1.2 Elektrodünaamiline jõud

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.2 Elektrodünaamiline jõud"

Transcript

1 . Elektrodüniline jõud.. Jõud rööpsete juhtide vhel Elektriprti võib läbid k lühisvool, is on sdu või isegi tuhndeid kordi suure prdi niivoolust. Voolu toiel tekib voolujuhtivte osde vhel ehniline jõud, id niettkse elektrodüniliseks jõuks. Liigsuure voolu korrl võivd selle jõu toiel deforeerud nii voolujuhtivd osd kui k neid kinnitv konstruktsioon. Lisks voolutugevusele sõltub defortsiooni suurus voolujuhtide ovhelisest kugusest, is prtides on ensti inilne. Seetõttu on kõik lülitusprdid rvuttud elektrodünilisele vstupidvusele. Teisest küljest tekkivt jõudu ksuttkse elektrodüniliste vbstite rkendiseks j elektrikre puhuiseks. Kui juhet läbib vool, siis tekib juhte über kontsentriline gnetväli. Mid lähel juhtele, sed tugev see gnetväli on. Mgnetvälj suund oleneb voolu suunst juhtes j sed sb äärt kruvireegli bil: kui prekeereg kruvi liigub voolu I suuns, siis kruvi pöörleissuund ühtib juhet übritsev gnetvälj jõujoonte suung. Joon... Kruvireegel gnetvälj suun ääriseks Kui kks juhet on rööbiti, ngu see prtides sgeli on, tekib juhtete vhel jõud, sest üks juhe on teise gnetväljs. Meenute juhtuit, kui voolug juhe on gnetväljs. Joon... Voolug juhe gnetväljs Mgnetväljd liituvd, tekkiv gnetväli sõltub voolu suunst juhtes j gnetvoo suunst. Tekkiv jõud = B I l juhtele õjuv jõud njuutonites B vootihedus tesldes (T) I voolutugevus prites (A) l juhte pikkus gnetväljs eetrites () 7

2 Kui gnetvälj tekitb teine juhe, täpseini, kui juhted on teineteise gnetväljs, siis ssuunlised voolud tekitvd tõbejõu, vstssuunlised voolud tekitvd tõukejõu. Joon...3 Voolug juhe gnetväljs Mgnetväljtugevus ürjuhtest kugusel R I H = π R. Kuivõrd B = µh, siis, tähistdes juhtetevhelise kuguse (=R) = B I l = µ H I I l = µ I π I I l = µ l π Kui vool õles juhtes on ühesuurune ( I = I = I ) ning juhteid übritseb õhk, siis I I l = µ 0 l = 4π 0 l = 0 I. (*) π π Ettekujutuseks: Kui 5 c pikkused rööpsed ürjuhid on teineteisest,5 c kugusel j neid läbib lühisvool 0 ka, siis kulegi juhtele õjub jõud = ,5 = 800 N 0,05 Mälettvsti on N võrdne jõug, is nnb -kilogrise ssig kehle kiirenduse /s. Tegelikult on see rvutus sed täpse id suure on juhte pikkuse j juhtetevhelise kuguse suhe. Kuivõrd pole täpselt ted k teised suurused, eriti lühisvool, siis siinkohl võib selleg piirdud. 8

3 See vle kehtib ürjuhte koht, illes vool liigub ööd geoeetrilist telge. Elektriprtides on sgeli ksutusel ristkülikukujulise ristlõikeg juhid. Nende vhel tekkiv elektrodünilise jõu rvutisel ksuttkse kujutegurit k k, ille suurus sõltub juhtide ovhelisest kugusest ning ristlõike geoeetrist. = k k. Kujuteguri ääriseks sb ksutd kõverid (joonis..4) Joon...4 Kujutegur Nähtub, et ruudukujulise ristlõike korrl on kujutegur prktiliselt, ning jääb teistes relsetes situtsioonides vheikku 0,8,... Jõud juhi ristlõike uutuisel See on situtsioon, is esineb kontktide vhel. Norltlitlusel on ürjuhis vool oend tekittud gnetväljs keskendunud juhi geoeetrilise pikitelje über. Tekkiv jõud r on rdilne, ingit teljesuunlist jõudu ei teki. Kui juhi ristlõige uutub, siis eleentrvoolud/voolujooned (vooluniidid) kõverduvd, ning tekkiv jõu suund uutub. Tekib teljesuunline koponent t, is on lti suuntud suure ristlõike poole. Joon...5 Elektrodüniline jõud juhi ristlõike sujuvl uutuisel Joon...6 Elektrodüniline jõud ristlõike stelisel uutuisel 9

4 Kui juhi ristlõige väheneb järsult (steliselt) (vt. joonis..6), siis tekivd enne j pärst kitsskoht teineteiseg prlleelselt kulgevd vstssuunlised voolujooned, is tekitvd teljesuunlise ehk telgjõu. Telgjõu suurus ei sõltu üleineku kujust, vid inult ristlõigete rdiuste suhtest ning on vldtv vleig r r t = 0 i ln. Elektriprtide kontktide vhel on kontkte lhutd püüdev jõud tühine. Lühise korrl ultub tekkiv jõud sdde njuutoniteni. See jõud suurendb kontktide vneiskiirust...3 Elektrikrele ferrognetilises keskkonns õjuv jõud errognetilise keskkonn lähistel voolug juhti übritsev gnetväli oondub (vt. joon...7). Mgnetvälj jooned püüvd sulgud ööd ferrogneetikut. Tekkiv jõud püüb juhti tõt ferrogneetiku poole. Selle tõbejõu suuruse ääriseks kujute ette udelit, kus ferrogneetiku seel on teine juhe just s kugel keskkondde lhutuspinnst (joon...8). Joon...7 Mgnetväli tekitb tõbejõu Joon...8 Tõbejõu äärise udel Väljpilt ei uutu, sest kuigi kugus suurenes kks kord, suurenes kks kord k vool. Khe rööpjuhi vheline tõbejõud eelpool (enne 0 ka näidet) tulettud vlei (*) kohselt l = 0 i, sest kuguse seel on nüüd. Meeldetuletuseks: see nlüüs on korrektne voolujuhi lõptu pikkuse j küllstut gnethel korrl. Tegelikkuses on jõud õnevõrr väikse. Anloogiline situtsioon tekib k juhis, is on ferrognetilisest terjlist pilus (joonis..9) Joon...9 Juhile ferrognetilises pilus õjuv jõud 0

5 Krekustutusvõres näiteks õjub krele pilusse jõudisel tõbejõud l x = π 0 i δ x l krekustutusvõre ktiivpikkus elektrikre pikitelje suuns (risti joonise tspinng) pilu lius juhi (kre) sukohs δ x Vleist nähtub, et pilu kitsenedes tõbejõud suureneb. Elektrikre suuniseks krekustutusvõresse ksuttkse ensti gnetilist puhuist. Mgnetvälj peiseks tekitjks on krekustutuspool...3 Elektrodüniline jõud ühefsilise vhelduvvoolug Vhelduvvoolu puhul kehtivd kõik eelpooltoodud vleid. Muidugi uutub k jõud siinuseliselt. Rööpsete pikkde voolujuhtide korrl võib luseks võtt vlei (*) = 0 i l Püsitlitluses i = I sinωt ning l I l = 0 I sin ω t = 0 ( cos ωt). Tähistdes l/ = c võib kirjutd jõu plituudväärtuseks = 0 ning jõu vldiseks kujuneb = cos ωt. Nähtub, et vhelduvvoolug sb tekkivt jõudu vdeld koosnevn püsikoponendist ning khekordse sgeduseg uutuvst vhelduvkoponendist cos ωt ehk teisiti öeldes: jõud uutub nullist ksiuväärtuseni siinuseliselt ning ärki uutt (vt. joon...0). Joon...0 Ühefsilise vhelduvvoolu põhjusttud elektrodüniline jõud

6 Ühefsilise vhelduvvoolu põhjusttud elektrodüniline jõud on kks kord suure kui s suure llisvoolu puhul. Jutt on voolu efektiivväärtusest. Teistsuguseks kujuneb olukord lühise tekkel või lüliti sisselülitisel lühisele. Lülitushetkest sõltuvlt võib tekkid löökvool, ille esiene plituud ületb väljkujunenud lühisvoolu plituudväärtust oluliselt (vt. joon...) Joon... Ühefsilise lühise tekkel põhjusttud elektrodüniline jõud i = (...,8) I = k I k I löök x löök = löök Mksilne võilik löögijõud, illele sede peb ole rvuttud löök x = 0 c ilöök x = 0 c(,8 I ) = 6,5 0. Ehk: lühisel tekkiv elektrodüniline jõud võib vhelduvvoolu puhul oll 6,5 kord suure kui ssuure llisvoolu puhul, sest llisvoolu lühisel löökvoolu ei teki...4 Elektrodüniline jõud kolefsilise vhelduvvoolug Kolefsilistes elektriprtides on voolujuhid ensti ühes tspinns (joonis..) Joon... Elektrodünilised jõud kolefsilises süsteeis Ig voolujuht on khe ülejäänud juhi voolu tekittud jõu õju ll. Esieses fsis = +, 3

7 kus 3 = 0 = 0,5 0 π sin ωt sinωt 3 4π sin ωt sinωt 3 Püsitlitlusel esiesele fsijuhile õjuv suuri tõukejõud tõuke x = 0,805 0 j suuri tõbejõud tõbe x 0,055 0 Anloogiliselt + = 3 ning =. tõukex tõbe x = 0,87 0 =. See suurus ongi võetud tugevusrvutuste luseks. Suuri löökvool tekib eeldtvsti kolefsilisel lühisel. Arvutustes peetkse sils vstvt lööktegurit. 3

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil. 8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,

Διαβάστε περισσότερα

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2 Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

3. Elektromagnetism. 3.1 Koolifüüsikast pärit põhiteadmisi

3. Elektromagnetism. 3.1 Koolifüüsikast pärit põhiteadmisi 3. Elektromagnetism 3.1 Koolifüüsikast pärit põhiteadmisi Magnetism on nähtuste kogum, mis avaldub kehade magneetumises ja vastastikuses mõjus magnetvälja kaudu. Magnetväli on suuremal või väiksemal määral

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

BIOMEDITSIINITEHNIKA KESKUS. Elektromagnetväljad ja lained LBR5010 loengute konspekt. Hiie Hinrikus

BIOMEDITSIINITEHNIKA KESKUS. Elektromagnetväljad ja lained LBR5010 loengute konspekt. Hiie Hinrikus BIOMDITIINITNIKA KKU lektromgnetväljd j lined LBR5 loengute konspekt. iie inrikus IJUATU lektrodünmik on os teoreetilisest füüsikst, nimelt elektromgnetilise välj teoorist, j käsitleb suhteliselt kiiretoimelisi

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

7,5V 4,5V. Joon

7,5V 4,5V. Joon . DIOODSKEEMID Dioodskeemid: piirikud, eelpinge formeerijd, tempertuurindurid j -kompenseerijd, dioodventiilid j dioodkitse. Dioodide eriliigid, nende ksutus mdl- j KS-tehniks. Dioode - p-n siirdeid -

Διαβάστε περισσότερα

NORDrect Ventilatsiooni kandiline torustik

NORDrect Ventilatsiooni kandiline torustik Ventitsiooni kndiine torustik www.etsnord.ee 0 0 Üdist EKT Toru EKP Põv EKPK Põv EKK Üeminek 0 EKD Üeminek 0 EKN Nihe ESS Sdu ESK Sdu ESD Sdu ESDR Sdu EKM Komik EKO Pime EKOL Pime EVO Õhuhre võrgug ESV

Διαβάστε περισσότερα

Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).

Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline). Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

6 LÜHISED ELEKTRIVÕRKUDES. ELEKTRIVARUSTUSE TÖÖKINDLUS.

6 LÜHISED ELEKTRIVÕRKUDES. ELEKTRIVARUSTUSE TÖÖKINDLUS. 6 LÜHISED ELEKTRIVÕRKUDES. ELEKTRIVARUSTUSE TÖÖKINDLUS. 6.1 Põhimõisted ja määratlused Elektrivõrgu talitlusviisi määravad: 1) liinide ja juhtide koormusvool, ) voolu sagedus 3) pinge võrku lülitatud elektritarvititel

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE

MATEMAATIKA TÄIENDUSÕPE MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD ARVUHULGAD ARITMEETIKA Mõigte rvude kõrgemd stmed Hriliku murru põhiomdus Tehetevhelised seosed Tehted hrilike murdudeg

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

6 Vahelduvvool. 6.1 Vahelduvvoolu mõiste. Vahelduvvooluks nimetatakse voolu, mille suund ja tugevus ajas perioodiliselt muutub.

6 Vahelduvvool. 6.1 Vahelduvvoolu mõiste. Vahelduvvooluks nimetatakse voolu, mille suund ja tugevus ajas perioodiliselt muutub. 6 Vahelduvvool 6 Vahelduvvoolu õiste Vahelduvvooluks nietatakse voolu, ille suund ja tugevus ajas perioodiliselt uutub Tänapäeva elektrijaotusvõrkudes on kasutusel vahelduvvool Alalisvoolu kasutatakse

Διαβάστε περισσότερα

Ivar Tammeraid itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend

Ivar Tammeraid  itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend TTÜ Mtemtikinstituut http://www.stff.ttu.ee/ mth/ Ivr Tmmerid http://www.stff.ttu.ee/ itmmerid/ MATEMAATILINE ANALÜÜS I Elektrooniline õppevhend Tllinn, Trükitud versioon: Ivr Tmmerid, Mtemtiline nlüüs

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE

MATEMAATIKA TÄIENDUSÕPE MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD ARVUHULGAD ARITMEETIKA Mõigte rvude kõrgemd stmed Hriliku murru põhiomdus Tehetevhelised seosed Tehted hrilike murdudeg

Διαβάστε περισσότερα

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Materjalide omadused. kujutatud joonisel Materjalide mehaanikalised omadused määratakse tavaliselt otsese testimisega,

Materjalide omadused. kujutatud joonisel Materjalide mehaanikalised omadused määratakse tavaliselt otsese testimisega, Peatükk 7 Materjalide omadused 1 Materjalide mehaanikalised omadused määratakse tavaliselt otsese testimisega, mis sageli lõpevad katsekeha purunemisega, näiteks tõmbekatse, väändekatse või löökkatse.

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.

Διαβάστε περισσότερα

Ivar Tammeraid itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend

Ivar Tammeraid  itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend TTÜ Mtemtikinstituut http://www.stff.ttu.ee/ mth/ Ivr Tmmerid http://www.stff.ttu.ee/ itmmerid/ MATEMAATILINE ANALÜÜS I Elektrooniline õppevhend Tllinn, Trükitud versioon: Ivr Tmmerid, Mtemtiline nlüüs

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

Elektromagnetism VIII OSA ELEKTROMAGNETILINE INDUKTSIOON

Elektromagnetism VIII OSA ELEKTROMAGNETILINE INDUKTSIOON Elektromagnetism VIII OSA ELEKTROMAGNETILINE INDUKTSIOON Elektri- ja magnetvälja ei saa vaadelda teineteisest lahus, sest vooluga juhtme ümber on alati magnetväli. Kui elektriliselt laetud keha vaatleja

Διαβάστε περισσότερα

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

TARTU ÜLIKOOL. Teaduskool. Magnetism. Koostanud Urmo Visk

TARTU ÜLIKOOL. Teaduskool. Magnetism. Koostanud Urmo Visk TARTU ÜLIKOOL Teaduskool Magnetism Koostanud Urmo Visk Tartu 2007 Sisukord Voolude vastastikune mõju...2 Magnetinduktsioon...3 Ampere'i seadus...6 Lorentzi valem...9 Tsirkulatsiooniteoreem...13 Elektromagnetiline

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi

Διαβάστε περισσότερα

4. KEHADE VASTASTIKMÕJUD. JÕUD

4. KEHADE VASTASTIKMÕJUD. JÕUD 4. KEHADE VASTASTIKMÕJUD. JÕUD Arvatavasti oled sa oma elus kogenud, et kõik mõjud on vastastikused. Teiste sõnadega: igale mõjule on olemas vastumõju. Ega füüsikaski teisiti ole. Füüsikas on kehade vastastikuse

Διαβάστε περισσότερα

Metalli-pooljuhi kontakt (Schottky barjäär) Metalli-pooljuhi kontakt (Schottky barjäär) Metalli-pooljuhi kontakt (Schottky barjäär)

Metalli-pooljuhi kontakt (Schottky barjäär) Metalli-pooljuhi kontakt (Schottky barjäär) Metalli-pooljuhi kontakt (Schottky barjäär) eφ Metall e ( φ χ eχ n-pooljuht eφs Vaakui tase Mõnede etallide väljuistööd Φ elektroni väljuistöö etallist χ elektroni afiinsus pooljuhis, Φ s - elektroni väljuistöö pooljuhist Φ s = χ + ( E E F Mõnede

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

2.3 Liinikaitselüliti

2.3 Liinikaitselüliti .3 Liiniaiselülii.3.1 Osarve Liiniaiselülii on eleromehaaniline aparaa aablie ja juhmee aises liigoormuse ja lühise ees. Liigoormusaises on ermovabasi, lühiseaises eleromagnevabasi. Enamasi on võimali

Διαβάστε περισσότερα

AEGLASE SÕIDUKI LIIKLUSOHUTUSEST

AEGLASE SÕIDUKI LIIKLUSOHUTUSEST 133 AEGLASE SÕIDUKI LIIKLUSOHUTUSEST Eesti Maaülikool Sissejuhatus Liiklusohutuse teooriast on teada, et liiklusvoolu kiirusest erineva kiirusega sõitvad sõidukid (juhid) satuvad liiklusõnnetustesse sagedamini

Διαβάστε περισσότερα

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a. Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Sissejuhatus. Kinemaatika. Erinevad ühikud. 1 Hz. Vektorid. F ja F - vektori moodul F. cosα. Keskmine kiirus. Kiirus. s = t. = t. v dt r.

Sissejuhatus. Kinemaatika. Erinevad ühikud. 1 Hz. Vektorid. F ja F - vektori moodul F. cosα. Keskmine kiirus. Kiirus. s = t. = t. v dt r. Sssejuhatus Enevad ühkud ad ad π Hz s s Hz π Vektod F - vekto F ja F - vekto oodul F - vekto ojektsoon ngle suunale, võb olla os / neg. F cosα F Vekto stkoodnaadstkus Ükskõk llst vektot võb estada tea

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid

TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid TARTU ÜLIKOOL Teaduskool Võnkumised ja lained Koostanud Henn Voolaid Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes

Διαβάστε περισσότερα

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

Virumaa Kolledž. Gennadi Arjassov. L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaamika. Ehitusmehaanika RAR2030.

Virumaa Kolledž. Gennadi Arjassov. L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaamika. Ehitusmehaanika RAR2030. Viruaa Koedž Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 5/ Eessõna Loengukonspekt Varraskonstruktsioonide staatika

Διαβάστε περισσότερα

Virumaa Kolledž Reaal ja tehnikateaduste keskus

Virumaa Kolledž Reaal ja tehnikateaduste keskus Viruaa Koedž Reaa ja tehnikateaduste keskus Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 7/8 Eessõna Loengukonspekt

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

Detail A. Tsemendisegu C60/75. Ankrupea

Detail A. Tsemendisegu C60/75. Ankrupea Nõue pinnsele Detil A Detil C Eelvltu betoonist torn Mksimlne lubtu veetse Mpin Klle Klle Detil A Mpin Tihentu tgsitäie Tsemenisegu C60/75 Vivunment Toruleer Konstrtsioonielemeni ülemine piir (vlikuline)

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

; y ) vektori lõpppunkt, siis

; y ) vektori lõpppunkt, siis III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf

Διαβάστε περισσότερα

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

Püsimagneti liikumine juhtme suhtes

Püsimagneti liikumine juhtme suhtes 2.3. Faraday katsed Suure avastuse sünnihetk on teaduse ajaloos harva teada kuupäevalise täpsusega. Elektromagnetilise induktsiooni avastamine kuulub aga nende harvade erandite hulka. See on nii tänu avastuse

Διαβάστε περισσότερα

Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus

Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Antud: Õhuke raudbetoonist gravitatsioontugisein maapinna kõrguste vahega h = 4,5 m ja taldmiku sügavusega d = 1,5 m. Maapinnal tugiseina

Διαβάστε περισσότερα

MUDELLENNUKI TASAKAAL JA PÜSIVUS

MUDELLENNUKI TASAKAAL JA PÜSIVUS MUDELLENNUKI TASAKAAL JA PÜSIVUS Mudellennuki tasakaaluks normaallennus nimetatakse tema niisugust olukorda, kus mudellennukile mõjuvad jõud ei põhjusta tema asendi muutusi (ei pööra mudellennukit). Nagu

