ruut test 7.7. HII-RUUT TEST 85
7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat
KEEMIA ÜLESANNETE LAHENDAMINE II
KEEMIA ÜLESANNETE LAHENDAMINE II ÜHIKANALÜÜS II Füüsikalise Suuruse Dimensioon Füüsikalise suuruse dimensioon on avaldis astmes üksikliikme kujul, mis koosneb erinevates astmetes põhisuuruste sümbolite
Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35
Matemaatika VI kursus Tõenäosus, statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja
Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.
KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev