Funktsioonide õpetamisest põhikooli matemaatikakursuses

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Funktsioonide õpetamisest põhikooli matemaatikakursuses"

Transcript

1 Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas, vaid ka loodusteadustes (nt organismi funktsioonid), muusikas (funktsioon on muusikas harmoonia mõiste, millega iseloomustatakse helirea astmete vahelisi suhteid. Funktsioone sisaldavat harmooniat nimetatakse funktsionaalharmooniaks), psühholoogias, arvutiteaduses (täpsemalt programmeerimises), filosoofias jms. 1. Funktsiooni mõiste avamine 7. klassi matemaatikakursuses Funktsiooni mõiste juurde jõudmiseks on otstarbekas eelnevalt käsitleda järgmisi teemasid: a) jäävad ja muutuvad suurused; b) võrdelised suurused ja nende omadused; c) pöördvõrdelised suurused; d) graafikute lugemine Jäävad ja muutuvad suurused Kui suuruse arvuline väärtus antud ülesande või nähtuse tingimustes ei muutu, siis nimetatakse seda suurust jäävaks suuruseks. Kui arvuline väärtus muutub, siis on tegemist muutuva suurusega ehk muutujaga. Selle teema juures on kõigepealt otstarbekas uurida elulisi näiteid, mille puhul õpilased saavad selgesti aru, missugune suurus on antud protsessis muutuv, missugune jääv. Näiteks telefonikõne maksumuse arvutamisel on minutihind konstantne, kõne pikkus aga muutuv suurus (võib uurida ka näiteid, kus kõneminuti hind on x esimest minutit ühe hinnaga ja järgmised kõneminutid mingi muu hinnaga). Kui võtta vaatluse alla päevade arv ühes kuus, siis teatakse, et jaanuaris on 31 päeva (see on konstant), kuid veebruarikuu päevade arv võib olla 28 või 29. Siin on hea võimalus selgitada, missugused aastad on liigaastad (kui aastaarv jagub täpselt neljaga, kuid on mõned erandid, mida võivad lapsed ise uurida). Igapäevaelust võetud konstantide väärtused võivad ka muutuda. Näiteks ühe kilovatt-tunni elektrienergia eest tuleb maksta x eurosenti, pärast hinnatõusu on uus hind y eurosenti. Matemaatikatunnist tuttavatest valemitest võib vaatluse alla võtta ringjoone pikkuse ja ringi pindala valemid, mis sisaldavad konstanti π. Ringjoone pikkuse valemis c = 2πr ja pindala valemis S = πr 2 esineb üks konstant ja üks muutuv suurus Võrdelised suurused ja nende omadused Kui kaks positiivset suurust sõltuvad teineteisest nii, et ühe suuruse suurenemisel (või vähenemisel) mingi arv korda suureneb (või väheneb) ka teine suurus sama arv korda, siis need suurused on võrdelised. Näited võrdeliste suuruste kohta tuleb valida elulised, kus matemaatikat saab lõimida igapäevaeluga (Tõnso 2002: ). 1

2 Näide: tabelis on antud auto poolt läbitud tee pikkus ja sõiduks kulunud aeg. Tuleb otsustada, kas meil on tegemist ühtlase liikumisega (füüsikas käsitletakse seda 8. klassis). s (km) t (h) 0,5 2 1, Tabelis olevate andmete põhjal saame kindlad olla vaid selles, et 45 km läbimiseks kulutati pool tundi, 60 km läbimiseks 40 minutit jne. Nende andmete põhjal ei saa mitte kuidagi järeldada, et 22,5 km läbimiseks kulutati 15 minutit, 75 km läbimiseks 50 minutit jne. Ühtlase liikumisega on tegemist üksnes juhul, kui mistahes võrdsetes ajavahemikes läbitakse võrdsed teepikkused. Eelmise tabeli alusel ei saa öelda, kas liikumine on ühtlane või mitte. Kui selle tabeli puhul jätta kõrvale füüsikaline sisu (tabeli esimeses veerus on sel juhul muutujad x ja y), siis saab öelda, et tegemist on võrdeliste suurustega. Kui tegemist ei ole fikseeritud suurustega (näiteks tee pikkus, aeg; ostetud bensiini kogus, makstud rahasumma vms), siis tähistame üldjuhul sõltumatu muutuja tähega x ja sõltuva muutuja tähega y. Sel juhul võime öelda järgmiselt: kahe suuruse x ja y vaheline sõltuvus on võrdeline sõltuvus, kui nende suuruste vastavate y väärtuste jagatis on jääv (konstantne), st = a. Arvu a (kus a 0) nimetatakse x võrdeteguriks Pöördvõrdelised suurused Kahe suuruse x ja y vaheline sõltuvus on pöördvõrdeline sõltuvus siis, kui nende suuruste vastavate väärtuste korrutis on jääv (konstantne), st xy = a. Pöördvõrdeliste suuruste ja pöördvõrdelise sõltuvuse juurde on mõistlik jõuda eluliste näidete abil. Näited peavad olema lihtsad ning kõigile arusaadavad. Näited. Selgitame, kas suurused on pöördvõrdelised: a) 180 km läbimise aeg ja sõidukiirus; b) 10 euro eest ostetud kartulite kogus ja 1 kg kartulite hind; c) tööviljakus ja töö tegemiseks kulunud aeg. Esimese kahe näite puhul on suuruste pöördvõrdelisus mõistetav, kuid kolmanda näite puhul on õpilastele vaja selgitada, mida mõeldakse tööviljakuse all ja kus sellist mõistet kasutatakse ning alles siis saab otsustada, kas tööviljakus ja töö tegemiseks kulunud aeg on pöördvõrdelised suurused või mitte. Tabelina antud suuruste puhul on esialgu mõistlik valida arvud nii, et ülesande matemaatilise sisu väljatoomise asemel ei muutuks ülesanne tülikaks arvutamiseks. 2

3 1.4. Graafikute lugemine Graafikute lugemist käsitletakse esmakordselt 6. klassi matemaatikakursuses. Hiljem läheb seda oskust vaja mitmetes teistes õppeainetes (füüsika, keemia, geograafia, inimeseõpetus jm). Seega on mõistlik kasutada graafikuid, mis on seotud reaalse eluga, nii et matemaatikast oleks õpilasel ka muude õppeainete õppimisel kasu. Graafikute lugemisel tuleb õpilase tähelepanu pöörata järgmistele aspektidele: a) millised suurused on mingile teljele märgitud; b) milliste mõõtühikutega on tegemist (sellest sõltub ka vastus); c) kui suur on ühe jaotise väärtus kummalgi teljel? Harjutamiseks sobivaid jooniseid saab teha näiteks GeoGebraga või Wirisega (neid programme saavad kasutada ka õpilased kodutööde tegemisel). Joonisel 1 on kaks liikumise graafikut (koostatud GeoGebra abil). Horisontaalteljel on keha liikumise aeg sekundites ja vertikaalteljel kiirus kilomeetrites tunni kohta. Joonisele võib vajadusel lisada teksti või pilte. Eeldades, et tegemist on ühtlase liikumisega, saab leida mõlema keha liikumiskiiruse. Joonte lõikepunktis on kehade kiirused võrdsed, õpilastelt võib küsida, kui palju aega kulus selle kiiruse saavutamiseks kummalgi kehal Funktsiooni defineerimine Joonis 1 Funktsiooni mõiste määratlus peab olema antud nii, et 7. klassi õpilase jaoks on see mõistetavas keeles. Võrdleme kahte funktsiooni definitsiooni: Eeskiri, mis seab ühe arvuhulga (määramispiirkonna) X igale elemendile x vastavusse teise arvuhulga (muutumispiirkonna) Y kindla elemendi y, s.t. määrab hulga X kujutuse hulka Y. Kui selline eeskiri esitatakse võrduse y = f(x) abil, siis öeldakse, et tegemist on funktsiooniga f, kusjuures f(a) tähendab selle funktsiooni väärtust kohal x = a (Abel, E jt 1998: 42). Eeskirja, mis seab sõltumatu muutuja igale väärtusele vastavusse sõltuva muutuja mingi ühe kindla väärtuse, nimetatakse funktsiooniks. Sõltumatut muutujat nimetatakse edaspidi ka funktsiooni argumendiks, argumendi väärtuse järgi leitud sõltuva muutuja vastavaid väärtusi nimetatakse aga funktsiooni väärtusteks (Tõnso 2002: 201). Võrreldes neid definitsioone, on lihtne märgata, et mõlemad on samaväärsed, kuid esimeses on kasutusel mõisted, mida on 7. klassi õpilasele keeruline selgitada (nt hulk ja kujutis). Mõlemad 3

4 definitsioonid rõhutavad ühte olulist aspekti: igale argumendi väärtusele vastab parajasti üks funktsiooni väärtus. Siinkohal on õpilastele mõistlik selgitada, mil viisil saab funktsioone esitada ja kas alati kasutame tähist f või on ka teised tähistused lubatud. Funktsioone saab esitada: a) valemina (näiteks s = 60t); b) tabelina (vt näide 1); c) graafiku abil (vt näide 2); d) diagrammina; e) sõnaliselt. 7. klassis kasutame kolme esimest esitusviisi, hiljem (11. klassis) võib kasutada ka ülejäänud võimalusi. Näide 1. Selgitame, kas tabelis olevad andmed esitavad funktsiooni. x x x y y y Esimeses tabelis vastab igale x väärtusele ainult üks y väärtus, seega on tegemist funktsiooniga. Teises tabelis vastab väärtusele x = 3 kaks erinevat y väärtust (7 ja 8), tabel ei esita funktsiooni. Kolmandas tabelis vastab igale x väärtusele ainult üks y väärtus (see, et need väärtused on võrdsed, ei ole üldse oluline), järelikult on tegemist funktsiooniga. Näide 2. Selgitame, kas koordinaatteljestikus on funktsiooni graafik. Joonis 2 Joonis 3 Joonis 4 Joonis 5 4

5 Jooniselt 2 on näha, et igale x väärtusele vastab täpselt üks y väärtus tegemist on funktsiooniga. Joonisel 3 vastab vahemikus 2 < x < 2 ühele x väärtusele mitu erinevat y väärtust, seega see graafik funktsiooni ei esita. Joonisel 4 on sirge x = 2, sellele x väärtusele vastab lõpmata palju y väärtusi (kõikide sirgel asuvate punktide ordinaadid). Joonisel 5 on esitatud funktsioon (valemina y = 2), sest igale x väärtusele vastab ainult üks y väärtus. 2. Võrdeline sõltuvus Võrdeliste suuruste (vt punkt 1.2.) vahelist sõltuvust nimetatakse võrdeliseks sõltuvuseks. Võrdelise sõltuvuse valem on y = ax, kus a 0. Valemina antud võrdelisi sõltuvusi käsitledes on otstarbekas valemi y = ax asemel kasutada ka teistsuguseid tähistusi. 8. klassi füüsikakursuses kasutatakse ühtlase liikumise tee pikkuse arvutamisel valemit s = vt (ühe suurustest v või t loeme konstandiks) ning keha massi sõltuvus tihedusest ρ ja ruumalast V esitatakse valemiga m = ρv. Kindlasti tasub õpilastele näidata, et mitmed varemõpitud sõltuvused on (või ei ole) võrdelised sõltuvused. Näited. a) s = 65v ühtlase liikumise korral sõltub tee pikkus s võrdeliselt kiirusest v; b) P = 4a ruudu ümbermõõt P sõltub võrdeliselt külje pikkusest a; c) S = a 2 ruudu pindala S ei ole võrdelises sõltuvuses ruudu külje pikkusega a; o 180 β d) α = võrdhaarse kolmnurga alusnurk α ei ole võrdelises sõltuvuses 2 tipunurgaga β; e) S n = (n 2) 180º hulknurga sisenurkade summa ei ole võrdelises sõltuvuses nurkade arvuga n Võrdelise sõltuvuse y = ax graafiku joonestamine Alustada tuleb lihtsate näidetega, kus argumendi väärtustele vastavad täisarvulised funktsiooni väärtused. Esimestes ülesannetes on soovitatav kasutada 5 6 erinevat argumendi väärtust (õpilased peaksid ise märkama, et sirge joonistamiseks ei ole vaja leida nii palju punkte piisab vaid kahest, millest üks on alati punkt (0;0)). Probleemid võivad tekkida juhul, kui arv a on arvutamiseks ebamugav (näiteks harilik murd, mida ei saa täpselt kümnendmurruks teisendada). Sel juhul tasub x väärtused valida nii, et arvu a korrutamisel x väärtusega saame tulemuseks täisarvu. Näide. Joonestame funktsioonide y = 2 3 x ja 5 y = x graafikud. 6 x 0 3 x 0 6 y 0 2 y 0 5 Mitmed õpetajad soovitavad tabeli horisontaalpaigutuse asemel kasutada vertikaalpaigutust, sest sel juhul on tabelis olevad arvud samas järjekorras nagu punkti koordinaadid tasandil. 5

6 x y x y Punkt (0; 0) Punkt (3; 2) Punkt (0; 0) Punkt (6; 5) Joonis 6 Pärast seda, kui lapsed on ise mõned graafikud joonestanud, märkavad nad reeglipärasust: võrdelise sõltuvuse graafik läbib alati punkti (0;0). Enamasti pannakse ka tähele, et kui võrdetegur a on positiivne arv, siis paikneb sirge I ja III koordinaatveerandis; kui võrdetegur a on negatiivne arv, siis paikneb sirge II ja IV koordinaatveerandis. Seda on võimalik programmi GeoGebra abil kuvada ka ekraanile või interaktiivsele tahvlile. Muutes liuguri abil arvu a väärtust näeme, kuidas sirge asend koordinaatteljestikus muutub (vt joonis 7 ja joonis 8). Joonis 7 Joonis 8 Graafiku joonestamisel tuleb õpilase tähelepanu pöörata järgmisele: 1) koordinaatteljestiku tegemisel võtta ühe ühiku pikkuseks 1 cm ehk kaks vihikuruutu (kui õpetaja pole eelnevalt midagi muud öelnud); 2) sirge paikneb kogu koordinaattasandi ulatuses. Kui õpilane ühendab teljestikku märgitud punktid omavahel, siis sel juhul on joonisel lõik, mitte sirge. Joonisel 9 on näide ühest tüüpilisest vildakast joonisest. Lisaks sirge asemel joonestatud lõigule on siin joonise autor Joonis 9 jätnud ka teljed tähistamata. 6

7 3. Lineaarfunktsioon ja selle graafik Funktsiooni, mida saab esitada kujul y = ax + b, kus a ja b on konstandid, nimetatakse lineaarfunktsiooniks. Lineaarfunktsiooni puhul on kindlasti vaja õpilastele selgitada arvude a ja b tähendust. Võttes valemis y = ax + b argumendi x väärtuseks arvu 0, saame tulemuseks y = a 0 + b = b, arv b on funktsiooni algväärtus (ehk vabaliige), st väärtus, mis vastab argumendi väärtu sele 0. Geomeetriliselt tähendab see punkti, kus sirge läbib ordinaattelge: (0; b). Keerulisem on selgitada arvu a tähendust ning sageli jäetakse see üldse tegemata. Vaatleme ühte näidet: kuidas muutub funktsiooni y = 2x + 3 väärtus, kui x väärtust ühe võrra suurendada: esialgne funktsiooni väärtus on y = 2x + 3, uus väärtus on 2(x + 1) + 3 = 2x Näeme, et funktsiooni väärtus suurenes 2 võrra ehk arvu a võrra. Kui nüüd tuua veel üks näide, kus a < 0, siis saab selgeks, et arv a näitab, mitme võrra muutub funktsiooni väärtus, kui argumendi väärtust suurendada ühe võrra. Arvu a nimetatakse ka sirge tõusuks (ei pea tingimata 10. klassini ootama). Sirge tõusu näitamiseks on hea vahend programm GeoGebra. Joonis 10 Reaalse sisuga ülesannete lahendamisel ei ole vajalik kogu graafik, vaid ainult mingi osa sellest. Näide. Küünla pikkus on 20 cm ja see põleb kiirusega 1,5 cm tunnis. Kujutame graafiliselt küünla pikkuse sõltuvust ajast. Valemina saab küünla pikkuse kirjutada kujul h = 20 1,5t. Joonestame selle sirge, arvestades asjaolu, et graafikul pole mõtet 1 juhul, kui t < 0 või t > Programmis GeoGebra kasutame graafiku joonestamiseks korraldust Funktsioon[20-1.5x,0,40/3], tulemus on joonisel 11. Õpilase tähelepanu tasub pöörata siin sellele, et joonise tegemiseks ei kasutanud me kogu koordinaatteljestikku, vaid ainult selle esimest veerandit. Joonis 11 7

8 Joonise tegemisel (eriti arvuti abil) tuleb hoolikalt jälgida, et me ei saaks absurdseid tulemusi. 9 Sõltuvuses F = C+ 32 (seos Celsiuse ja Fahrenheiti skaalade vahel) võime muutujale C anda 5 mis tahes väärtusi, kuid mitte väiksemaid kui 273,15º, sest sellised temperatuurid ei ole teoreetiliselt ega praktiliselt võimalikud. 4. Pöördvõrdeline sõltuvus ja selle graafik Suurusi, mille vastavate väärtuste korrutis on jääv, nimetatakse pöördvõrdelisteks suurusteks. Pöördvõrdeliste suuruste vahelist sõltuvust nimetatakse pöördvõrdeliseks sõltuvuseks. Selle a sõltuvusega määratud funktsiooni võib esitada valemiga y =, kus a 0. x Pöördvõrdelise sõltuvuse graafikuks on (võrdhaarne) hüperbool. Näide. Joonestame funktsiooni y = 3 : x graafiku. Valime x väärtused nii, et vähim ja suurim väärtus oleks arvu a kahekordne, seega 6 x 6. Tabelist jätame välja arvu 0, sest x = 0 ei kuulu määramispiirkonda ning täiendavalt lisame tabelisse arvud 0,5 ja 0,5. x ,5 0, y 0,5 0,6 0,75 1 1, ,5 1 0,75 0,6 0,5 Kandes leitud punktid teljestikku ja ühendades need pideva joonega, saame hüperbooli. Kui teeme joonise GeoGebraga, siis saab enne graafiku joonestamist koostada väärtuste tabeli. Seda on hea kasutada siis, kui õpilased arvutavad iseseisvalt funktsiooni väärtusi ning soovivad arvutustule musi kontrollida. Joonis 12 Õppekava järgi ei lahendata enam pöördvõrdelise sõltuvuse abil tekstülesandeid, kuid mõne reaalse sisuga näite võib klassis esitada, lahendada ja analüüsida. Soovitan selleks kasutada programmi GeoGebra. 8

9 Joonis 13 Liikumise graafikule kanname ühe punkti nii, et on nähtavad ka selle punkti koordinaadid. Punkti liigutamisel muutuvad ka koordinaadid (sõiduks kulunud aeg ja sõidukiirus). Joonisel 13 annavad punkti A koordinaadid vastuse esimesele ülesandele. 5. Ruutfunktsioon ja selle graafik Ruutfunktsiooniks nimetatakse funktsiooni, mille saab esitada kujul y = ax 2 + bx + c, kus a 0 ning b ja c on antud arvud. Ruutfunktsiooni käsitlemiseks koolis on mitmeid võimalusi: 1) ruutvõrrandi lahendamist käsitletakse enne ruutfunktsiooni tundmaõppimist; 2) ruutfunktsiooni graafiku konstrueerimine on seotud vastava ruutvõrrandi lahendamisega; 3) ruutfunktsiooni käsitletakse enne vastavat võrrandit. Kuna olen juba aastaid kasutanud teist varianti, siis pakun välja võimaliku teemade käsitlemise järjekorra: 1. Funktsioon y = ax Ruutfunktsioon y = ax 2 + c. 3. Ruutvõrrand ax 2 + bx + c = Ruutfunktsioon y = ax 2 + bx. 5. Ruutvõrrand ax 2 + bx = Ruutfunktsioon y = ax 2 + bx + c. 7. Ruutvõrrandi graafiline lahendamine. Teema Funktsioon y = ax 2 juurde soovitan minna praktiliste ülesannete kaudu. Leiame sõltuvuse kuubi külje pikkuse a ja kuubi pindala S vahel (kuubi serva pikkuse ja vastava pindala märgime tabelisse), ringi raadiuse r ja pindala S vahel vms. Need sõltuvused esituvad valemina S = 6a 2 ja S = πr 2. Neid sõltuvusi saab esitada kujul y = ax 2. 9

10 Andes arvule a erinevaid väärtusi (a = 1; a = 2; a = 0,5; a = 1; a = 2 vms) koostame vastavad tabelid ning märgime saadud punktid koordinaatteljestikku. Visualiseerimiseks soovitan kasutada programmi GeoGebra. Kui punktid on koordinaatteljestikku märgitud (vt joonis 14), siis ühendame need pideva joonega (vt joonis 15). Joonis 14 Joonis 15 Kui õpilased teevad esimesed paraboolid vihikusse, siis tuleb tähelepanu pöörata sellele, et punkte ei ühendataks sirglõikudega ning parabooli tipus (haripunktis) ei oleks teravikpunkti. Mõisted parabooli haripunkt ja parabooli telg võtame kasutusele kohe, niipea kui oleme joonestanud esimesed paraboolid. Teema Ruutfunktsioon y = ax 2 + c visualiseerimiseks soovitan kasutada programmi GeoGebra. Muutes liuguri abil arvu c väärtusi näeme, et tekib terve parv ühise teljega paraboole (vt joonis 16). Kui võrrandil ax 2 + c = 0 on lahendid, siis lõikab parabool x-telge (üldisemalt: abstsisstelge) kahes punktis. Nende punktide x-koordinaate nimetatakse funktsiooni nullkohtadeks. Programmi GeoGebra kasutajad peavad arvestama sellega, et kirjutades sisendreale korralduse Nullokohad[x 2-1] saame algebravaatesse tulemuse A( 1; 0) ja B(1; 0), st nullkohtade asemel saame lõikepunktid x-teljega. Joonis 16 Teema Ruutfunktsioon y = ax 2 + bx puhul ilmneb graafikute joonestamisel, et üheks lõikepunktiks abstsissteljega on alati koordinaatide alguspunkti (0; 0). Tähelepanu tuleb juhtida sellele, et parabooli teljeks ei ole y-telg, vaid haripunkti läbiv verikaalne sirge. Ruutfunktsiooni y = ax 2 + bx + c graafiku konstrueerimist võib alustada väärtuste tabeli koostamisega, kuid siin tekib üks küsimus missugused x väärtused on otstarbekas tabelisse 10