Διαβάστε περισσότερα

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος (συνέχεια)

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος (συνέχεια) Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος (συνέχεια) Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος: Δ06- Στην περίπτωση που Δ

Διαβάστε περισσότερα

Elastsusteooria tasandülesanne

Elastsusteooria tasandülesanne Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni

Διαβάστε περισσότερα

Energiabilanss netoenergiavajadus

Energiabilanss netoenergiavajadus Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)

Διαβάστε περισσότερα

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:

Διαβάστε περισσότερα

2.2 Juhtmed ja kaablid

2.2 Juhtmed ja kaablid Elektrotehnika instituut Sissejuhatus Ehitistes kasutatakse elektrienergia edastamiseks peaasjalikult juhtmeid ja kaableid. Mõnel juhul saab kasutada ka muid juhte, nt. lattliine. Et tagada vajalikku töökindlust,

Διαβάστε περισσότερα

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud

Διαβάστε περισσότερα

A L A J A A M A D I I

A L A J A A M A D I I TALLINNA TEHNIKAÜLIKOOL Elekroenergeeika insiuu A L A J A A M A D I I AEK305 5,0 AP 6 4-1-1 E K (eeldusaine AES3045 "Elekrivõrgud") TALLINN 009 Loengukursus AEK 305 ii SISUKORD 1. Sissejuhaus. Alajaama

Διαβάστε περισσότερα

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused Eesti koolinoorte 50. täppisteaduste olümpiaad 1. ülesanne Füüsika lõppvoor. 30. märts 2003. a. Keskkooli ülesannete lahendused Läheme kiirusega v/2 liikuvasse süsteemi. Seal on olukord sümmeetriline,

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

3. IMPULSS, TÖÖ, ENERGIA

3. IMPULSS, TÖÖ, ENERGIA KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3. Impulss Impulss, impulsi jääus Impulss on ektor, mis on õrdne keha massi ja tema kiiruse korrutisega p r r = m. Mehaanikas nimetatakse

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

Elekter ja magnetism. Elektrostaatika käsitleb paigalasuvate laengute vastastikmõju ja asetumist

Elekter ja magnetism. Elektrostaatika käsitleb paigalasuvate laengute vastastikmõju ja asetumist Elekter ja magnetism Elektrilaeng, elektriväli ja elektrivälja tugevus Elektriline potentsiaalne energia, potentsiaal ja pinge Elektrivälja töö ja võimsus Magnetväli Elektromagnetiline induktsioon Elektromagnetlained,

Διαβάστε περισσότερα

Kordamine 2. osa Jõud looduses, tihedus, rõhk, kehad vedelikus ja gaasis. FÜÜSIKA 8. KLASSILE

Kordamine 2. osa Jõud looduses, tihedus, rõhk, kehad vedelikus ja gaasis. FÜÜSIKA 8. KLASSILE Kordamine 2. osa Jõud looduses, tihedus, rõhk, kehad vedelikus ja gaasis. FÜÜSIKA 8. KLASSILE AINE TIHEDUS AINE TIHEDUSEKS nimetatakse füüsikalist suurust, mis võrdub keha (ainetüki) massi ja selle keha

Διαβάστε περισσότερα

Sirgete varraste vääne

Sirgete varraste vääne 1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3

Διαβάστε περισσότερα

PEATÜKK 5 LUMEKOORMUS KATUSEL. 5.1 Koormuse iseloom. 5.2 Koormuse paiknemine

PEATÜKK 5 LUMEKOORMUS KATUSEL. 5.1 Koormuse iseloom. 5.2 Koormuse paiknemine PEATÜKK 5 LUMEKOORMUS KATUSEL 5.1 Koormuse iseloom (1) P Projekt peab arvestama asjaolu, et lumi võib katustele sadestuda paljude erinevate mudelite kohaselt. (2) Erinevate mudelite rakendumise põhjuseks

Διαβάστε περισσότερα

Columbiakivi projekteerimisjuhend - 3. vihik Vihik. Arvutuseeskirjad ja -näited 2. osa - arvutusnäited

Columbiakivi projekteerimisjuhend - 3. vihik Vihik. Arvutuseeskirjad ja -näited 2. osa - arvutusnäited Columikivi projekteerimisjuend - 3. viik 49 3. Viik Arvutuseeskirjd j -näited. os - rvutusnäited 00 50 Columikivi projekteerimisjuend - 3. viik Steks Käeolevs vii (3. Viiku. os) tuukse enmlevinud konstruktsioonide

