Funktsiooni diferentsiaal

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Funktsiooni diferentsiaal"

Transcript

1 Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral kehtib Δy Δx = f (x) + α(δx), Δy lim Δx 0 Δx lim α(δx) = 0. Δx 0 Δy = f (x)δx + α(δx)δx, β(δx) = α(δx)δx. Δy = f (x)δx +β(δx), }{{} muudu peaosa β(δx) lim = 0. Δx 0 Δx G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 1 / 13

2 Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral kehtib Δy Δx = f (x) + α(δx), Δy lim Δx 0 Δx lim α(δx) = 0. Δx 0 Δy = f (x)δx + α(δx)δx, β(δx) = α(δx)δx. Δy = f (x)δx +β(δx), }{{} muudu peaosa β(δx) lim = 0. Δx 0 Δx G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 1 / 13

3 Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral kehtib Δy Δx = f (x) + α(δx), Δy lim Δx 0 Δx lim α(δx) = 0. Δx 0 Δy = f (x)δx + α(δx)δx, β(δx) = α(δx)δx. Δy = f (x)δx +β(δx), }{{} muudu peaosa β(δx) lim = 0. Δx 0 Δx G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 1 / 13

4 Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral kehtib Δy Δx = f (x) + α(δx), Δy lim Δx 0 Δx lim α(δx) = 0. Δx 0 Δy = f (x)δx + α(δx)δx, β(δx) = α(δx)δx. Δy = f (x)δx +β(δx), }{{} muudu peaosa β(δx) lim = 0. Δx 0 Δx G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 1 / 13

5 Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral kehtib Δy Δx = f (x) + α(δx), Δy lim Δx 0 Δx lim α(δx) = 0. Δx 0 Δy = f (x)δx + α(δx)δx, β(δx) = α(δx)δx. Δy = f (x)δx +β(δx), }{{} muudu peaosa β(δx) lim = 0. Δx 0 Δx G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 1 / 13

6 Diferentsiaal Avaldist f (x)δx nimetatakse funktsiooni y = f (x) diferentsiaaliks ehk esimest järku diferentsiaaliks kohal x ja tähistatakse dy või df, Võttes y = x, saame dx - argumendi diferentsiaal dy = df = f (x)δx. dy = dx = x Δx = Δx. dy = f (x)dx f (x) = dy dx. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 2 / 13

7 Diferentsiaal Avaldist f (x)δx nimetatakse funktsiooni y = f (x) diferentsiaaliks ehk esimest järku diferentsiaaliks kohal x ja tähistatakse dy või df, Võttes y = x, saame dx - argumendi diferentsiaal dy = df = f (x)δx. dy = dx = x Δx = Δx. dy = f (x)dx f (x) = dy dx. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 2 / 13

8 Diferentsiaal Avaldist f (x)δx nimetatakse funktsiooni y = f (x) diferentsiaaliks ehk esimest järku diferentsiaaliks kohal x ja tähistatakse dy või df, Võttes y = x, saame dx - argumendi diferentsiaal dy = df = f (x)δx. dy = dx = x Δx = Δx. dy = f (x)dx f (x) = dy dx. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 2 / 13

9 Diferentsiaali omadusi Diferentsiaal Lause Lause Funktsiooni diferentsiaal on võrdeline argumendi muuduga. Nullist erineva tuletise korral on funktsiooni muut ekvivalentne funktsiooni diferentsiaaliga piirprotsessi Δx 0. d(f + g) = df + dg; d(f g) = df g + f dg; ( ) f df g f dg d = g g 2. f (x) = dy dx. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 3 / 13

10 Diferentsiaali omadusi Diferentsiaal Lause Lause Funktsiooni diferentsiaal on võrdeline argumendi muuduga. Nullist erineva tuletise korral on funktsiooni muut ekvivalentne funktsiooni diferentsiaaliga piirprotsessi Δx 0. d(f + g) = df + dg; d(f g) = df g + f dg; ( ) f df g f dg d = g g 2. f (x) = dy dx. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 3 / 13

11 Diferentsiaal Kõrgemat järku diferentsiaalid Funktsiooni y = f (x) n-järku diferentsiaaliks nimetatakse diferentsiaali selle funktsiooni n 1-järku diferentsiaalist d n y = d(d n 1 y). Saab näidata, et d n y = f (n) (x)(dx) n. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 4 / 13

12 Diferentsiaal Kõrgemat järku diferentsiaalid Funktsiooni y = f (x) n-järku diferentsiaaliks nimetatakse diferentsiaali selle funktsiooni n 1-järku diferentsiaalist d n y = d(d n 1 y). Saab näidata, et d n y = f (n) (x)(dx) n. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 4 / 13

13 Diferentsiaal Kõrgemat järku diferentsiaalid Funktsiooni y = f (x) n-järku diferentsiaaliks nimetatakse diferentsiaali selle funktsiooni n 1-järku diferentsiaalist d n y = d(d n 1 y). Saab näidata, et d n y = f (n) (x)(dx) n. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 4 / 13

14 Funktsiooni kasvamine ja kahanemine Funktsiooni kasvamine ja kahanemine Funktsiooni y = f (x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline positiivne arv δ, et suvaliste x 1 (x δ, x) ja x 2 (x, x + δ) korral f (x 1 ) < f (x) < f (x 2 ). Lause Kui funktsioon y = f (x) on rangelt kasvav punktis x, siis leidub selline δ > 0, et 0 < Δx < δ Δy Δx > 0. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 5 / 13

15 Funktsiooni kasvamine ja kahanemine Funktsiooni kasvamine ja kahanemine Funktsiooni y = f (x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline positiivne arv δ, et suvaliste x 1 (x δ, x) ja x 2 (x, x + δ) korral f (x 1 ) < f (x) < f (x 2 ). Lause Kui funktsioon y = f (x) on rangelt kasvav punktis x, siis leidub selline δ > 0, et 0 < Δx < δ Δy Δx > 0. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 5 / 13

16 Funktsiooni kasvamine ja kahanemine Funktsiooni y = f (x) nimetatakse rangelt kahanevaks punktis x, kui leidub selline positiivne arv δ, et suvaliste x 1 (x δ, x) ja x 2 (x, x + δ) korral f (x 1 ) > f (x) > f (x 2 ). Lause Kui funktsioon y = f (x) on rangelt kahanev punktis x, siis leidub selline δ > 0, et 0 < Δx < δ Δy Δx < 0. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 6 / 13

17 Funktsiooni kasvamine ja kahanemine Funktsiooni y = f (x) nimetatakse rangelt kahanevaks punktis x, kui leidub selline positiivne arv δ, et suvaliste x 1 (x δ, x) ja x 2 (x, x + δ) korral f (x 1 ) > f (x) > f (x 2 ). Lause Kui funktsioon y = f (x) on rangelt kahanev punktis x, siis leidub selline δ > 0, et 0 < Δx < δ Δy Δx < 0. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 6 / 13

18 Funktsiooni kasvamine ja kahanemine Lause. Tõestus. Kui f (a) = c > 0, siis funktsioon on rangelt kasvav punktis a. Kui f (a) = c < 0, siis funktsioon on rangelt kahanev punktis a. Kui funktsiooni y = f (x) tuletis f (x) on positiivne punktis a, st siis leidub selline δ > 0, et f (a) = lim Δx 0 Δy Δx > 0, 0 < Δx < δ Δy Δx > 0. Seega, kui Δa ( δ, 0) (0, δ), siis suurused Δx ja Δy on samamärgilised, st y = f (x) on rangelt kasvav punktis a. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 7 / 13

19 Funktsiooni kasvamine ja kahanemine Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Kui definitsioonis Δy < 0 -range lokaalne maksimum Kui definitsioonis Δy > 0 -range lokaalne miinimum G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 8 / 13

20 Funktsiooni kasvamine ja kahanemine Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Kui definitsioonis Δy < 0 -range lokaalne maksimum Kui definitsioonis Δy > 0 -range lokaalne miinimum G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 8 / 13

21 Funktsiooni kasvamine ja kahanemine Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Kui definitsioonis Δy < 0 -range lokaalne maksimum Kui definitsioonis Δy > 0 -range lokaalne miinimum G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 8 / 13

22 Funktsiooni kasvamine ja kahanemine Öeldakse, et funktsioonil f (x) on punktis x lokaalne ekstreemum, kui funktsioonil f (x) on punktis x kas lokaalne miinimum või lokaalne maksimum. Öeldakse, et funktsioonil f (x) on punktis x range lokaalne ekstreemum, kui funktsioonil f (x) on punktis x kas range lokaalne miinimum või range lokaalne maksimum. Lause (Fermat teoreem) Kui funktsioonil f (x) on punktis x lokaalne ekstreemum ja funktsioonf (x) on diferentseeruv punktis x, siis funktsiooni tuletis selles punktis on null, st f (x) = 0. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 9 / 13

23 Funktsiooni kasvamine ja kahanemine Öeldakse, et funktsioonil f (x) on punktis x lokaalne ekstreemum, kui funktsioonil f (x) on punktis x kas lokaalne miinimum või lokaalne maksimum. Öeldakse, et funktsioonil f (x) on punktis x range lokaalne ekstreemum, kui funktsioonil f (x) on punktis x kas range lokaalne miinimum või range lokaalne maksimum. Lause (Fermat teoreem) Kui funktsioonil f (x) on punktis x lokaalne ekstreemum ja funktsioonf (x) on diferentseeruv punktis x, siis funktsiooni tuletis selles punktis on null, st f (x) = 0. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 9 / 13

24 Funktsiooni kasvamine ja kahanemine Öeldakse, et funktsioonil f (x) on punktis x lokaalne ekstreemum, kui funktsioonil f (x) on punktis x kas lokaalne miinimum või lokaalne maksimum. Öeldakse, et funktsioonil f (x) on punktis x range lokaalne ekstreemum, kui funktsioonil f (x) on punktis x kas range lokaalne miinimum või range lokaalne maksimum. Lause (Fermat teoreem) Kui funktsioonil f (x) on punktis x lokaalne ekstreemum ja funktsioonf (x) on diferentseeruv punktis x, siis funktsiooni tuletis selles punktis on null, st f (x) = 0. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 9 / 13

25 Keskväärtusteoreemid Keskväärtusteoreemid Lause (Rolle i teoreem) Kui funktsioon on pidev lõigul [a, b] ja diferentseeruv vahemikus (a, b) ning f (a) = f (b), siis leidub vahemikus (a, b) punkt c, kus f (c) = 0. Tõestus. Kuna lõigul pidev funkstsioon saavutab seal oma minimaalse ja maksimaalse väärtuse, siis leidub funktsioonil f (x), mis ei ole konstantne funktsioon, vastavas vahemikus vähemalt üks ekstreemumpunkt c, kus f (c) = 0. Konstantse funktsiooni korral f (x) = 0 iga x (a, b). G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 10 / 13

26 Keskväärtusteoreemid Lause (Lagrange i keskväärtusteoreem) Kui funktsioon f on pidev lõigul [a, b] ja diferentseeruv vahemikus (a, b), siis leidub punkt c (a, b), et Tõestus. f (b) f (a) = f (c)(b a). Kasutame Rolle i teoreemi. Selleks defineerime abifunktsiooni L(x) = f (b) f (a) (x a) + f (a). b a Funktsioon g = f L rahuldab Rolle i teoreemi eeldusi, seega leidub selline punkt c (a, b), kus 0 = g (c) = f (c) L (c) = f (c) f (b) f (a). b a G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 11 / 13

27 Keskväärtusteoreemid Lause (Cauchy teoreem) Kui funktsioonid f ja g on pidevad lõigul [a, b] ja diferentseeruvad vahemikus (a, b), kusjuures g (x) = 0, siis leidub vahemikus (a, b) punkt c, et f (b) f (a) g(b) g(a) = f (c) g (c). Tõestus. Kasutame Lagrange i teoreemi. Selleks defineerime abifunktsiooni h(x) := (f (b) f (a))g(x) (g(b) g(a))f (x). Lagrange i keskväärtusteoreemi põhjal leidub punkt c (a, b), kus 0 = (f (b) f (a))(g(b) g(a)) (g(b) g(a))(f (b) f (a)) = h(b) h(a) = = h (c)(b a) = [(f (b) f (a))f (x) (g(b) g(a))g (x)](b a) G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 12 / 13

28 Keskväärtusteoreemid L Hospitali reegel Lause (L Hospitali reegel) Kui ning lim x a+ siis eksisteerib ka kusjuures f (x) = 0, lim g(x) = 0, x a+ lim x a+ δ 1 : x (a, a + δ 1 ] g(x) = 0, lim x a+ lim x a+ f (x) g(x) = f (x) g(x), lim x a+ f (x) g (x), f (x) g (x) Analoogiline väide peab paika ka vasakpoolse piirväärtuse ja samuti (kahepoolse) piirväärtuse korral. G. Tamberg (TTÜ) YMM3731 Matemaatilne analüüs I 13 / 13

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

4.1 Funktsiooni lähendamine. Taylori polünoom.

4.1 Funktsiooni lähendamine. Taylori polünoom. Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised

Διαβάστε περισσότερα

YMM3740 Matemaatilne analüüs II

YMM3740 Matemaatilne analüüs II YMM3740 Matemaatilne analüüs II Gert Tamberg Matemaatikainstituut Tallinna Tehnikaülikool gert.tamberg@ttu.ee http://www.ttu.ee/gert-tamberg G. Tamberg (TTÜ) YMM3740 Matemaatilne analüüs II 1 / 29 Sisu

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

6 Mitme muutuja funktsioonid

6 Mitme muutuja funktsioonid 6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad

Διαβάστε περισσότερα

T~oestatavalt korrektne transleerimine

T~oestatavalt korrektne transleerimine T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester

Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester Matemaatiline analüüs IV praktikumiülesannete kogu 4. a. kevadsemester . Alamhulgad ruumis R m. Koonduvad jadad. Tõestage, et ruumis R a) iga kera s.o. ring) U r A) sisaldab ruutu keskpunktiga A = a,b),

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

Matemaatiline analüüs II praktikumiülesannete kogu a. kevadsemester

Matemaatiline analüüs II praktikumiülesannete kogu a. kevadsemester Matemaatiline analüüs II praktikumiülesannete kogu 5. a. kevadsemester . Kahe ja kolme muutuja funktsiooni määramispiirkond, selle raja, kinnisus ja lahtisus. Olgu X ja Y hulgad. Kujutus e. funktsioon

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, 14-1-14 Μ. Παπαδημητράκης. 1 Τις διάφορες απλές ιδιότητες των παραγώγων θα τις θεωρήσω γνωστές από πιο στοιχειώδη μαθήματα απειροστικού λογισμού και από το λύκειο. Τώρα

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

1 MTMM Kõrgem matemaatika, eksamiteemad 2014

1 MTMM Kõrgem matemaatika, eksamiteemad 2014 1 MTMM.00.188 Kõrgem matemaatika, eksamiteemad 2014 Eksamitöö annab kokku 80 punkti ja ülesanded jagunevad järgmisse kuude gruppi: P1 ( 10p ) - ülesanded I kontrolltöö põhiteemade peale; P2 ( 10p ) - ülesanded

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35

Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35 Matemaatika VI kursus Tõenäosus, statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele

MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele TALLINNA TEHNIKAÜLIKOOL Matemaatikainstituut MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele Tallinn 24 3 MATEMAATILINE ANALÜÜS II

Διαβάστε περισσότερα

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

5. OPTIMEERIMISÜLESANDED MAJANDUSES

5. OPTIMEERIMISÜLESANDED MAJANDUSES 5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,

Διαβάστε περισσότερα

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α = KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega

Διαβάστε περισσότερα

Sisukord. 4 Tõenäosuse piirteoreemid 36

Sisukord. 4 Tõenäosuse piirteoreemid 36 Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

ALGEBRA I. Kevad Lektor: Valdis Laan

ALGEBRA I. Kevad Lektor: Valdis Laan ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja

Διαβάστε περισσότερα

Formaalsete keelte teooria. Mati Pentus

Formaalsete keelte teooria. Mati Pentus Formaalsete keelte teooria Mati Pentus http://lpcs.math.msu.su/~pentus/ftp/fkt/ 2009 13. november 2009. a. Formaalsete keelte teooria 2 Peatükk 1. Keeled ja grammatikad Definitsioon 1.1. Naturaalarvudeks

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord 1 Sündmused ja t~oenäosused 4 1.1 Sündmused................................... 4 1.2 T~oenäosus.................................... 7 1.2.1 T~oenäosuse arvutamise konkreetsed meetodid (üldise

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 8 ΝΟΕΜΒΡΙΟΥ 2016 ΜΕΣΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Έστω η συνάρτηση συνολικής ζήτησης: p = D(q) = 50 2q

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja

Διαβάστε περισσότερα

Deformeeruva keskkonna dünaamika

Deformeeruva keskkonna dünaamika Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla

Διαβάστε περισσότερα

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim. Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λογισμός Ι Ενότητα 4: Παράγωγοι Κ. Δασκαλογιάννης Τμήμα Μαθηματικών Α.Π.Θ. (Α.Π.Θ.) Λογισμός Ι 1 / 68 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

Avaliku võtmega krüptograafia

Avaliku võtmega krüptograafia Avaliku võtmega krüptograafia Ahto Buldas Motiivid Salajase võtme vahetus on tülikas! Kas ei oleks võimalik salajases võtmes kokku leppida üle avaliku kanali? 2 Probleem piiramatu vastasega! Kui vastane

Διαβάστε περισσότερα

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord Sündmused ja t~oenäosused 4. Sündmused................................... 4.2 T~oenäosus.................................... 7.2. T~oenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel

Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel Algebraliste võrrandite lahenduvus radikaalides Magistritöö Raido Paas Juhendaja: Mart Abel Tartu 2013 Sisukord Sissejuhatus Ajalooline sissejuhatus iii v 1 Rühmateooria elemente 1 1.1 Substitutsioonide

Διαβάστε περισσότερα

5. TUGEVUSARVUTUSED PAINDELE

5. TUGEVUSARVUTUSED PAINDELE TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2010

KATEGOORIATEOORIA. Kevad 2010 KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

f (x) 2e 5(x 1) 0, άρα η f

f (x) 2e 5(x 1) 0, άρα η f ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 8 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη την ύλη) ΘΕΜΑ Α 1 Βλέπε σχολικό βιβλίο σελίδα 14-143

Διαβάστε περισσότερα

1. Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής και τεχνολογικής Κατεύθυνσης», σελίδα

1. Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής και τεχνολογικής Κατεύθυνσης», σελίδα 6 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 16: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 6 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2016

KATEGOORIATEOORIA. Kevad 2016 KTEGOORITEOORI Kevad 2016 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

a,b με a b. Αμ η ζρμάοηηζη f :(a,b) είμαι παοα- f (a,b) ηηπ f είμαι διάζηημα.

a,b με a b. Αμ η ζρμάοηηζη f :(a,b) είμαι παοα- f (a,b) ηηπ f είμαι διάζηημα. ΘΕΩΡΗΜΑΣΑ ΠΑΡΑΓΩΓΙΙΜΩΝ ΤΝΑΡΣΗΕΩΝ 1 ΘΕΩΡΗΜΑ (ΑΡΥΗ) ΣΟΤ FERMAT Έζηω a,b με a b Αμ η ζρμάοηηζη f :(a,b) είμαι παοαγωγίζιμη ζηξ (a,b) και παοξρζιάζει ακοόηαηξ ζηξ, ηόηε f ( ) 0 ΘΕΩΡΗΜΑ DARBOUX Έζηω a,b με

Διαβάστε περισσότερα

Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse. Ahto Buldas

Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse. Ahto Buldas Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse Ahto Buldas 22. september 2003 2 Sisukord Saateks v 1 Entroopia ja infohulk 1 1.1 Sissejuhatus............................ 1 1.2 Kombinatoorne

Διαβάστε περισσότερα

Diskreetne matemaatika 2016/2017. õ. a. Professor Peeter Puusemp

Diskreetne matemaatika 2016/2017. õ. a. Professor Peeter Puusemp Diskreetne matemaatika 2016/2017. õ. a. Professor Peeter Puusemp http://www.staff.ttu.ee/ puusemp/ Sellel kodulehe aadressil asub alajaotuse Diskreetne matemaatika all elektrooniline õpik ja ülesannete

Διαβάστε περισσότερα

Mudeliteooria. Kursust luges: Kalle Kaarli september a. 1 Käesoleva konspekti on L A TEX-kujule viinud Indrek Zolk.

Mudeliteooria. Kursust luges: Kalle Kaarli september a. 1 Käesoleva konspekti on L A TEX-kujule viinud Indrek Zolk. Mudeliteooria Kursust luges: Kalle Kaarli 1 20. september 2004. a. 1 Käesoleva konspekti on L A TEX-kujule viinud Indrek Zolk. 2 Sisukord 1 Põhimõisted 9 1.1 Signatuur ja struktuur.................. 9

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

Ivar Tammeraid itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend

Ivar Tammeraid  itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend TTÜ Mtemtikinstituut http://www.stff.ttu.ee/ mth/ Ivr Tmmerid http://www.stff.ttu.ee/ itmmerid/ MATEMAATILINE ANALÜÜS I Elektrooniline õppevhend Tllinn, Trükitud versioon: Ivr Tmmerid, Mtemtiline nlüüs

Διαβάστε περισσότερα

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD 1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Κανάρη 6, Δάφνη Τηλ 9794 & 976976 ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ 4 Α Σχολικό βιβλίο σελ 6 Α α) Σ β) Σ γ) Σ δ) Λ ε) Λ ΘΕΜΑ B Β

Διαβάστε περισσότερα

2. HULGATEOORIA ELEMENTE

2. HULGATEOORIA ELEMENTE 2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.

Διαβάστε περισσότερα

8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.