11 võtta, et arvutustulemustest hiljem graafiku konstrueerimisel oleks kasu. Soovitan selle probleemi lahendamiseks järgmist võimalust: a) lahendame võrrandi ax 2 + bx = 0; b) kui võrrandi lahendid on x 1 ja x 2 (x 1 < x 2 ), siis võiks tabelisse võtta x väärtused lõigust [x 1 2; x 2 + 2] või [x 1 1; x 2 + 1]. Näide. Joonestame funktsiooni y = x 2 x 4 graafiku. Lahendame võrrandi x 2 x = 0, millest x 1 = 0 ja x 2 = 1. Koostame tabeli lõigus [ 3; 2] sammuga 0,5 ja teeme joonise (vt joonis 17). Joonis 17 Ruutfunktsiooni käsitlemisel tuleb kindlasti vaadelda võimalikke rakendusi nii matemaatikas endas, kui ka teistes teadustes, näiteks füüsikas. Näide. Ruutfunktsiooni y = ax 2 4x + c graafik läbib punkte ( 1; 3) ja (2; 3). Leiame kordajad a ja c. Asendades punktide koordinaadid parabooli võrrandisse, saame lineaarvõrrandisüsteemi a+ 4+ c= 3, 4a 8+ c= 3 mille lahendid on a = 2 ja c = 3. Seega otsitav parabool on y = 2x 2 4x 3. Lahenduse õigsust saame kontrollida joonise abil (joonis 18). 2 Näide. Vertikaalselt üles visatud keha kõrgus h avaldub funktsiooni ht () = 15t 5t abil (h on kõrgus maapinnast meetrites ja aeg t sekundites). Kui kõrgele tõuseb see keha, kui palju kulub aega suurima kõrguse saavutamiseks ja mitme sekundi jooksul pärast ülesviskamist jõuab keha uuesti maapinnale? Funktsioon y = 15t 5t 2 esitab allapoole avaneva parabooli. Keha asub maapinnal, kui y = 0. Võrrandi 15t 5t 2 = 0 lahendid on 0 ja 3. Seega kukub keha maapinnale 3 sekundit pärast ülesviskamist. Suurima kõrguse maapinnast saavutab keha 1,5 sekundit pärast ülesviskamist (vt joonisel 19 punkt A) ja keha asub sel hetkel 11,25 m kõrgusel (f(1,5) = 15 1,5 5 1,5 2 = 11,25). 11

12 Joonis 19 Joonis 18 Kasutatud kirjandus ja Internetiressursid 1. Abel, E., Abel, M. ja Kaasik, Ü. (1998). Koolimatematemaatika Entsüklopeedia. Tartu: Ilmamaa. 2. Tõnso, T. (2002). Matemaatika VII klassile. Tallinn: Mathema. 3. Tõnso, T. (2001). Matemaatika IX klassile. Tallinn: Mathema viimati külastatud a. 12

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α = KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

20. SIRGE VÕRRANDID. Joonis 20.1

20. SIRGE VÕRRANDID. Joonis 20.1 κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

4.1 Funktsiooni lähendamine. Taylori polünoom.

4.1 Funktsiooni lähendamine. Taylori polünoom. Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised

Διαβάστε περισσότερα

; y ) vektori lõpppunkt, siis

; y ) vektori lõpppunkt, siis III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf

Διαβάστε περισσότερα

Analüütilise geomeetria praktikum II. L. Tuulmets

Analüütilise geomeetria praktikum II. L. Tuulmets Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga

Διαβάστε περισσότερα

Vektor. Joone võrrand. Analüütiline geomeetria.