Διαβάστε περισσότερα

ALGEBRA I. Kevad Lektor: Valdis Laan

ALGEBRA I. Kevad Lektor: Valdis Laan ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja

Διαβάστε περισσότερα

Analüütilise geomeetria praktikum II. L. Tuulmets

Analüütilise geomeetria praktikum II. L. Tuulmets Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga

Διαβάστε περισσότερα

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)

Διαβάστε περισσότερα

2 Hüdraulika teoreetilised alused 2.1 Füüsikalised suurused

2 Hüdraulika teoreetilised alused 2.1 Füüsikalised suurused 2 2.1 Füüsikalised suurused Mass m Inertsi ja gravitatsiooni iseloomustaja ning mõõt. Keha mass on SI-süsteemi põhiühik. Massi mõõtühikuks SIsüsteemis on kilogramm. Jõud F Kehade vastastikuse mehaanilise

Διαβάστε περισσότερα

Άσκηση. υπολογιστούν τα Ω, F, T, φ, So, και P. Λύση: Το σήμα πρέπει να τροποποιηθεί ώστε να έλθει στη μορφή S(t)=So sin(ωt+φ)

Άσκηση. υπολογιστούν τα Ω, F, T, φ, So, και P. Λύση: Το σήμα πρέπει να τροποποιηθεί ώστε να έλθει στη μορφή S(t)=So sin(ωt+φ) Ένα σήμα περιγράφεται από τις σχέσεις: S(t)= sin(ωt+φ) (πλάτος) με Ω κυκλική συχνότητα Ω = πf = /R (ισχύς) με R αντίσταση φόρτου. Επίσης ισχύει Ι(t) = Io sin (Ωt +φ) και = Io R. και Άσκηση Δίνεται σήμα

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

Füüsika täiendusõpe YFR0080

Füüsika täiendusõpe YFR0080 Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [4. loeng] 1 Loengu kava Dünaamika Inerts Newtoni I seadus Inertsiaalne taustsüsteem Keha mass, aine

Διαβάστε περισσότερα

7 Kolmefaasiline vool

7 Kolmefaasiline vool 7 Komeaasiine voo 7 Komeaasiise voou saamine Tänapäeva töötavad eektrijaamad toodavad komeaasiist voou Komeaasiise voou peamiseks eeiseks on ihtne pööreva magnetväja saamise võimaus Pöörev magnetväi ehk

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt?

I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt? I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt? (Sündmused tekitavad signaale, mida me oma meeleorganitega aistingutena

Διαβάστε περισσότερα

AERDÜNAAMIKA ÕHUTAKISTUS

AERDÜNAAMIKA ÕHUTAKISTUS AERDÜNAAMIKA ÕHUTAKISTUS Liikuv õhk, tuul, avaldab igale ettejuhtuvale kehale survet. Samasugune surve tekib ka siis, kui keha liigub ja õhk püsib paigal. Tekkinud survet nimetatakse selle keha õhutakistuseks.

Διαβάστε περισσότερα

Õige vastus annab 1 punkti, kokku 2 punkti (punktikast 1). Kui õpilane märgib rohkem kui ühe vastuse, loetakse kogu vastus valeks.

Õige vastus annab 1 punkti, kokku 2 punkti (punktikast 1). Kui õpilane märgib rohkem kui ühe vastuse, loetakse kogu vastus valeks. PÕHIKOOLI FÜÜSIKA LÕPUEKSAMI HINDAMISUHEND 13. UUNI 016 Hinne 5 90 100% 68 75 punki Hinne 4 75 89% 57 67 punki Hinne 3 50 74% 38 56 punki Hinne 0 49% 15 37 punki Hinne 1 0 19% 0 14 punki Arvuuüleannee

Διαβάστε περισσότερα

Koormus 14,4k. Joon

Koormus 14,4k. Joon + U toide + 15V U be T T 1 2 I=I juht I koorm 1mA I juht Koormus 14,4k I juht 1mA a b Joon. 3.2.9 on ette antud transistori T 1 kollektorvooluga. Selle transistori baasi-emitterpinge seadistub vastavalt