8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm. TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ

Διαβάστε περισσότερα

Keerukusteooria elemente

Keerukusteooria elemente Keerukusteooria elemente Teema 5 Jaan Penjam, email: jaan@cs.ioc.ee Keerukusteooria elemente 1 / 45 Sisukord 1 Algoritmi keerukus 2 Ülesannete keerukusklassid Jaan Penjam, email: jaan@cs.ioc.ee Keerukusteooria

Διαβάστε περισσότερα

Ivar Tammeraid itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend

Ivar Tammeraid  itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend TTÜ Mtemtikinstituut http://www.stff.ttu.ee/ mth/ Ivr Tmmerid http://www.stff.ttu.ee/ itmmerid/ MATEMAATILINE ANALÜÜS I Elektrooniline õppevhend Tllinn, Trükitud versioon: Ivr Tmmerid, Mtemtiline nlüüs

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x)

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - Λύσεις 2ης Σειράς Ασκήσεων Ασκηση 1. Για κάθε a,b και x 2, η f είναι παραγωγίσιµη.

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

Πραγματικοί Αριθμοί 2

Πραγματικοί Αριθμοί 2 Διαφορικός Λογισμός Συναρτήσεις μίας μεταβλητής Όριο και συνέχεια Συνάρτησης Παράγωγος Συνάρτησης o Ιδιότητες παραγώγων o Κανόνες παραγώγισης o Διαφορικό συνάρτησης o Συναρτήσεις με παραμετρική μορφή Βασικά

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

T~OENÄOSUSTEOORIA JA MATEMAATILINE STATISTIKA

T~OENÄOSUSTEOORIA JA MATEMAATILINE STATISTIKA http://wwwttuee http://wwwstaffttuee/ math TALLINNA TEHNIKAÜLIKOOL MATEMAATIKAINSTITUUT http://wwwstaffttuee/ itammeraid Ivar Tammeraid T~OENÄOSUSTEOORIA JA MATEMAATILINE STATISTIKA Elektrooniline ~oppematerjal

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση 1 Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f στο x = x o? Δεν έχει νόημα Ερώτηση 2 Αν μία συνάρτηση f είναι συνεχής στο

Διαβάστε περισσότερα

Lambda-arvutus. λ-termide süntaks. Näiteid λ-termidest. Sulgudest hoidumine. E ::= V muutuja (E 1 E 2 ) aplikatsioon (λv.

Lambda-arvutus. λ-termide süntaks. Näiteid λ-termidest. Sulgudest hoidumine. E ::= V muutuja (E 1 E 2 ) aplikatsioon (λv. Lambda-arvutus λ-termide süntaks Näiteid λ-termidest Sulgudest hoidumine Lambda-arvutus E ::= V muutuja (E 1 E 2 ) aplikatsioon (λv. E) abstraktsioon (λx. x) (((λx. (λf. (f x))) y)(λz. z)) (λx. y) (λx.

Διαβάστε περισσότερα

Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist

Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist Loeng 2 Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist P2 - tuleb P1 lahendus T P~Q = { x P(x)~Q(x) = t} = = {x P(x)

Διαβάστε περισσότερα

1 Entroopia ja informatsioon

1 Entroopia ja informatsioon Kirjadus: T.M. Cover, J.A. Thomas "Elemets of iformatio theory", Wiley, 99 ja 2006. Yeug, Raymod W. "A first course of iformatio theory", Kluwer, 2002. Mackay, D. "Iformatio theory, iferece ad learig algorithms",

Διαβάστε περισσότερα

Elastsusteooria tasandülesanne

Elastsusteooria tasandülesanne Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

6.6 Ühtlaselt koormatud plaatide lihtsamad

6.6 Ühtlaselt koormatud plaatide lihtsamad 6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline

Διαβάστε περισσότερα

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x) Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche

Διαβάστε περισσότερα

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon

Διαβάστε περισσότερα

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

!#$ %&$ ##%&%'()) *..$ /. 0-1$ )$.'- !!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8

Διαβάστε περισσότερα

Excel Statistilised funktsioonid

Excel Statistilised funktsioonid Excel2016 - Statistilised funktsioonid Statistilised funktsioonid aitavad meil kiiresti leida kõige väiksemat arvu, keskmist, koguarvu, tühjaks jäänud lahtreid jne jne. Alla on lisatud sellesse gruppi

Διαβάστε περισσότερα

siis on tegemist sümmeetrilise usaldusvahemikuga. Vasakpoolne usaldusvahemik x i, E x = EX, D x = σ2

siis on tegemist sümmeetrilise usaldusvahemikuga. Vasakpoolne usaldusvahemik x i, E x = EX, D x = σ2 Vahemikhinnangud Vahemikhinnangud Olgu α juhusliku suuruse X parameeter ja α = α (x 1,..., x n ) parameetri α hinnang. Kui ε > 0 on kindel suurus, siis vahemiku (α ε, α +ε) otspunktid on samuti juhuslikud

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 2018-19. Λύσεις έβδομου φυλλαδίου ασκήσεων. 1. Έχουν οι παρακάτω συναρτήσεις μέγιστη ή ελάχιστη τιμή στο διάστημα (0, 1); Στο διάστημα (, + ); Στο διάστημα [0,

Διαβάστε περισσότερα

Eesti koolinoorte XLI täppisteaduste olümpiaad

Eesti koolinoorte XLI täppisteaduste olümpiaad Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

Προτάσεις που χρησιμοποιούνται στη λύση ασκήσεων και χρειάζονται απόδειξη. Πρόταση 1

Προτάσεις που χρησιμοποιούνται στη λύση ασκήσεων και χρειάζονται απόδειξη. Πρόταση 1 Προτάσεις που χρησιμοποιούντι στη λύση σκήσεων κι χρειάζοντι πόδειξη Πρότση 1 Έστω η συνάρτηση f: A R η οποί είνι γνησίως ύξουσ Ν δείξετε ότι ) η f ντιστρέφετι ) η f -1 είνι γνησίως ύξουσ στο f(α) γ) Οι

Διαβάστε περισσότερα

Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

Segmenteerimine peidetud Markovi mudelite segude korral

Segmenteerimine peidetud Markovi mudelite segude korral Tartu Ülkool Loodus- ja täppsteaduste valdkond Matemaatka ja statstka nsttuut Matemaatlse statstka erala Segmenteermne pedetud Markov mudelte segude korral Magstrtöö 30 EAP) Autor katsmsjärgsete parandustega

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ-ΓΕΩΜΕΤΡΙΑΣ ΤΟΠΟΛΟΓΙΑ ΚΑΜΠΥΛΩΝ (ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ) ΠΑΝΑΓΙΩΤΗ ΣΠΥΡΟΥ

ΜΑΘΗΜΑΤΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ-ΓΕΩΜΕΤΡΙΑΣ ΤΟΠΟΛΟΓΙΑ ΚΑΜΠΥΛΩΝ (ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ) ΠΑΝΑΓΙΩΤΗ ΣΠΥΡΟΥ ΜΑΘΗΜΑΤΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ-ΓΕΩΜΕΤΡΙΑΣ ΤΟΠΟΛΟΓΙΑ ΚΑΜΠΥΛΩΝ (ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ) ΠΑΝΑΓΙΩΤΗ ΣΠΥΡΟΥ Επίκουρου Καθηγητή ΑΘΗΝΑ 2011 ΠΡΟΛΟΓΟΣ Η Τοπολογία Καμπύλων είναι ένα κεφάλαιο της Γενικής

Διαβάστε περισσότερα

Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών

Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών ΦΥΣ - Διαλ.08 Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών q q Το μεγάλο πλεονέκτημα του Lagrangian φορμαλισμού είναι ότι δεν χρειάζεται να υπολογισθούν οι δυνάμεις των δεσμών Ø Υπάρχουν περιπτώσεις που χρειαζόμαστε

Διαβάστε περισσότερα

Deformatsioon ja olekuvõrrandid

Deformatsioon ja olekuvõrrandid Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,

Διαβάστε περισσότερα

f(x) f(c) x 1 c x 2 c

f(x) f(c) x 1 c x 2 c Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς

Διαβάστε περισσότερα