Vektor. Joone võrrand. Analüütiline geomeetria. Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil,

Διαβάστε περισσότερα

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha

Διαβάστε περισσότερα

IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel

IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel Allar Veelmaa, Loo Keskkool Gümnaasiumi riiklik õppekava 1 (edaspidi GRÕK) järgi võib õpilane valida kitsa ja laia matemaatikakursuse

Διαβάστε περισσότερα

Eesti koolinoorte XLIX täppisteaduste olümpiaad

Eesti koolinoorte XLIX täppisteaduste olümpiaad Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

6 Mitme muutuja funktsioonid

6 Mitme muutuja funktsioonid 6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD 1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka

Διαβάστε περισσότερα

MATEMAATILISEST LOOGIKAST (Lausearvutus)

MATEMAATILISEST LOOGIKAST (Lausearvutus) TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks

Διαβάστε περισσότερα

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:

Διαβάστε περισσότερα

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja

Διαβάστε περισσότερα

Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist

Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist Loeng 2 Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist P2 - tuleb P1 lahendus T P~Q = { x P(x)~Q(x) = t} = = {x P(x)

Διαβάστε περισσότερα

Mathematica kasutamine

Mathematica kasutamine mathematica_lyhi_help.nb 1 Mathematica kasutamine 1. Sissejuhatus Programmi Mathematica avanemisel pole programmi tuum - Kernel - vaikimisi käivitatud. Kernel on programmi see osa, mis tegelikult teostab

Διαβάστε περισσότερα

6.6 Ühtlaselt koormatud plaatide lihtsamad

6.6 Ühtlaselt koormatud plaatide lihtsamad 6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline

Διαβάστε περισσότερα

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

Eesti LIV matemaatikaolümpiaad

Eesti LIV matemaatikaolümpiaad Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit

Διαβάστε περισσότερα

Eesti koolinoorte 51. täppisteaduste olümpiaad

Eesti koolinoorte 51. täppisteaduste olümpiaad Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba

Διαβάστε περισσότερα

Kitsas matemaatika-3 tundi nädalas

Kitsas matemaatika-3 tundi nädalas Kitsas matemaatika-3 tundi nädalas Õpitulemused I kursus-arvuhulgad. Avaldised. Võrrand, võrratus. 1) eristab ratsionaal-, irratsionaal- ja reaalarve; 2) eristab võrdust, samasust, võrrandit ja võrratust;

Διαβάστε περισσότερα

Sisukord. 4 Tõenäosuse piirteoreemid 36

Sisukord. 4 Tõenäosuse piirteoreemid 36 Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85 7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat

Διαβάστε περισσότερα

5. OPTIMEERIMISÜLESANDED MAJANDUSES

5. OPTIMEERIMISÜLESANDED MAJANDUSES 5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,

Διαβάστε περισσότερα

ALGEBRA I. Kevad Lektor: Valdis Laan

ALGEBRA I. Kevad Lektor: Valdis Laan ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja

Διαβάστε περισσότερα

2. HULGATEOORIA ELEMENTE

2. HULGATEOORIA ELEMENTE 2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.

Διαβάστε περισσότερα

Skalaar, vektor, tensor

Skalaar, vektor, tensor Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.

Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül. Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)

Διαβάστε περισσότερα

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord Sündmused ja t~oenäosused 4. Sündmused................................... 4.2 T~oenäosus.................................... 7.2. T~oenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

(Raud)betoonkonstruktsioonide üldkursus 33

(Raud)betoonkonstruktsioonide üldkursus 33 (Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.

Διαβάστε περισσότερα

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused Eesti koolinoorte 50. täppisteaduste olümpiaad 1. ülesanne Füüsika lõppvoor. 30. märts 2003. a. Keskkooli ülesannete lahendused Läheme kiirusega v/2 liikuvasse süsteemi. Seal on olukord sümmeetriline,

Διαβάστε περισσότερα

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega

Διαβάστε περισσότερα

Skalaar, vektor, tensor

Skalaar, vektor, tensor Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord 1 Sündmused ja t~oenäosused 4 1.1 Sündmused................................... 4 1.2 T~oenäosus.................................... 7 1.2.1 T~oenäosuse arvutamise konkreetsed meetodid (üldise

Διαβάστε περισσότερα

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27 Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid

Διαβάστε περισσότερα

NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse

NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse TALLINNA TEHNIKAÜLIKOOL Elektriajamite ja jõuelektroonika instituut AAR000 Sissejuhatus robotitehnikasse KODUTÖÖ Teemal: Tööstusroboti Mitsubishi RV-6SD kinemaatika ja juhtimine Tudeng: Aleksei Tepljakov

Διαβάστε περισσότερα

Eesti koolinoorte XLI täppisteaduste olümpiaad

Eesti koolinoorte XLI täppisteaduste olümpiaad Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise

Διαβάστε περισσότερα

Sirgete varraste vääne

Sirgete varraste vääne 1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3

Διαβάστε περισσότερα

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on

Διαβάστε περισσότερα

Smith i diagramm. Peegeldustegur

Smith i diagramm. Peegeldustegur Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes

Διαβάστε περισσότερα

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud... Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega

Διαβάστε περισσότερα

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.