Διαβάστε περισσότερα

STEREOMEETRIA. Risttahukas 2. Kuup. a Püstprisma. H = l A B. Kaldprisma. Ristlõige. Korrapärane püramiid. nar

STEREOMEETRIA. Risttahukas 2. Kuup. a Püstprisma. H = l A B. Kaldprisma. Ristlõige. Korrapärane püramiid. nar TEREOMEETRI c Ristthus c c c c Kuu 6 Püstis P inl Kü t lg = l Klis l P inl Kü t lg l Ristlõige Koäne üii P n inl Kü n inl Põhj t lg 4 P NÄITEÜLENDED. ) Püiii õhjs on võhne olnu, ille lus on 4 c j h c.

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.

Διαβάστε περισσότερα

VFR navigatsioon I (Mõisted ja elemendid I)

VFR navigatsioon I (Mõisted ja elemendid I) VFR navigatsioon I (Mõisted ja elemendid I) 1. Suunad ja nende tähistamine. 2. Maakera ja sellega seonduv. 3. Maa magnetism. 4. Kursid (suunanurkade tüübid). 5. Navigatsiooniline kiiruste kolmnurk Min

Διαβάστε περισσότερα

Eksamite kohta näpunäited tudengile; õppejõududel lugemine keelatud!

Eksamite kohta näpunäited tudengile; õppejõududel lugemine keelatud! Eksamite kohta näpunäited tudengile; õppejõududel lugemine keelatud! Eksam pole mingi loterii keegi pole võitnud isegi raha, autost rääkimata. Ära õpi kõike järjest teadus on piiritu, õpikuid on tuhandeid,

Διαβάστε περισσότερα

1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil.

1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil. LABORATOORNE TÖÖ NR. 1 STEFAN-BOLTZMANNI SEADUS I TÖÖ EESMÄRGID 1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil. TÖÖVAHENDID Infrapunase

Διαβάστε περισσότερα

5. TUGEVUSARVUTUSED PAINDELE

5. TUGEVUSARVUTUSED PAINDELE TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)

Διαβάστε περισσότερα

1. Mida nimetatakse energiaks ning milliseid energia liike tunnete? Energia on suurus, mis iseloomustab keha võimet teha tööd. Liigid: mehaaniline

1. Mida nimetatakse energiaks ning milliseid energia liike tunnete? Energia on suurus, mis iseloomustab keha võimet teha tööd. Liigid: mehaaniline 1. Mida nimetatakse energiaks ning milliseid energia liike tunnete? Energia on suurus, mis iseloomustab keha võimet teha tööd. Liigid: mehaaniline energia, soojusenergia, tuumaenergia, elektrodünaamiline

Διαβάστε περισσότερα

RF võimendite parameetrid

RF võimendite parameetrid RF võimendite parameetrid Raadiosageduslike võimendite võimendavaks elemendiks kasutatakse põhiliselt bipolaarvõi väljatransistori. Paraku on transistori võimendus sagedusest sõltuv, transistor on mittelineaarne

Διαβάστε περισσότερα

AS MÕÕTELABOR Tellija:... Tuule 11, Tallinn XXXXXXX Objekt:... ISOLATSIOONITAKISTUSE MÕÕTMISPROTOKOLL NR.

AS MÕÕTELABOR Tellija:... Tuule 11, Tallinn XXXXXXX Objekt:... ISOLATSIOONITAKISTUSE MÕÕTMISPROTOKOLL NR. AS Mõõtelabor ISOLATSIOONITAKISTUSE MÕÕTMISPROTOKOLL NR. Mõõtmised teostati 200 a mõõteriistaga... nr.... (kalibreerimistähtaeg...) pingega V vastavalt EVS-HD 384.6.61 S2:2004 nõuetele. Jaotus- Kontrollitava

Διαβάστε περισσότερα

ELEKTRIMASINAD. Loengukonspekt

ELEKTRIMASINAD. Loengukonspekt TALLINNA TEHNIKAÜLIKOOL Elektrotehnika aluste ja elektrimasinate instituut Kuno Janson ELEKTRIMASINAD Loengukonspekt Tallinn 2005 2 SISUKORD 1. SISSEJUHATUS... 4 1.1. Loengukursuse eesmärk... 4 1.2. Elektrimasinad

Διαβάστε περισσότερα