Διαβάστε περισσότερα

Deformatsioon ja olekuvõrrandid

Deformatsioon ja olekuvõrrandid Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi

Διαβάστε περισσότερα

Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.

Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev

Διαβάστε περισσότερα

1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5

1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5 1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................

Διαβάστε περισσότερα

Elastsusteooria tasandülesanne

Elastsusteooria tasandülesanne Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni

Διαβάστε περισσότερα

Trigonomeetria gümnaasiumis

Trigonomeetria gümnaasiumis Trignmeetria gümnaasiumis Hannes Jukk, Tartu Ülikl Trignmeetria võib meile tähendada kahte pisut erinevat matemaatikavaldknda. Ajalliselt n see tähendanud esmalt klmnurkade mõõtmise ja lahendamisega senduvat

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele

MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele TALLINNA TEHNIKAÜLIKOOL Matemaatikainstituut MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele Tallinn 24 3 MATEMAATILINE ANALÜÜS II

Διαβάστε περισσότερα

Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel

Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel Algebraliste võrrandite lahenduvus radikaalides Magistritöö Raido Paas Juhendaja: Mart Abel Tartu 2013 Sisukord Sissejuhatus Ajalooline sissejuhatus iii v 1 Rühmateooria elemente 1 1.1 Substitutsioonide

Διαβάστε περισσότερα

Ehitusmehaanika. EST meetod

Ehitusmehaanika. EST meetod Ehitusmehaanika. EST meetod Staatikaga määramatu kahe avaga raam /44 4 m q = 8 kn/m 00000000000000000000000 2 EI 4 EI 6 r r F EI p EI = 0 kn p EI p 2 m 00 6 m 00 6 m Andres Lahe Mehaanikainstituut Tallinna

Διαβάστε περισσότερα

MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM

MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM Lea Lepmann Tiit Lepmann MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM Ülesanded, lahendused, kommentaarid ja soovitused Kõigi käesolevas kogumikus kasutatud riigi- ja katseeksamite ülesannete autoriõigused

Διαβάστε περισσότερα

Eesti koolinoorte 43. keemiaolümpiaad

Eesti koolinoorte 43. keemiaolümpiaad Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6

Διαβάστε περισσότερα

I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal

I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]

Διαβάστε περισσότερα

Sisukord. 2 Programmeerimiskeel C

Sisukord. 2 Programmeerimiskeel C Veiko Sinivee 2 Programmeerimiskeel C Sisukord Sissejuhatus...1 Programmeerimiskeel C...1 C - keele programmi ehitusest...4 Abiprogramm MAKE...13 Enamkasutatavad funktsioonid...16 Funktsioonid printf()

Διαβάστε περισσότερα

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud

Διαβάστε περισσότερα

AINE ÕPPE- JA KASVATUSEESMÄRGID ÜLDPÄDEVUSED

AINE ÕPPE- JA KASVATUSEESMÄRGID ÜLDPÄDEVUSED Matemaatika Gümnaasium 10.-12. klass Kursusi: 14 (lisaks kordamine) Tunde kursuses: 35 Rakendumine: 1. september 2016 Koostamise alus: Gümnaasiumi riiklik õppekava, lisa 3; Koeru Keskkooli õppekava AINE

Διαβάστε περισσότερα

Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35

Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35 Matemaatika VI kursus Tõenäosus, statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja

Διαβάστε περισσότερα

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.

Διαβάστε περισσότερα

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a. Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud

Διαβάστε περισσότερα

Deformeeruva keskkonna dünaamika

Deformeeruva keskkonna dünaamika Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla

Διαβάστε περισσότερα

Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus

Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti

Διαβάστε περισσότερα

Geomeetria põhivara. Jan Willemson. 19. mai 2000.a.

Geomeetria põhivara. Jan Willemson. 19. mai 2000.a. Geomeetria põhivara Jan Willemson 19. mai 2000.a. 1 Kolmnurk Kolmnurgas tasub mõelda järgmistest lõikudest ja sirgetest: kõrgused, nurgapoolitajad, välisnurkade poolitajad, külgede keskristsirged, mediaanid,

Διαβάστε περισσότερα

Excel Statistilised funktsioonid

Excel Statistilised funktsioonid Excel2016 - Statistilised funktsioonid Statistilised funktsioonid aitavad meil kiiresti leida kõige väiksemat arvu, keskmist, koguarvu, tühjaks jäänud lahtreid jne jne. Alla on lisatud sellesse gruppi

Διαβάστε περισσότερα